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KINETIC MODELS WITH RANDOMLY PERTURBED BINARY COLLISIONS

FEDERICO BASSETTI, LUCIA LADELLI, AND GIUSEPPE TOSCANI

Abstract. We introduce a class of Kac-like kinetic equations on the real line, with general
random collisional rules, which include as particular cases models for wealth redistribution in
an agent-based market [6], or models for granular gases with a background heat bath [11].
Conditions on these collisional rules which guarantee both the existence and uniqueness of
equilibrium profiles and their main properties are found. We show that the characterization
of these stationary solutions is of independent interest, since the same profiles are shown to be
solutions of different evolution problems, both in the econophysics context [6], and in the kinetic
theory of rarefied gases [14, 29].

1. Introduction

In this paper, we are concerned with the study of the time evolution and the asymptotic behavior
of the spatially homogeneous kinetic equation

(1)

{
∂tµt + µt = Q+(µt, µt)

µ(0) = µ̄0

which caricatures a Boltzmann–like equation in one spatial dimension. The solution µt = µt(·) is
a time-dependent probability measure on R, describing, in its most common physical applications,
the distribution of particle velocity in a homogeneous gas, which is initially distributed according
to the probability measure µ̄0. The gain operator Q+ models velocity changes due to binary
particle collisions. Our fundamental assumption is that Q+ is a generalized Wild convolution.
More precisely, for all bounded and continuous test functions g ∈ Cb(R), we characterize the
probability measure Q+(µ, µ) by

(2)

∫
g(v)Q+(µ, µ)(dv) = E

[ ∫

R

∫

R

g
(
v1A1 + v2A2 +A0

)
µ(dv1)µ(dv2)

]
,

where (A0, A1, A2) is a random vector of R3 defined on a probability space (Ω,F , P ) and E denotes
the expectation with respect to P .

The interaction rule generated by the law described in (2) simulates an interaction in which,
in addition to the standard binary collision, the post-interaction velocities are randomly modified
by the presence of an external background. As we shall see, this modification induces an evolu-
tion process for the probability measure which stabilizes in time towards a steady profile heavily
dependent of this random collision part. The physical relevance of this generalized collision rule
is mainly related to the dissipative Boltzmann equation. Indeed, in a dissipative binary collision
process, a particular choice of this random contribution is shown to produce the same steady state
of the classical Boltzmann equation with standard dissipative binary collisions, in presence of a
thermal bath [14].

A second main example of application of equation (2) is linked to the field of econophysics [6].
In this case, the generalized collision refers to a market based on binary trades between agents, in
which part of the traded money is taken away by an external third subject, which redistributes it
according to a certain economical random rule.
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For A0 = 0 and for suitable choices of (A1, A2), the one-dimensional kinetic equation (1)
reduces to well-known simplified models for a spatially homogeneous gas, in which particles move
only in one spatial direction. The basic assumption is that particles change their velocities only
because of binary collisions. When two particles collide, then their velocities change from v and
w, respectively, to

(3) v′ = p1v + q1w w′ = p2v + q2w

where (p1, q1) and (q2, p2) are two identically distributed random vectors (not necessarily inde-
pendent) with the same law of (A1, A2).

The first model of the type (1)&(2) has been introduced by Kac [22], with the collisional

parameters pi = sin θ̃ and qi = cos θ̃, i = 1, 2, for a random angle θ̃, uniformly distributed on
[0, 2π). The dynamics describes a gas in which the colliding molecules exchange a random fraction
of their kinetic energies. This idea has been extended in [25] to gases with inelastically colliding
molecules, which loose a random part of their energy in each interaction. The inelastic Kac
equation corresponds to (1)&(2) with pi = | sin θ̃|p sin θ̃ and qi = | cos θ̃|p cos θ̃, with p > 0 being
the parameter of inelasticity. Recently, more general versions of (1)&(2) have been considered:
their applications range from gases under the influence of a background heat bath [11] to models for
the redistribution of wealth in simple market economies [18, 23]. In most of the above mentioned
cases, A1 and A2 are positive random variables such that E[A2

1 +A2
2] = 1 (conservation of energy)

[22, 18], or E[A1 +A2] = 1 (conservation of momentum) [18, 23].
In the classical Boltzmann equation [12, 13] relaxation to Maxwellian equilibrium (Gaussian

density) is shown to be a universal behavior of the solution. Contrary, the corresponding equilibria
of model (1), to which the solution is shown to relax, depend heavily on the precise form of the
microscopic interactions (3). Furthermore, they are not always explicitly known analytically.

In the case of models of wealth distribution in the society, the comparison of these steady
states with realistic data is up to now the only means to evaluate— a posteriori — the quality
of a proposed model. For instance, it is commonly accepted that the wealth distribution should
approach a stationary (or, in general, a self-similar) profile for large times, and that the latter
should exhibit a Pareto tail [16, 17]. The asymptotic behavior of the solutions of (1), when
A0 = 0, has been extensively treated in [2, 3, 9], and it is by now fully understood, in particular
if one aims to describe a few analytically accessible properties (e.g. moments and smoothness).

The general situation in which A0 6= 0, while relevant in various applications which will be
dealt with in this paper, has never been touched before. This case corresponds to assume that in
a binary interaction the particle velocities change from v and w, respectively, to

(4) v′ = p1v + q1w + η1 w′ = p2v + q2w + η2

where (p1, q1, η1) and (q2, p2, η2) are two identically distributed random vectors with the same law
of (A1, A2, A0). We will now describe the specific examples we are dealing with.

Kinetic models of a simple market economy with redistribution. In [6] Boltzmann–type kinetic
models for wealth redistribution in a simple market economy have been introduced and discussed.
The authors focused their attention to models which include taxes to each trading process. As-
suming that a percentage of the total wealth involved in the trade is not returned to agents, the
goal in [6] was to understand the role of redistribution, there produced by a linear transport-drift
type operator.

Here we assume that the economic trades between agents are described by an interaction of type
(4). In particular, for a given positive constant 0 < ǫ < 1, the post-interaction wealths including
redistribution are given by

(5) A1 = (1− ǫ)Ã1 A2 = (1− ǫ)Ã2 A0 = ǫÃ0

where E[Ã1 + Ã2] = 1 and E[Ã0] = m0 =
∫
vµ̄0(dv). Note that within this assumption, the total

mean wealth is left unchanged. The mixing parameters (Ã1, Ã2) can be chosen among the variety
of models present in the pertinent literature, see e.g. [23]. The classical model introduced in [15]
corresponds to the choice

Ã1 = λ+ η̃(1− λ), Ã2 = η̃(1− λ)
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where η̃ is a random variable defined on [0, 1] (symmetrically distributed around 1/2) and λ ∈ [0, 1]
is a parameter (the so called saving propensity), while the pure gambling [5] corresponds to fix

Ã1 = Ã2 = η̃.
An interesting variant of the previous model is obtained by setting

(6) A1 = (1− ǫ∆)Ã1 A2 = (1 − ǫ∆)Ã2 A0 = ǫ∆Ã0

where (Ã1, Ã2, Ã0) and ∆ are stochastically independent, and P{∆ = 1} = 1 − P{∆ = 0} = δ.
The presence of ∆ in (6) simulates a market in which taxation does not act on the totality of
trades, but it occurs only with a probability δ.

As we shall see in Section 3.2, one can fix the values of (A1, A2, A0) in such a way that the
steady state of the model (1) produces the same steady states as the model considered in [6].

Inelastic Kac models with background. A second interesting application of binary interactions of
type (4) is related to the study of a dissipative gas in a thermal bath [11, 14]. In one space-
dimension, a dissipative Kac-like model has been introduced and discussed in [25]. As already
mentioned, this model corresponds to the choice

(7) A1 = | sin(θ̃)|p sin(θ̃), A2 = | cos(θ̃)|p cos(θ̃)

where θ̃ is uniformly distributed on [0, 2π). As shown in [4, 25], in consequence of the dissipation,
a solution to the Kac equation corresponding to an initial value with finite second moment con-
verges in time toward the probability mass located in zero. In addition to the physical dissipative
interaction (7), let us now assume that particles velocities are subject to random fluctuations ηi,
induced by an external background, whose distribution is the same of A0, while A0 and (A1, A2)
are stochastically independent. In addition let us assume that A0 6= 0, but E[A0] = 0.

As extensively discussed in [11], and directly verifiable on the single binary collision, the presence
of this random fluctuation of zero mean is such that the post-collision energy is bigger than the
corresponding one induced by the dissipative collision without fluctuations, i.e. when A0 = 0.
Indeed, since A0 and (A1, A2) are stochastically independent and E[A0] = 0,

E
(
(v′)2 + (w′)2

)
= E(A2

1 +A2
2)(v

2 + w2) + 4E(A1A2)vw + 2E(A2
0)

= E(A1v +A2w)
2 + E(A1w +A2v)

2 + 2E(A2
0)

with E(A2
0) > 0. The main consequence of this fact is that one can exhibit examples in which the

initial value has finite second moment and at the same time the corresponding solution does not
converge in time toward a degenerate distribution. The same phenomenon is shown to happen if
one adds to the dissipative Boltzmann equation a thermal bath [14].

This allows to establish a direct link between the steady states of the present dissipative colli-
sional models with random fluctuations and the steady states of the dissipative Boltzmann equation
in presence of diffusion [14], as well as in presence of friction and/or drift [29]. Indeed, the steady
states of the various problems on the dissipative Boltzmann equation quoted above, are steady
states of the Boltzmann problem (1), corresponding to suitable choices of the random variables
(A1, A2, A0). We will detail the correspondences between these problems in Section 3.

2. Main results

We start by writing the Boltzmann equation (1) in Fourier variables. By setting φ(t, ξ) =∫
eiξvµt(dv), and using Bobylev’s identity [7], one obtains that φ(t, ξ) obeys to the equation

(8)





∂tφ(t, ξ) + φ(t, ξ) = Q̂+
(
φ(t, ·), φ(t, ·)

)
(ξ) (t > 0, ξ ∈ R)

φ(0, ξ) = φ0(ξ)

where

Q̂+
(
φ(t, ·), φ(t, ·)

)
(ξ) := E[φ(t, A1ξ)φ(t, A2ξ)e

iξA0 ].(9)

The initial condition φ0(ξ) =
∫
eiξvµ̄0(dv) can be seen as the characteristic function of a prescribed

real random variable X0, i.e. φ0(ξ) = E[eiξX0 ].
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As in the case of the Kac equation, it is easy to see that (8) admits a unique solution φ which
can be written as a Wild series [31]

φ(t, ξ) =
∑

n≥0

e−t(1− e−t)nqn(ξ),(10)

where q0(ξ) = φ0(ξ) and, for n ≥ 1,

qn(ξ) =
1

n

n−1∑

j=0

Q̂+(qj , qn−1−j)(ξ).(11)

Hence, if µt is the unique solution of (1) with initial condition µ̄0, then its Fourier-Stieltjes
transform is given by (10).

2.1. Steady states. The stationary equation associated to (8) is

(12) φ∞(ξ) = Q̂+(φ∞, φ∞)(ξ) (ξ ∈ R).

It can be proven that, under suitable hypotheses, a solution to (12) exist. To show that steady
states exist it is enough to recast the problem as a problem of fixed point equation for distributions.
In terms of probability distributions, (12) reads

(13) Q+(µ, µ) = µ,

where, given any probability distribution µ, by (2), the probability distribution Q+(µ, µ) is the
law of the random variable

A0 + Y1A1 + Y2A2,

Y1 and Y2 having law µ and Y1, Y2 and (A0, A1, A2) being stochastically independent.
In what follows, let us set

Mγ :=

{
µ probability measure on B(R) :

∫

R

|x|γµ(dx) < +∞

}
,

and, for every m in R and γ ≥ 1,

Mγ,m :=

{
µ ∈ Mγ :

∫

R

xµ(dx) = m

}
.

Finally, when E[A1 +A2] 6= 1, let us define

m̄ :=
E[A0]

1− E[A1 +A2]
.

The convex function q : [0,∞) → [0,∞] defined by

(14) q(γ) := E[|A1|
γ + |A2|

γ ],

where 00 := 0, will play a very important role in what follows.
First of all, let us collect some known results on the existence of solutions of equation (13).

Proposition 2.1 ([27],[28]). Assume that there is γ in (0, 2] such that E[|A0|γ ] < +∞ and
q(γ) < 1.

(a) If 0 < γ ≤ 1, then there is a unique solution µ∞ of (13) in Mγ . In addition, if γ = 1,
this solution belongs to M1,m̄;

(b) If 1 < γ ≤ 2 and E[A1 + A2] 6= 1, then there is a unique solution µ∞ of (13) in Mγ and
this solution belongs to Mγ,m̄;

(c) If 1 < γ ≤ 2, E[A1 + A2] = 1 and E[A0] = 0, then, for every m0 ∈ R, there is a unique
solution µ∞ of (13) in Mγ,m0.

Let us notice that in case (a) (cfr. Lemma 5.2), it is possible to describe µ∞ in terms of a
suitable series of random variables.

While it is easy to check when µ∞ is a degenerate distribution, necessary and sufficient con-
ditions for boundedness of moments up to a certain order are more difficult to obtain. A partial
answer to this problem is given in the next proposition.
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Proposition 2.2. Let the same hypotheses of Proposition 2.1 be in force.

(i) In case (a) or (b) of Proposition 2.1 µ∞ is a degenerate distribution if and only if m(1−
(A1 + A2)) = A0 almost surely (a.s.) for some real number m; in case (c) of Proposition
2.1 µ∞ is a degenerate distribution if and only if m0(1− (A1 +A2)) = A0 a.s.;

(ii) If q(β) < 1 and E[|A0|β ] < +∞ for some β > 2, then q(s) < 1 for every γ ≤ s ≤ β and∫
|x|βµ∞(dx) < +∞;

(iii) Let A0, A1 and A2 be positive random variables with P{A0 6= 0} > 0. If, for some
β ≥ max{1, γ},

∫
|x|βµ∞(dx) < +∞ and

∫
xµ∞(dx) > 0, then µ∞{[0,+∞)} = 1 and

q(β) < 1.

2.2. Trend to equilibrium. We recall that the Kantorovich-Wasserstein distance of order γ > 0
between two probability measures µ and ν is defined by

lγ(µ, ν) := inf
(X′,Y ′)

(E|X ′ − Y ′|γ)1/max(γ,1)(15)

where the infimum is taken over all pairs (X ′, Y ′) of real random variables whose marginal prob-
ability distributions are µ and ν, respectively.

If (νn)n is a sequence of probability measures belonging toMγ and ν∞ ∈ Mγ , then lγ(νn, ν∞) →
0 as n → +∞ if and only if νn converges weakly to ν∞ and

∫
|x|γνn(dx) →

∫
|x|γν∞(dx).

See, e.g., [26]. Recall that νn converges weakly to ν∞ means that
∫
g(x)νn(dx) →

∫
g(x)ν∞(dx)

for every g in Cb(R).
We are now ready to state our main results concerning the long time behavior of the solutions.

Proposition 2.3. Let γ ∈ (0, 1). Assume that E[|X0|γ + |A0|γ ] < +∞ and q(γ) < 1. Let µ∞ be
the unique solution in Mγ to (13). Then, for every t > 0

lγ(µt, µ∞) ≤ lγ(µ0, µ∞)e−t(1−q(γ)).

In what follows, whenever E|X0| < +∞, set m0 = E[X0].

Proposition 2.4. Assume that E[|X0| + |A0|] < +∞ and that q(1) < 1. Let µ∞ be the unique
probability measure in M1 which satisfies (13). Then for every t > 0

l1(µt, µ∞) ≤ l1(µ0, µ∞)e−t(1−q(1))

and
∫
vµ∞(dv) = m̄. Moreover, if m0 = m̄, then

∫
vµt(dv) = m̄ for all t ≥ 0.

Proposition 2.5. Assume that, for some γ ∈ (1, 2], E[|X0|γ + |A0|γ ] < +∞, q(γ) < 1, E[A1 +
A2] 6= 1 and m0 = m̄. Let µ∞ be the unique solution in Mγ to (13). Then, for every t > 0,

lγ(µt, µ∞) ≤ 21/γlγ(µ0, µ∞)e−t(1−q(γ))/γ

and
∫
R
vµ∞(dv) = m̄. Moreover,

∫
vµt(dv) = m̄ for all t ≥ 0.

Proposition 2.6. Assume that, for some γ ∈ (1, 2], E[|X0|γ + |A0|γ ] < +∞, q(γ) < 1 and that
E[A1 +A2] = 1 and E[A0] = 0. Let µ∞ be the unique solution in Mγ,m0 of (13). Then

lγ(µt, µ∞) ≤ 21/γlγ(µ0, µ∞)e−t(1−q(γ))/γ

for every t > 0. Moreover,
∫
vµt(dv) = m0 for all t ≥ 0.

3. Examples

3.1. Kinetic models of a simple market economy with redistribution. The first applica-
tion of the results of Section 2 deals with the kinetic model for wealth with redistribution, briefly
described in the Introduction. In this leading example, the random variables A1, A2, A0 are given
by (6). As already noticed, these assumptions correspond to a kinetic model for wealth distribu-
tion in which part of the wealth put into the binary trade is taken away by a third subject, which
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at the same time restitutes to agents a certain amount of wealth. This is done in such a way that
the mean total amount of wealth into the system is left unchanged. Assuming (6), one has

E[A1 +A2] = 1− ǫδ < 1.

Hence, since E[Ã0] =
∫
vµ̄0(dv) = m0 < +∞, one can invoke Propositions 2.1 (a) and 2.4 to prove

both the existence and uniqueness in M1 of a steady state and the (exponential) convergence to
this steady state of any solution with finite initial moment of order one.

One of the interesting effect of the redistribution is that the steady state can have finite moments
of higher order than those of the steady states of the corresponding model without redistribution.

This can be easily verified by comparing the steady states corresponding to ǫ > 0, say µ
(δ,ǫ)
∞ , with

the steady states without redistribution, we will denote by µ
(0,0)
∞ , obtained by setting δ = ǫ = 0.

Thanks to Theorem 5.3 in [20], it is known that, given β > 1,
∫
vβµ

(0,0)
∞ (dv) < +∞ if and only

if q̃(β) := E[Ãβ
1 + Ãβ

2 ] < 1. On the other hand, if ǫ > 0 and E[Aβ
0 ] < +∞, by Proposition 2.2

(ii)-(iii),
∫
vβµ

(δ,ǫ)
∞ (dv) < +∞ if and only if q(β) < 1. Since q(β) = [1 + δ[(1 − ǫ)β − 1]]q̃(β)

and [1 + δ[(1 − ǫ)β − 1]] < 1, one can easily give examples in which
∫
vβµ

(0,0)
∞ (dv) = +∞ while∫

vβµ
(δ,ǫ)
∞ (dv) < +∞.

The previous discussion does not solve another interesting problem connected with wealth
taxation and redistribution: the existence of an optimal amount of taxation. If one assumes that,
given a certain (conserved) amount of money, the optimal redistribution refers to a steady state in
which all people in the market ends up with almost the same amount of money, this problem can
be solved by looking for the steady state with minimal variance. We leave this point to a further
research.

3.2. Connections with other form of redistribution. We show here that the law of (A1, A2, A0)
can be fixed in such a way that the steady states of the redistribution model proposed in [6] fit
into our framework.

Let us start by briefly outlining the model introduced in [6]. In Fourier variables this model
reads

(16)
∂

∂t
φ(t, ξ) + φ(t, ξ) = Q̂ǫ(φ, φ)(t, ξ) + R̂ǫ

χ(φ)(t, ξ)

with

(17) Q̂ǫ(φ, φ) := E
[
φ
(
A∗

1ξ
)
φ
(
A∗

2ξ
)
],

and

(18) R̂ǫ
χ(φ)(ξ) := −ǫχξ

∂

∂ξ
φ(ξ) + iǫ(χ+ 1)m0ξφ(ξ) (χ ≥ −1),

In (17) (A∗
1, A

∗
2) are positive random variables such that E[A∗

1 + A∗
2] = 1 − ǫ, and ∂

∂ξφ(0, 0) =

i
∫
vµ̄0(dv) = im0. Note that in (16) the interaction operator consists in a dissipative collision

operator, given by Q̂ǫ(φ, φ), and a redistribution (differential) operator R̂ǫ
χ(φ)(ξ). It is worth

recalling that, if φ is the Fourier-Stieltjes transform of a (regular) density f , then R̂ǫ
χ(φ) is the

Fourier-Stieltjes transform of

Rǫ
χ(f)(v) = ǫ

∂

∂v

[
(χv − (χ+ 1)m0) f(v)

]
.

The possible steady states of (16) must satisfy

(19) φ(ξ) = Q̂ǫ(φ, φ)(ξ) + R̂ǫ
χ(φ)(ξ).

Existence of a global solution φ(ξ, t) to (16) has been proved in [6] provided that
∫
vµ̄0(dv) = m0.

Anything was proven about the existence (and eventually uniqueness) of a steady state. This
problem can be solved in a surprisingly easy way by establishing a connection between the steady
states of the model [6] and special cases of our model.
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First of all let us fix χ = −1 in (18). In this case the redistribution operator simplifies, and
equation (19) reduces to

(20) φ(ξ) = Q̂ǫ(φ, φ)(ξ) + ǫξ
∂

∂ξ
φ(ξ).

Resorting to the analogous computation in Bobylev, Cercignani and Gamba [8, 9], equality (20)
can be equivalently rewritten as

(21) φ(ξ) =

∫ 1

0

Q̂ǫ(φ, φ)(ξu
−ǫ)du.

It is immediate to see that equation (21) can be rephrased as

(22) φ(ξ) = E
[
φ
(
U−ǫA∗

1ξ
)
φ
(
U−ǫA∗

2ξ
)
],

where U and (A∗
1, A

∗
2) are stochastically independent and U is uniformly distributed on [0, 1].

Hence, the steady state (20) coincides with the steady state (12) corresponding to (A0, A1, A2) :=
(0, U−ǫA∗

1, U
−ǫA∗

2). Since in this case q(1) = E[A1 + A2] = 1, in order to apply Proposition 2.1
(c) it is necessary that A∗

1 and A∗
2 satisfy

q(γ) =
1

1− γǫ
E[(A∗

1)
γ + (A∗

2)
γ ] < 1,

for some 1 < γ ≤ min{2, 1/ǫ}. If E[(A∗
1)

γ + (A∗
2)

γ ] < 1 this inequality holds true for every
ǫ < (1−E[(A∗

1)
γ +(A∗

2)
γ ])/γ. It should be noticed that in this case, since A0 = 0, and A1 and A2

are positive with E[A1 +A2] = 1 one can resort also to Theorem 2(a) of [20].
Let us now consider the case in which χ = 0, so that (18) corresponds to a pure transport

operator, which produces a uniform redistribution. In this case, equation (19) becomes

(23) φ(ξ) = Q̂ǫ(φ, φ)(ξ) + iǫm0ξφ(ξ),

or, what is the same,

(24) φ(ξ) =
1

1− iǫm0ξ
Q̂ǫ(φ, φ)(ξ).

Let us observe that if A0 is an exponential random variable of mean ǫm0, that is with density
h0(v) = exp{−v/(ǫm0)}/(ǫm0) (v > 0), then

E[eiξA0 ] =

∫ +∞

0

eiξvh0(v)dv =
1

1− iǫm0ξ
.

Under the additional assumption that A0 and (A∗
1, A

∗
2) are stochastically independent, (24) can

be equivalently written as
φ(ξ) = E

[
eiξA0φ

(
A∗

1ξ
)
φ
(
A∗

2ξ
)
].

Hence, it is enough to choose A1 = A∗
1, A2 = A∗

2 and A0 as above to identify the steady state (23)
with the steady state (12). Note that, since in this case E[A1 +A2] = 1− ǫ < 1, the assumptions
of Proposition 2.1 (a) are trivially satisfied for γ = 1 .

Last, let us examine the physically relevant case in which χ > −1 and χ 6= 0. For any given
ǫ ∈ (0, 1] set δ := ǫχ > −ǫ. With this choice, (19) becomes

Q̂ǫ(φ, φ)(ξ) = φ(ξ) + δξ
∂

∂ξ
φ(ξ)− i(δ + ǫ)m0ξφ(ξ).

Multiplying both sides for e−iξm0
δ+ǫ
δ ξ

1
δ
−1 we get

Q̂ǫ(φ, φ)(ξ)e
−iξm0

δ+ǫ
δ ξ

1
δ
−1 = e−iξm0

δ+ǫ
δ ξ

1
δ
−1

(
φ(ξ) + δξ

∂

∂ξ
φ(ξ) − i(δ + ǫ)m0ξφ(ξ)

)

=
∂

∂ξ

(
δe−iξm0

δ+ǫ
δ ξ

1
δ φ(ξ)

)
,

which, integrating over [0, ξ], gives

(25) δe−iξm0
δ+ǫ
δ ξ

1
δ φ(ξ) =

∫ ξ

0

Q̂ǫ(φ, φ)(τ)e
−iτm0

δ+ǫ
δ τ

1
δ
−1dτ.
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By the change of variable ξuδ = τ , we can write the previous equation in the equivalent form

φ(ξ) =

∫ 1

0

Q̂ǫ(φ, φ)(ξu
δ)ei(1−uδ) δ+ǫ

δ
m0ξdu,

which can be rephrased as

φ(ξ) = E[φ(U δA∗
1ξ)φ(U

δA∗
2ξ)e

i(1−Uδ) δ+ǫ
δ

m0ξ],

where (A∗
1, A

∗
2) and U are stochastically independent and U is uniformly distributed on [0, 1].

Hence (19) is equivalent to

φ(ξ) = E[φ(A1ξ)φ(A2ξ)e
iA0ξ]

for

(26) A1 = U δA∗
1 A2 = U δA∗

2 A0 = (1 − U δ)
δ + ǫ

δ
m0.

Since δ > −ǫ, it is immediate to reckon that E[A1 +A2] = (1− ǫ)/(1 + δ) < 1. Hence Proposition
2.1 (a) applies. In particular, since E[A0]/(1 − E[A1 + A2]) = m0, the solution µ∞ described in
Proposition 2.1 satisfies

∫
vµ∞(dv) = m0.

3.3. Inelastic Kac models with background and connection with dissipative models

with diffusion. A further application of the results of Section 2, announced in the Introduction,
results from the choice

(27) A1 = | sin(θ̃)|p sin(θ̃), A2 = | cos(θ̃)|p cos(θ̃)

with θ̃ uniformly distributed on [0, 2π). This assumption leads, when A0 = 0, to the inelastic
Kac model [25], which describes the cooling of a one-dimensional spatially homogeneous Maxwell–
like gas. In fact, if A0 = 0 and

∫
|v|2/(1+p)µ0(dv) < +∞, µt is shown to converge weakly to the

probability mass concentrated in 0 (cfr. [4]). As we shall see, the addition of a random fluctuation,
described by the random variable A0 6= 0, is responsible for the formation of non-trivial steady
states. If A1 and A2 are given by (27), then

E[A1 +A2] = 0,

and, whenever γ > 2/(1 + p),

q(γ) = E[|A1|
γ + |A2|

γ ] =
1

2π

∫ 2π

0

[| sin(θ)|(p+1)γ + | cos(θ)|(p+1)γ ]dθ < 1.

Hence, if for some positive ǫ, with ǫ+ 2/(1 + p) < 2, E|A0|2/(1+p)+ǫ < +∞ (with E[A0] = m0 :=∫
vµ0(dv) if p < 1) and

∫
|v|2/(1+p)+ǫµ̄0(dv) < +∞, then Propositions 2.3-2.5 apply. In particular,

if E[A0] = 0 and P{A0 6= 0} > 0, the steady state is a non-degenerate probability distribution
with finite moments of all orders.

As a special case let us choose A0 = A0,a − A0,b with A0,a and A0,b exponentially distributed
with density v 7→ exp{−v/a}/a and v 7→ exp{−v/b}/b (v > 0), and assume that A0,a, A0,b, A1, A2

are stochastically independent. Since

E[eiξA0 ] = E[eiξA0,a ]E[e−iξA0,b ] =
1

(1− iaξ)(1 + ibξ)
=

1

1− i(a− b)ξ + abξ2
,

if a := (m0+
√
m2

0 + 4σ2)/2 and b := (−m0+
√
m2

0 + 4σ2)/2 the stationary equation (12) becomes

E[φ(A1ξ)φ(A2ξ)] = φ(ξ)(1 − im0ξ + σ2ξ2)

which can be equivalently written, after setting Q̂+
p (φ, φ) := E[φ(A1ξ)φ(A2ξ)], as

(28) φ(ξ) = Q̂+
p (φ, φ)(ξ) − σ2ξ2φ(ξ) + im0ξφ(ξ).

Equation (28) describes the steady states of the inelastic Kac equation in presence of a thermal
bath and a transport term. Indeed, if φ is the Fourier-Stieltjes transform of a density f , then
−σ2ξ2φ(ξ) + im0ξφ(ξ) is the Fourier-Stieltjes transform of

σ2 ∂2

∂v2
f(v, t)−m0

∂

∂v
f(v, t).
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In particular, the analysis of Section 2 allows to prove existence of a steady state for the dissipative
Kac equation with diffusion. The problem of the solvability of equations of type

(29) Q(f, f) + σ2∆f = 0,

in terms of nonnegative integrable densities f ∈ L1
+(R

3), and where Q is the Boltzmann collision
operator, is a well-known problem in kinetic theory of rarefied gases. When Q is the dissipative
collision operator for Maxwellian molecules, existence of non trivial weak solutions has been proved
by Cercignani, Illner and Stoica [14].

Also, as clearly discussed by Villani in [29], apart from collisions, other physically relevant
problem in kinetic theory of granular gases lead to the addition of various terms which either model
external physical forces, or arise from particular situations. One of these situations is described
by equation (29). A second one is obtained by subtracting a drift term to the Boltzmann collision
operator. This leads to the problem of finding steady states of the equation

(30) Q(f, f)− σ2∇ · (vf) = 0.

Let us remark that in one dimension of the velocity space, equation (30) is a particular case of
equation (19) with χ = −1, which has been solved in the previous Sub-section.

4. Probabilistic representation of the solutions

The core of the proofs of our results is a suitable probabilistic representation of the solution
µt. The idea to represent the solutions of the Kac equation in a probabilistic way dates back, at
least, to the work of McKean [24], but it has been fully formalized and employed in the derivation
of analytic results for the Kac equation only in the last decade, starting from [10] and [21].

Our approach here follows the same steps used in [2] and [3] and it is based on the concept of
random recursive binary trees. It is worth recalling that a binary tree is a (planar and rooted)
tree where each node is either a leaf (that is, it has no successor) or it has 2 successors. We define
the size of the binary tree τ , in symbol |τ |, by the number of internal nodes. Hence, any binary
tree with 2k + 1 nodes has size k and possesses k + 1 leaves. Any binary tree can be seen as a
subset of

U = {∅} ∪ [∪k≥1{1, 2}
k].

As usual ∅ is the root and if σ = (σ1, . . . , σk) (σi ∈ {1, 2}) is a node of a binary tree then
the length of σ is |σ| := k. Moreover (σ, σk+1) := (σ1, . . . , σk, σk+1) and for every 1 ≤ i ≤ k,
σ|i := (σ1, . . . , σi) and σ|0 = ∅.

We now describe a tree evolution process which gives rise to the so called “random binary
recursive tree”. The evolution process starts with T0, an empty tree, with just an external node
(the root). The first step in the growth process is to replace this external node by an internal one
with 2 successors that are leave. In this way one obtains T1. Then with probability 1/2 (i.e. one
over the number of leaves) one of these 2 leaves is selected and again replaced by an internal node
with 2 successors. One continues along the same rules. At every time k, a binary tree Tk with k
internal nodes is obtained. For more details on binary recursive trees see, for instance, [19].

In the rest of the paper, given a binary tree τ , we shall denote by L(τ) the set of the leaves of
τ and by I(τ) the set of the internal nodes of τ .

The Wild series expansion (10)-(11) can be translated in a probabilistic representation of the
solutions as sums of random variables indexed by binary recursive random trees. On a sufficiently
large probability space (Ω,F , P ) let the following be given:

• a family (Xv)v∈U of independent random variables with common probability distribution
µ̄0;

• a family
(
A0(v), A1(v), A2(v)

)
v∈U

of independent positive random vectors with the same

distribution of (A0, A1, A2);
• a sequence of binary recursive random trees (Tn)n∈N;
• a stochastic process (νt)t≥0 with values in N0 such that P{νt = k} = e−t(1 − e−t)k for
every integer k ≥ 0.
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Write A(v) = (A0(v), A1(v), A2(v)) and assume further that

(A(v))v∈U, (Tn)n≥1, (Xv)v∈U and (νt)t>0

are stochastically independent.
For each node v = (v1, . . . , vk) in U set

̟(v) :=

|v|−1∏

i=0

Avi+1(v|i)

and ̟(∅) = 1. Define

W0 := X∅ and Γ0 := 0

and, for any n ≥ 1,

Wn :=
∑

v∈L(Tn)

̟(v)Xv, Γn :=
∑

v∈I(Tn)

̟(v)A0(v), W ∗
n := Wn + Γn.

Proposition 4.1. Equation (8) has a unique solution φ, which coincides with the characteristic
function of W ∗

νt , i.e.

φ(t, ξ) = E[eiξW
∗

νt ] =

∞∑

n=0

e−t(1− e−t)nE[eiξW
∗

n ] (t > 0, ξ ∈ R).

Proof. We need some preliminary results on recursive binary trees. A very important issue is
that any binary tree has a recursive structure. More precisely we can use the following recursive
definition of binary trees: a binary tree τ is either just an external node or an internal node with 2
subtrees, τ (1), τ (2), that are again binary trees. For every k ≥ 0 let Tk denote the set of all binary
trees with size k. By Proposition 3.1 in [2], we know that if (Tk)k≥0 is a sequence of random
binary recursive trees, then for every k ≥ 1, j = 0, . . . , k − 1 and every τ in Tk,

P
{
T

(1)
k = τ (1),T

(2)
k = τ (2)

∣∣∣|T (1)
k | = j

}

= P{Tj = τ (1)}P{Tk−j−1 = τ (2)}I{|τ (1)| = j}
(31)

and for k ≥ 1

(32) P{|T
(1)
k | = j} =

1

k

for every j = 0, . . . , k − 1. Now observe that, in order to prove the proposition we need only to
prove that qn(ξ) = E[eiξW

∗

n ], for every n ≥ 0. This is clearly true for n = 0. For n ≥ 1, write

W ∗
n = A0(∅) +

2∑

j=1

Aj(∅)
{[ ∑

v∈L(T
(j)
n )

|v|−1∏

i=0

A(j)
vi+1

(v|i)X(j)
v

]
+
[ ∑

v∈I(T
(j)
n )

|v|−1∏

i=0

A(j)
vi+1

(v|i)A
(j)
0 (v)

]}

where A(j)(v) = A((j, v)), X
(j)
v = X(j,v) and, by convention, if L(T j

n) = ∅ the terms between

square brackets is equal to Xj
∅ = Xj . Since (A(j)(v), X

(j)
v )v∈U, j = 1, 2, are independent, with the

same distribution of (A(v), Xv)v∈U, using (31) and the induction hypothesis one proves that

(33) E

[
eiξW

∗

n

∣∣∣A(∅), |T (1)
n |, |T (2)

n |
]
=

2∏

j=1

q
|T

(j)
n |

(ξAj(∅))e
iξA0(∅).

At this stage the conclusion follows easily by using (32); indeed:

E[eiξW
∗

n ] = E

[ 2∏

j=1

q
|T

(j)
n |

(ξAj(∅))e
iξA0(∅)

]
=

1

n

n−1∑

j=0

E

[
qj(ξA1)qn−j−1(ξA2)e

iξA0

]
= qn(ξ).

�
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5. Proofs of Section 2

Proposition 2.1, for γ = 2, is proved in [27], while for general γ ∈ (0, 2) it can be seen as a
special case of a (more general) result contained in [28]. The proof of Proposition 2.1 given in [28]
is based on some contraction properties of the Wasserstein metrics. Here we provide a proof for
γ ∈ (0, 2] based on a martingale method inspired by [27]. In this way we obtain some additional
information on the solution, used to prove Proposition 2.2.

In the following we need to consider a sequence (T ∗
n)n≥0 of (deterministic) binary trees. Any

such tree can be seen as a subset of U: starting from T ∗
0 = ∅, for each n denote by T ∗

n the binary
tree obtained from T ∗

n−1 replacing each leaf by an internal node with 2 successors. Recall that
L(T ∗

n) (I(T
∗
n), respectively) denotes the set of the leaves (the internal nodes, respectively) of T ∗

n .
Define K(µ) := Q+(µ, µ) and K

n(δm) as the n-iterate of the transfomration K applied to the
mass probability concentrated on the real value m. Finally set

M∗
n := m

∑

v∈L(T∗

n)

̟(v) +
∑

v∈I(T∗

n)

̟(v)A0(v).

In the rest of the paper Lγ will stand for Lγ(Ω,F , P ).

Lemma 5.1. Let q(γ) < 1 for some γ in (1, 2] and E|A0|γ < +∞. Assume either

(i) E(A1 +A2) 6= 1 and m = E(A0)/(1− E(A1 +A2)) = m̄ or
(ii) E(A1 +A2) = 1, E(A0) = 0 and m arbitrary.

Then

(a) K
n(δm) is the law of M∗

n;
(b) (M∗

n)n≥0 is a martingale with respect to (G∗
n)n≥1, with G∗

n = σ(A(v) : v ∈ T ∗
n−1), such that

E(M∗
n) = m for every n;

(c) supn E|M
∗
n|

γ < +∞, hence (M∗
n)n≥0 converges a.s. and in L1 to a random variable M∗

∞

such that E(M∗
∞) = m and E|M∗

∞|γ < +∞;
(d) the law µ∞ of M∗

∞ is a solution of (13) in Mγ;
(e) If (ii) holds true then

M∗
∞ = mZ∞ +

∑

n≥0

∑

v∈L(T∗

n)

̟(v)A0(v)

where Z∞ is the almost sure limit of
∑

v∈L(T∗

n) ̟(v) for n → +∞.

Proof. (a) is immediate for n = 1. In fact

K
1(δm) = D(A1(∅)m+A2(∅)m+A0(∅)) = D

( ∑

v∈L(T∗

1 )

̟(v)m+
∑

v∈I(T∗

1 )

̟(v)A0(v)
)
,

where, for every random variable X , D(X) denotes the law of X . Now, by induction, we obtain

K
n(δm) = K(Kn−1(δm))

= K

(
D
( ∑

v∈L(T∗

n−1)

̟(v)m+
∑

v∈I(T∗

n−1)

̟(v)A0(v)
))

.

At this stage, denote by T ∗1
n (T ∗2

n , respectively) the left (right, respectively) binary subtree of T ∗
n .

For every v in U and i = 1, 2 set ̟i(v) = ̟((i, v))/Ai(∅) if Ai(∅) 6= 0 and ̟i(v) = 0 if Ai(∅) = 0.
It is plain to check that

∑

v∈L(T∗i
n )

̟i(v)m+
∑

v∈I(T∗i
n )

̟i(v)A0((i, v))

i = 1, 2 are independent random variables with the same law of M∗
n−1.

(34)
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Hence,

K
n(δm) = D

(
A1(∅)

( ∑

v∈L(T∗1
n )

̟1(v)m+
∑

v∈I(T∗1
n )

̟1(v)A0((1, v))
)

+A2(∅)
( ∑

v∈L(T∗2
n )

̟2(v)m +
∑

v∈I(T∗2
n )

̟2(v)A0((2, v))
)
+A0(∅)

))

= D(M∗
n).

(35)

As for (b) is concerned, clearly M∗
n is integrable and G∗

n measurable. Moreover,

M∗
n = M∗

n−1 +
∑

v∈L(T∗

n−1)

̟(v)[(A1(v) +A2(v)− 1)m+A0(v)]

and hence
E[M∗

n|G
∗
n−1] = M∗

n−1

in both cases (i) and (ii). Furthermore, E[M∗
n] = m for every n. Since M∗

n is a martingale and
1 < γ ≤ 2, we can apply the Topchii-Vatutin inequality, see e.g. [1], to get

E[|M∗
n|

γ ] ≤ E[|M∗
0 |

γ ] + 2

n∑

j=1

E[|M∗
j −M∗

j−1|
γ ]

= mγ + 2

n∑

j=1

E

[∣∣∣
∑

v∈L(T∗

j−1)

̟(v)[(A1(v) +A2(v)− 1)m+A0(v)]
∣∣∣
γ]
.

Now, since E[(A1(v) +A2(v)− 1)m+A0(v)|G∗
n−1] = E[(A1(v) +A2(v)− 1)m+A0(v)] = 0, by the

Bhaar-Esseen inequality (see [30]) we obtain

E[|M∗
n|

γ ] ≤ mγ +K

n∑

j=1

E[
∑

v∈L(T∗

j−1)

|̟(v)|γ ]

where K = 4E[|(A1+A2−1)m+A0|γ ] < +∞ by assumption. Now it is easy to see that, for every
k ≥ 0,

E[
∑

v∈L(T∗

k
)

|̟(v)|γ ] = q(γ)k

with q(γ) < 1. Hence, supn E|M
∗
n |

γ < +∞ and, from the elementary martingale theory, it follows
that (M∗

n)n≥0 converges a.s. and in L1 to a random variable M∗
∞ such that E[M∗

∞] = m and
E[|M∗

∞|γ ] < +∞. The proof of (c) is completed. In order to prove (d) set φn(ξ) = E[exp(iξM∗
n)].

By (34), it is clear that (35) is equivalent to

φn(ξ) = E[φn−1(A1ξ)φn−1(ξA2)e
iξA0 ].

From (c) we know that φn(ξ) converges to φ∞(ξ) = E[exp(iξM∗
∞)] as n → +∞. Hence, by

dominated convergence theorem, we get

φ∞(ξ) = E[φ∞(A1ξ)φ∞(ξA2)e
iξA0 ]

and the proof of (d) is completed. Arguing as in the proof of (c) it is easy to see that under (ii), the
terms

∑
v∈L(T∗

n) ̟(v)m and
∑

v∈I(T∗

n) ̟(v)A0(v), which form M∗
n, are both uniformly integrable

martingales. Hence (e) follows easily.
�

Lemma 5.2. Let q(γ) < 1 for some γ in (0, 1] and E|A0|γ < +∞. Then, for every m,

(a) K
n(δm) is the law of M∗

n;
(b)

∑
v∈L(T∗

n) ̟(v) converges to 0 in Lγ;

(c) Γ∗
n =

∑
v∈I(T∗

n) ̟(v)A0(v) is a Cauchy sequence in Lγ and hence it converges in Lγ to

the random variable
Γ∗
∞ =

∑

n≥0

∑

v∈L(T∗

n)

̟(v)A0(v);
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(d) M∗
n converges to Γ∗

∞ in Lγ and the law µ∞ of Γ∗
∞ is a solution of (13) in Mγ;

Proof. The proof of (a) is the same of the proof of (a) in Proposition 5.1. Furthermore, since
γ ∈ (0, 1],

E


∣∣

∑

v∈L(T∗

n)

̟(v)
∣∣γ

 ≤ E




∑

v∈L(T∗

n)

|̟(v)|γ


 = q(γ)n.

Using the fact that q(γ) < 1, (b) follows. In order to prove (c) observe that, if n > m,

E[|Γ∗
n − Γ∗

m|γ ] = E


∣∣

n−1∑

j=m

∑

v∈L(T∗

n)

̟(v)A0(v)
∣∣γ

 ≤ E[|A0|

γ ]

n∑

j=m+1

q(γ)j → 0

for n,m → +∞, i.e. (Γ∗
n)n is a Cauchy sequence in Lγ . As for assertion (d) is concerned, combining

(b) and (c) we obtain that (M∗
n)n converges in Lγ to Γ∗

∞. Finally, arguing as in the proof of (d)
of Proposition 5.1 we obtain that Γ∗

∞ is a solution of (13) in Mγ . �

Proof of Proposition 2.1. The existence of a solution µ∞ of (13) in Mγ , as required in (a), (b)
and (c), is a consequence of Lemma 5.1 and Lemma 5.2. Let us prove the uniqueness. Let µ1 and

µ2 be two solutions of (13) in Mγ . Let (Y
(1)
v )v and (Y

(2)
v )v two sequences of independent random

variables such that, for every v ∈ U, Y
(1)
v (Y

(2)
v , respectively) has law µ1 (µ2, respectively) and,

in addition,

(Y (1)
v )v, (Y (2)

v )v, (A(v))v

are stochastically independent. Then, following the same lines of (a) in Lemma 5.1 and Lemma
5.2, it is easy to see that ∑

v∈L(T∗

n)

̟(v)Y (i)
v +

∑

v∈I(T∗

n)

̟(v)A0(v)

has law µi (i = 1, 2). As a consequence, if γ ∈ (0, 1], then

lγ(µ1, µ2) ≤ E

[∣∣ ∑

v∈L(T∗

n)

̟(v)(Y (1)
v − Y (2)

v )
∣∣γ
]

≤ E[|Y
(1)
∅ − Y

(2)
∅ |γ ]E[

∑

v∈L(T∗

n )

|̟(v)|γ ]

= E[|Y
(1)
∅ − Y

(2)
∅ |γ ]q(γ)n

and q(γ)n → 0 for n → +∞. Hence µ1 = µ2 and this proves (a). As far as (b) is concerned notice
that if γ ∈ (1, 2] and E[A1 +A2] 6= 1, it follows that

E[Y (1)
v ] = E[Y (2)

v ] = m̄

and applying the Bhaar-Esseen inequality

lγγ(µ1, µ2) ≤ E

[∣∣ ∑

v∈L(T∗

n)

̟(v)(Y (1)
v − Y (2)

v )
∣∣γ
]

≤ 2E[|Y
(1)
∅ − Y

(2)
∅ |γ ]E

[ ∑

v∈L(T∗

n)

|̟(v)|γ
]

= 2E[|Y
(1)
∅ − Y

(2)
∅ |γ ]q(γ)n

and hence µ1 = µ2 again. The case (c) follows in an analogous way since we need to consider only
µ1 and µ2 in Mγ,m (i.e. we fix the mean). �

Proof of Proposition 2.2. The proof of (i) is straightforward.
The proofs of (ii) and (iii) are inspired by the proof of Theorem 5.3 in [20]. Let us first prove (ii).

Note that, since q is a convex function, for every λ in [0, 1], q(λγ+(1−λ)β) ≤ λq(γ)+(1−λ)q(β),
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and hence q(s) < 1 for every γ ≤ s ≤ β. In addition E|A0|s < +∞ since E|A0|β < +∞. Now fix
s ≤ β, with 1 ≤ k < s ≤ k + 1, k integer. Then, for xi ≥ 0

(36)
( 3∑

i=1

xi

)s

=
( 3∑

i=1

xi

) s
k+1 (k+1)

≤
3∑

i=1

xs
i +

∑
cj1j2j3(x

j1
1 xj2

2 xj3
3 )

s
k+1

for suitable constants cj1j2j3 and ji are integers such that ji ≤ k and j1 + j2 + j3 = k + 1. Using
(36) it is easy to see that

(37) E[|Y1A1 + Y2A2 +A0|
s] ≤ q(s)E|Y |s + c1E[|Y

k]
s
k + c2

if Y, Y1, Y2 are independent random variables with the same law ν and (Y, Y1, Y2) is independent of
(A1, A2, A0). The constants c1 and c2 may depend on β but not on ν. Obviously (37) is equivalent
to

(38)

∫
|x|s(Kν)(dx) ≤ q(s)

∫
|x|sν(dx) + c1

[ ∫
|x|kν(dx)

] s
k

+ c2

Let us consider first the case in which γ ∈ (1, 2]. Choose either m = m̄ if E[A1 + A2] 6= 1 or
m = m0 = E[X0] if E[A1 + A2] = 1 and E[A0] = 0, and take ν = δm. From Lemma 5.1 we know
that Knδm converges weakly to µ∞ and that

sup
n

∫
|x|γ(Knδm)(dx) < +∞.

Let us now prove that if for k ≥ 1 and k < s ≤ k + 1, one has

(39) sup
n

∫
|x|k(Knδm)(dx) < +∞ and q(s) < 1

then

(40) sup
n

∫
|x|s(Knδm)(dx) < +∞ and

∫
|x|sµ∞(dx) < +∞.

In fact, applying iteratively (38) starting from ν = δm, since
∫
|x|sδm(dx) = |m|s < +∞, we

obtain ∫
|x|s(Knδm)(dx) ≤ |m|sq(s)n + C

n−1∑

j=0

q(s)j

for a suitable constant C. Hence, since q(s) < 1, one gets supn
∫
|x|s(Knδm)(dx) < +∞. Further-

more define gM (x) = |x|sI{|x|≤M} +M s
I{|x|>M} then

∫
|x|sµ∞(dx) =

∫
lim inf
M→+∞

gM (x)µ∞(dx) ≤ lim inf
M→+∞

∫
gM (x)µ∞(dx)

≤ lim inf
M→+∞

lim
n→+∞

∫
gM (x)(Knδm)(dx) ≤ lim

n→+∞

∫
|x|s(Knδm)(dx) < +∞.

Now, since γ > 1 and β > 2, then (39) is true for k = 1 and s = 2. As a consequence we obtain
(40) for s = 2. Let us iterate this procedure for k < k̄ with k̄ < β ≤ k̄ + 1. The last step starts
from the validity of (39) for k = k̄ and s = β whcih implies

∫
|x|βµ∞(dx) < +∞.

If 0 < γ ≤ 1 then
E|A0 +A1Y1 +A2Y2| ≤ E|Y |q(1) + E|A0|.

Since q(1) < 1 and E|A0| < +∞ we get
∫

|x|(Knδm)(dx) ≤ |m|q(1)n + C
n−1∑

j=0

q(1)j

and hence, thanks to Lemma 5.2,

sup
n

∫
|x|(Knδm)(dx) < +∞ and

∫
|x|µ∞(dx) < +∞.

At this stage (39) is proved for k = 1 and s = k+1 = 2 and we can go on as in the previous case.
This proves (ii).
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Let us prove (iii). If γ ≤ 1, from Lemma 5.2 (c) one obtains that µ∞{[0,+∞)} = 1. Now
assume that γ ∈ (1, 2]. Since P{A0 ≥ 0} = 1 and P{A0 6= 0} > 0, then E[A0] 6= 0 and only case
(b) of Proposition 2.1 has to be considered. By assumption m̄ =

∫
xµ∞(dx) > 0 and hence from

Lemma 5.1 (c)-(d), since M∗
n is positive a.s. for every n ≥ 1, again µ∞{[0,+∞)}.

As a consequence, using the fact that β ≥ 1 we can write

Xβ =D (A0 +A1X1 +A2X2)
β ≥ Aβ

0 +Aβ
1X

β
1 +Aβ

2X
β
2

(=D denotes the identity in distribution) if X,X1, X2 are independent random variables with law
µ∞ and (X,X1, X2) and (A0, A1, A2) are stochastically independent. Then

E[Xβ] ≥ q(β)E[Xβ
1 ] + E[Aβ

0 ] > q(β)E[Xβ
1 ]

since we are assuming that P{A0 6= 0} > 0. Hence q(β) < 1.
�

Let us state a useful result which is proved, with slightly different notation, in Lemma 2 of [3]
(see also Proposition 4.1 in [2]).

Lemma 5.3. Let γ > 0 such that q(γ) = E[|A1|γ + |A2|γ ] < +∞. Then, for every n ≥ 0,

(41) E

[ ∑

v∈L(Tn)

|̟(v)|γ
]
=

Γ(q(γ) + n)

Γ(n+ 1)Γ(q(γ))
=: cn(γ).

Proof. Given the sequence (Tn)n≥1 of random binary recursive trees, one can define a sequence
(Vn)n≥1 of U-valued random variables such that

Tn+1 = Tn ∪ {(Vn, 1), (Vn, 2)}

for every n ≥ 0, where V0 = ∅ and Vn ∈ L(Tn). The random variable Vn corresponds to the
random vertex chosen to generate Tn+1 from Tn. Hence, by construction,

P{Vn = v|T1, . . . , Tn} = I{v ∈ L(Tn)}
1

n+ 1

for every n ≥ 1. Since T0 = ∅ and ̟(∅) = 1, E[
∑

v∈L(T0)
|̟(v)|γ ] = 1 and hence (41) is true for

n = 0. For n ≥ 1,

E

[ ∑

v∈L(Tn)

|̟(v)|γ
]
= E

[ ∑

v∈L(Tn−1)

|̟(v)|γ
[
(|A1(v)|

γ + |A2(v)|
γ − 1)I{Vn−1 = v} + 1

]]

= E

[ ∑

v∈L(Tn−1)

|̟(v)|γ
](

1 +
q(γ)− 1

n

)

from the independence assumptions and since (A1(v), A2(v)) has the same law of (A1, A2) for
every v. Hence, by induction,

E

[ ∑

v∈L(Tn)

|̟(v)|γ
]
=

n∏

j=1

(
1 +

q(γ)− 1

j

)
=

Γ(q(γ) + n)

Γ(n+ 1)Γ(q(γ))

and (41) is proved.
�

In the following denote by ζ∗n the law of W ∗
n .

Lemma 5.4. Assume that, for some γ in (0, 2], E[|X0|γ + |A0|γ ] < +∞ and q(γ) < 1.

(a) If 0 < γ ≤ 1, then

lγ(ζ
∗
n, µ∞) ≤ cn(γ)lγ(µ̄0, µ∞)

for every n ≥ 0, where µ∞ is the unique solution of (13) in Mγ . Furthermore, if γ = 1
and E(X0) = m̄ then E(W ∗

n ) =
∫
vζ∗n(dv) = m̄ for every n ≥ 1.
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(b) If 1 < γ ≤ 2, E(A1 +A2) 6= 1 and E(X0) = m̄, then

(42) lγγ(ζ
∗
n, µ∞) ≤ 2cn(γ)l

γ
γ(µ̄0, µ∞)

where µ∞ is the unique solution of (13) in Mγ. Furthermore E(W ∗
n ) =

∫
vζ∗n(dv) = m̄

for every n ≥ 0.
(c) If 1 < γ ≤ 2, E(A0) = 0, E(A1 + A2) = 1, E(X0) = m0 (m0 arbitrary), and µ∞ is the

unique solution of (13) in Mγ,m0, then (42) holds and E(W ∗
n) =

∫
vζ∗n(dv) = m0 for

every n ≥ 0.

Proof. The existence and uniqueness of µ∞ in the three cases (a), (b) and (c) is guaranteed by
Proposition 2.1. On a sufficiently large probability space (Ω,F , P ) consider a sequence (Yv)v∈U,
such that

• (A(v))v∈U,(Tn)n≥0, and (Xv, Yv)v∈U are independent;
• (Xv, Yv) are independent and identically distributed for v in U, and each (Xv, Yv) is an
optimal transport plan for lγ(µ̄0, µ∞), i.e. the law of Xv is µ̄0, the law of Yv is µ∞ and

E|Xv − Yv|γ = l
max(1,γ)
γ (µ̄0, µ∞).

Let us set U∗
n =

∑
v∈L(Tn)

Yv̟(v) + Γn. We now show that, for every n, the law of U∗
n is µ∞. In

point of fact

E[eiξU
∗

n ] = E

[ ∑

v̄∈L(Tn−1)

I{Vn−1 = v̄}

exp
{
iξ
(∑

v 6=v̄

̟(v)Yv + Γn−1 +̟(v̄)(A1(v)Yv̄1 +A2(v̄)Yv̄2 +A0(v̄)︸ ︷︷ ︸
=dYv̄

)
)}]

= E

[ ∑

v̄∈L(Tn−1)

I{Vn−1 = v̄}eiξU
∗

n−1

]

= E[eiξU
∗

n−1 ]

where Vn is defined as in the proof of Lemma 5.3. Hence, by induction, U∗
n has the same law of

Y∅, that is µ∞. Now denote by G the σ–field σ(A(v) : v ∈ U, (Tn)n≥1) and observe that

lmax(1,γ)
γ (ζ∗n, µ∞) ≤ E|W ∗

n − U∗
n|

γ = E

[
E

[
|

∑

v∈L(Tn)

̟(v)(Xv − Yv)|
γ
∣∣∣G
]]

≤ kγE
[ ∑

v∈L(Tn)

|̟(v)|γE
[
|Xv − Yv|

γ
∣∣∣G
]]
.

The last inequality is immediate for γ ≤ 1 with kγ = 1 while, if 1 < γ ≤ 2, it follows with kγ = 2

from Bhaar-Esseen inequality, since E[Xv] = E[Yv] which implies E
[∑

v∈L(Tn)
̟(v)(Xv−Yv)

∣∣∣G
]
=

0. Hence, using (41),

lmax(1,γ)
γ (ζ∗n, µ∞) ≤ kγE

[ ∑

v∈L(Tn)

|̟(v)|γ
]
lmax(1,γ)
γ (µ0, µ∞) = kγcn(γ)l

max(1,γ)
γ (µ0, µ∞).

In order to conclude the proof, let us study E[W ∗
n ] when γ belongs to [1, 2]. Observe that

E[W ∗
n ] = E[W ∗

n−1] + E

[ ∑

v∈L(Tn−1)

̟(v)[A0(v) +A1(v)Xv1 +A2(v)Xv2 −Xv]I{Vn = v}
]
.

If Gn−1 = σ(T1, . . . , Tn;̟(v) : v ∈ L(Tn−1)), then

E

[ ∑

v∈L(Tn−1)

̟(v)[A0(v) +A1(v)Xv1 +A2(v)Xv2 −Xv]I{Vn = v}
]

= E

[ ∑

v∈L(Tn−1)

̟(v)I{Vn = v}E
[
A0(v) +A1(v)Xv1 +A2(v)Xv2 −Xv

∣∣Gn−1

]]
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and

E
[
A0(v) +A1(v)Xv1 +A2(v)Xv2 −Xv

∣∣Gn−1

]
= E[A1 +A2 − 1]E[X0] + E[A0] = 0

either in case (b) and (c) or in case (a) when γ = 1 and E[X0] = m̄. Hence, E[W ∗
n ] = E[W ∗

0 ] =
E[X0], which completes the proof. �

Proof of Proposition 2.3. Using Proposition 4.1, to the convexity of the Wasserstein distance lγ
(γ < 1) and Lemma 5.4 (a) one gets

lγ(µt, µ∞) ≤
∑

n≥0

e−t(1− e−t)nlγ(ζ
∗
n, µ∞)

≤
∑

n≥0

e−t(1− e−t)ncn(γ)lγ(µ̄0, µ∞) = e−t(1−q(γ))lγ(µ̄0, µ∞).

�

Proof of Proposition 2.4. Since q(1) < 1, in this case E[A1+A2] 6= 1. Hence, thanks to Proposition
4.1, to (41) and to the convexity of the Wasserstein distance

l1(µt, µ∞) ≤
∑

n≥0

e−t(1− e−t)nl1(ζ
∗
n, µ∞)

≤
∑

n≥0

e−t(1− e−t)ncn(1)l1(µ0, µ∞) = e−t(1−q(1))l1(µ0, µ∞).

Furthermore, if E[X0] = m̄, then
∫

vµt(dv) =
∑

n≥0

e−t(1− e−t)nE[W ∗
n ] =

∑

n≥0

e−t(1− e−t)nm̄ = m̄,

since E[W ∗
n ] = m̄ as stated in (b) of Lemma 5.4. �

Proof of Proposition 2.5. Using Proposition 4.1, to the convexity of t lγγ (γ ≥ 1) and Lemma 5.4
(b) one gets

lγγ(µt, µ∞) ≤
∑

n≥0

e−t(1− e−t)nlγγ(ζ
∗
n, µ∞)

≤
∑

n≥0

e−t(1− e−t)ncn(γ)l
γ
γ(µ̄0, µ∞) = e−t(1−q(γ))lγγ(µ̄0, µ∞).

Arguing exactly in as in the previous proof using Lemma 5.4 (b) in place of Lemma 5.4 (a) one
proves

∫
vµt(dv) = m̄. �

Proof of Proposition 2.6. Analogous to the proof of Proposition 2.5, using Lemma 5.4 (c) in place
of Lemma 5.4 (b). �
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[28] L. Rüschendorf (2006). On stochastic recursive equations of sum and max type. J. Appl. Probab. 43 687–703.

[29] C. Villani (2006) Mathematics of granular materials. J. Stat. Phys. 124 781–822.
[30] B. von Bahr and C.G. Esseen (1965). Inequalities for the rth absolute moment of a sum of random variables,

1 ≤ r ≤ 2. Ann. Math. Statist 36 299–303.
[31] E. Wild (1951). On Boltzmann’s equation in the kinetic theory of gases. Proc. Cambridge Philos. Soc. 47

602–609.


	1. Introduction
	2. Main results
	2.1. Steady states
	2.2. Trend to equilibrium 

	3. Examples
	3.1. Kinetic models of a simple market economy with redistribution
	3.2. Connections with other form of redistribution
	3.3. Inelastic Kac models with background and connection with dissipative models with diffusion

	4. Probabilistic representation of the solutions
	5. Proofs of Section 2
	References

