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ONE-DIMENSIONAL QUANTUM WALKS
WITH ONE DEFECT

M. J. CANTERO, F. A. GRUNBAUM, L. MORAL, L. VELAZQUEZ

ABSTRACT. The CGMV method allows for the general discussion of localization
properties for the states of a one-dimensional quantum walk, both in the case
of the integers and in the case of the non negative integers. Using this method
we classify, according to such localization properties, all the quantum walks with
one defect at the origin, providing explicit expressions for the asymptotic return
probabilities to the origin.

1. INTRODUCTION

A quantum random walk can be considered as a quantum analog of the more
familiar classical random walk on a lattice. In this much simpler case the study of
interesting “return properties” can be said to have started with G. Plya (1921), [31],
who proved that the simplest unbiased walk will eventually return to the origin with
probability one in dimension not greater than two. This holds in spite of the fact
that the probability of returning to the origin in n steps, denoted by p(n), converges
to zero as n tends to infinity.

In this paper we consider aspects of this problem in the context of quantum
random walks (QWs). We give a method that allows us to analyze the asymptotic
behaviour of the quantity p(n) for two-state one-dimensional QWs, leading to the
discovery of general features of this asymptotics in the case of distinct coins. We
also apply this method to the QWs that are given by one arbitrary common coin
at each site except for an arbitrary “defective” coin at the origin. Before giving a
summary of the results in the paper we give a brief review of the more standard
case of a classical random walk.

In this more traditional case, and for the simplest unbiased walk, one can obtain
an expression for p(n) in many different ways. This is basically true since one is
dealing with a translation invariant evolution. As soon as this condition is relaxed
things become much harder. One of the methods that can (at least in theory) give an
expression for p(n) goes back to the work of S. Karlin and J. McGregor (1959), [23].
Their method applies to a birth-and-death process on the nonnegative integers but
they themselves already contemplated extending their method to such processes on
the integers by using matrix valued objects. This has been implemented recently
and independently by H. Dette et al. (2006), [9], as well as by F.A. Griinbaum
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(2007), [12]. In both cases one makes crucial use of the matrix valued orthogonal
polynomials introduced by M.G. Krein (1949), [28], 29].

The Karlin-McGregor (KMcG) method alluded to above proceeds by starting
from a very simple case, say a situation with no defects, considering its orthogonality
measure and related function theoretical objects such as its Stieltjes transform. One
then introduces one defect and studies the effect that this has on the orthogonality
measure. In this way one can get an expression for the new value of p(n). Clearly
this process can be iterated a finite number of times to obtain situations that are
far from the initial basic case. The KMcG method proceeds by studying the effect
of the defect on the Stieltjes transform of the measure and it produces much more
than an expression for the new value of p(n). The interested reader can find a host
of examples treated in the fashion described above in the papers [6, O 12, 13| [14]
[15], 16, [17].

In a previous paper, [5], we found an analog of the KMcG method that can
be used in the case of QWs on the integers and the non negative integers. This
method has recently been used by other authors, see [27]. We use their terminology
and call this the CGMV method. In the CGMV method the central role is played
by a convenient spectral representation of the unitary operator that describes the
dynamics of the walk. In that sense this is very close in spirit to the mathematical
foundations of Quantum Mechanics laid down by people like E. Schredinger, W.
Heisenberg, M. Born and J. von Neumann.

The connection with QWs is embodied in the fact that a unitary operator has a
nice five-diagonal representation, see [4]. While this is true for any unitary operator,
the search for such a five-diagonal representation can be a difficult task in the infinite
dimensional case. However, for a standard two-state one-dimensional QW the five-
diagonal representation comes from an appropriate reordering of the usual basis of
states.

While the method itself is fairly similar to the one used by Karlin and McGregor,
the results that one obtains in the quantum case are, regardless of the method, often
intrinsically different from the classical ones. For instance, the application of CGMV
tools yields in [5] a number of situations dealing with the notion of recurrence, where
one sees that classical and quantum walks have little in common. Some of these
differences were previously discovered in [35, 36, [37] using a Fourier approach to
quantum recurrence.

It is possible that many more such differences will become apparent as one devel-
ops good tools to study these kinds of walks. For instance, appropriate mathematical
techniques such as the fractional moment method, [I], have been key to prove for
QWs with random coins a peculiarity of quantum systems in random environments
called “Anderson localization”: the wave packets stay trapped in a finite region of
space for all time. There is a huge literature on this subject that has its origin in a
discrete model in solid state physics, see [3]. The interested reader may get a guide
to the literature as well as very nice discussion of this notion by consulting [18].
Concerning Anderson localization in QWs see [22].

For an environment that is not too disordered, weaker “localization” properties
could distinguish quantum from classical random walks too. A candidate for such
a property is related to the asymptotics of the return probability to a given site.

To be more precise we start at a qubit state (a, 8) at a site k on the lattice and

look at the probability p((fzg(n) that after time n the state will again be localized
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at site k but with unspecified spin orientation. We adopt the terminology of [26]
and say that the qubit («, 5) at a site k exhibits localization when p&k)ﬁ(n) does not
converge to zero as n tends to infinity. We will deal with this notion of localization
of single qubit states, which should not be confused with such a global property
of disordered quantum systems like Anderson localization, and sometimes we will
refer to it as “single state localization”.

Irreducible two-state QWs on the integers with a constant coin can not exhibit
localization, see [2] for instance. Nevertheless, localization can appear for homoge-
neous QWs if we increase the internal degrees of freedom, [20, [19], or the dimension
of the lattice, [21L[38]. A way to get localization in one dimension keeping a constant
coin is to destroy the translation invariance by considering the lattice of the non
negative integers, see [9], 27].

Another way of breaking the translation invariance is to introduce defects on the
integers. In this context an important difference between classical and quantum
random walks has already been recognized concerning localization of single states.
In [26], N. Konno has studied a perturbation of the Hadamard QW on the integers
and proved that in the case of a particular defect at the origin, and starting from
a particular qubit too, the quantity pio)ﬁ(n) fails to converge to zero. The method
used in [20] is a path counting argument. One can think of our paper as an effort
to explore the phenomenon uncovered in [26] in a more general setting by using the
CGMYV method.

Localization can depend on the initial state as well as on the coins of the QW.
Our aim is to get a better understanding of these dependencies. This appears to be
a difficult task if one resorts to the usual approaches, like path counting or Fourier
transform, which usually allow for the computation of the asymptotics of p((f)ﬁ (n) at
specific initial qubits or for very limited coin models.

The state and coin dependencies of localization seem to be more tractable from
the CGMV point of view. This is specially true for the state dependence, and we
will be able to have a picture of it for a large class of QWs. The coin dependence,
which is much more involved, will be discussed in some explicit examples. More
precisely, the CGMV approach will allow us to perform a complete classification,
according to the localization behaviour, of all the QWs with a coin which is constant
except for a defect at the origin.

In addressing the study of the dynamics of any quantum system one should keep
in mind that there is a large literature on the subject. The classical book “Non-
relativistic quantum dynamics” by W. Amrein (1981) gives a good treatment. For
a more recent account see the book “Hilbert space methods in quantum mechanics”
(2009) by the same author.

Most of the work deals with the spectral properties of the unitary group that
implements the quantum evolution and its dynamical consequences. There are also
several papers dealing with these issues of which we just mention two: at a fairly
technical level one can consult [30], or later work of this same author, and at a more
approachable level see [24].

In a number of ways one can say that what we do in great detail is related to
the bread and butter of Quantum Mechanics. What we call the return probabil-
ity p&k)ﬁ(n) is related (but not identical) to what Y. Last, [30], calls the “survival
probability”, see (1.3) of his paper. The main point of our paper is that we manage
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to compute these quantities explicitly and then study their asymptotic values as n
goes to infinity.

We now try to give an account of the contents of the present paper, which deals
with the localization properties of two-state QWs on the integers and the non neg-
ative integers.

Just as in the KMcG method used for classical random walks one studies the
effect that introducing defects on a simpler walk has on the Stieltjes transform of
the orthogonality measure, in the quantum case we need to study the so called
Schur function of the measure. The analysis of the special features of the Schur
functions related to QWs with distinct coins, with special emphasis in the case of
the integers, takes up a good part of section 2l in the present paper. The results of
this section will be key for the rest of the paper.

The general problem of the single state localization within the CGMV language is
studied in section 3l The main result is Theorem [B.5], which establishes a connection
between localization in a QW and the singular part of the corresponding orthog-
onality measure. In particular, the absence of such a singular part leads to the
absence of localized states, while the presence of mass points implies the existence
of states which exhibit localization.

Among other consequences the CGMV method shows that, despite its name, sin-
gle state localization is in fact a quasi global property for a large class of QWs so
that a localization dichotomy holds in many cases: either no state exhibits localiza-
tion or at most one state per site is localization free. Such a dichotomy is ensured
when the singular part of the measure is not purely continuous. That is, the state
dependence of localization is quite regular for a wide class of QWs. In this case we
will refer to QWs with or without localization omitting any mention to the initial
qubit state.

In section [Bwe see that the localization dichotomy holds in particular for any QW
with periodic coins up to a finite number of defective coins. It is also shown that,
among these QWs, the case of strictly periodic coins on the integers is somewhat
special because it never gives localization. QWSs on the integers whose coins have
period P are the only one-dimensional QWs which are invariant with respect to
right and left translations of P sites. Thus, we can state that the requirement of a
(right and left) translation invariance for a one-dimensional QW forces the absence
of localization.

In sections Ml to [§] these results are made more specific, both for the non negative
integers as well as for the integers, in the case of the simplest perturbation of the
constant coin model: the QWs with a coin which is constant except for one defect
at the origin. These QWs will serve as a laboratory to study the coin dependence
of localization in QWs.

As we pointed out, localization already appears for two-state QWs with a constant
coin on the non negative integers but not on the integers where the related measure
is absolutely continuous (see [5]). Therefore, the study of QWs with one defect
acquires a special relevance in the case of the integers because they are the nicest
laboratory in which one can study localization on such a lattice. Nevertheless, we
will perform also the analysis of one defect on the non negative integers, which will
allow us to compare with the case of the integers, thus showing the effects of the
boundary conditions on the localization behaviour.
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As a particular case of the periodic QWs with a finite number of defects, the
localization dichotomy holds for QWs with one defect. The analysis of localization in
these models becomes the study of the presence of mass points in the corresponding
measure.

Section Ml deals with the general features of the orthogonality measure for QWs
with one defect at the origin. It is shown that they fall into groups with the same
measure up to rotations, thus with the same localization behaviour. These groups
are labelled by two parameters a,b in the unit disk for the non negative integers,
while an additional labelling parameter w in the unit circle appears in the case of
the integers.

Section [Blshows that w actually plays no role in the presence or absence of localiza-
tion, hence localization for one defect at the origin only depends on two parameters
a, b which are defined by the coins of the QW (in a different fashion for the integers
and the non negative integers, see ([4)) and (I9)). The parameter a depends only
on the unperturbed coin and the phases of the perturbed one, while b depends on
the perturbed coin and the phases of the unperturbed one.

Sections [Bl and [@ give a very exhaustive analysis of localization for one defect on
the integers, and the same in depth analysis is carried out in sections [ and [ for
the case of the non negative integers. Sections 5] and [7] discuss the coin dependence,
providing a characterization of localization in terms of the parameters a, b. Sections
and [§ yield explicit results for the asymptotic return probability to the origin for
any defect and any initial qubit state.

Different localization figures in the space of parameters a, b are presented in sec-
tions [l and [l They demonstrate that, in contrast to the classical case (see [20],
Section 6]), localization is dominant under the presence of a defect. Nevertheless,
these figures also show that, at the same time, there are situations where the ab-
sence of localization is stable under small perturbations of a and b, i.e, under small
perturbations of the coins. In particular, given |a|, the largest regions for the pa-
rameter b without localization appear when a is imaginary, both for the integers
and the non negative integers. Then there is no localization if Imb > Ima > 0 or
Imb < Ima < 0.

Concerning the return probabilities pgf) (n), the CGMV method not only shows
the dependence of its asymptotics on the initial qubit («, 3), but also explains the
reason for its possible oscillatory asymptotic behaviour: the presence of the factors
2" in (), where z are the mass points of the measure. The return probabilities
turn out to be convergent when the singular part of the measure is a unique mass
point or, in the case of several mass points, when some symmetries force the mutual
cancellation of the cross terms in (II).

General reasons imply that the return probabilities pgf)ﬁ(Qn— 1) at odd time vanish
for any QW on the integers, which is related to the fact that the mass points on
the integers always appear in pairs which are symmetric with respect to the origin.
Therefore, in the presence of localization on the integers we can not expect the
convergence of pik)ﬁ(n) but at most of p((f)ﬁ(2n) This convergence takes place for
sure when the singular part of the measure is a single pair of symmetric mass points.

QWs on the integers with one defect at the origin have a symmetry under reflec-
tion of the sites with respect to the origin which causes the convergence of pg)’)ﬁ(Qn)
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regardless of the number of mass points. However, for one defect on the non nega-
tive integers with more than one mass point, as well as when considering the return
probability p((lk)ﬁ(Qn) to a site k # 0 on the integers with more than two mass points,
the asymptotic behaviour is in general oscillatory.

The state dependence can also disappear in some special situations like, for in-
stance, one defect at the origin on the integers with an imaginary value of a. In
this case section [0l proves that pg)’)B(Qn) actually converges to the same limit for any
initial qubit. This covers as a special case the result obtained in [26] for a concrete
perturbation of the Hadamard model and a specific initial state. We not only prove
that the result in [20] is state independent, but we also extend this to a more general
model with one defect since we find that the state independence holds whenever the
products of the diagonal coefficients of the perturbed and the unperturbed coins

have the same phase.

Section [@ gives explicitly p((lo’)ﬁ = lim, pgg)ﬁ@n) for any QW on the integers

with one defect at the origin. The convergence of p((lo’)ﬁ(Qn) allows for the analysis
of the maximum asymptotic return probabilities to the origin, both when running
over the qubits («, 8) and also when running over the parameters a,b, i.e., over
the coins of the model. We find that max, g pio’)ﬁ approaches one when |a| — 1
provided that |Ima — Imb| is bounded from below. The consequence is that, given
a defective coin, for most of the choices of the non defective coin there exist qubits
which asymptotically return to the origin with probability almost one, as long as
the non defective coin is close enough to an anti-diagonal one.

In the special case of an imaginary a, the asymptotic return probability pgf)ﬁ does
not depend on the state and approaches one when |a| — 1 if |a —b| is bounded from
below. This implies that, when the products of the diagonal coefficients of both
coins have similar phases, all the qubits asymptotically return to the origin with
probability almost one, provided that the non defective coin is close enough to an
anti-diagonal one.

The results above not only show the strength of the CGMV method for the anal-
ysis of localization in QWs, but they address new research lines with could lead to
new and surprising quantum effects. For instance, it could be very interesting to
analyze the localization behaviour of QWs where the localization dichotomy is not
ensured, i.e., those whose measure has a singular part which is strictly continuous,
and specially those with a purely singular continuous measure. The physical conse-
quences of singular continuous spectra in Quantum Mechanics is an active field of
research, see for instance [30] and the references therein. The study of this problem
in those models which can be considered the simplest realization of a dynamical
quantum system, i.e., the QWs on a lattice, could make it easier to understand the
quantum meaning of a singular continuous spectrum and its dynamical implications.

2. QWs, CMV MATRICES AND SCHUR FUNCTIONS

Throughout the paper we will deal with QWs on a state space with a basis
{lk 1),k L) wez or 2, , where Zy = {0,1,2,...}. The quantum dynamics will be
governed by unitary coins

(k) (K
cﬁ(cbb C%§>>v ) A0, j=12  keZorl,

7J
Co1 Co9
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so that the one-step transitions are given by the operator 4 defined by
k1) =V lk+ 1) + &Pk — 10, kL) = e[k + 1) + ) |k — 11),
except when k£ = 0 for Z,, in which case the unitarity forces a transition
Yoty = [11) +Pjot),  dod) =P 1) + o).

If a diagonal element of a coin were null, the QW would decouple into independent
ones, so the requirement ng;) # 0 is not really a restriction, but it simply means
that we are considering only irreducible QWs.

Once an order is chosen for the basis {|k 1),|k |)}rez or z,, it gives a matrix
representation U of the transition operator i, which we will call the transition
matrix of the QW. If |7) denotes the i-th vector of such an ordered basis, we will use
the convention that U = (U, ;) is defined by U[i) = > . U;;|j), so that the one-step
evolution |¥) — U|¥) reads as ¢ — ¥U using the coordinates ¢ = (g, 1, ...) of
) = 3, i),

It was shown in [5] that the order
Z 01, 104), 111, [14), 21), [24), .

gives a transition matrix U = ACA', with A = diag(Xg, Ay, ...) diagonal unitary
and

(1)

af 0 pf

pé% 0 —-ayp O

0 i L
a, 0 0 p3

C = p¥ 0 0 —ay 0

0 af 0 o pf (2)
pf 0 0 —a; 0

lowll <1, pp=(1— o), pff = (1— ae))'?,

Ak, oy and p,f’R being scalars for Z, and 2 x 2-matrices for Z.

If we refer at the same time to both, scalar and matrix objects, we will use the
boldface notation. However, whenever we wish to distinguish between scalars and
matrices we will reserve for the last ones the boldface notation, so in such a case we
will denote by A, ay and py = pff = p¥ the scalars of a QW on Z, .

o)

. (k)
Denoting by €"% the phase of ¢}/, the coefficients Ax, ay, and p, are obtained

from the coins by means of
Y=o =1

iolP _ A
ZJr /\2k+1 =e"? )\2}’@—1 Qo) = ngi)/\i P2k — 1= |042k|2
7io'(k) 2k—1
Aogy2 =€ 71 Aoy
Aok 0 R p—2k—2 0
Agp—1 = < ) _ Por =
7 0 Aop—1 o < 0 _a—2k—2> 2k 0  pog

Xop O ag, 0 L p2r 0
Ao = =
2 ( 0 /\—2k—1> P2k 0 p_ok—2

The matrix C is a special case of a kind of matrices that play a central role in the
theory of orthogonal polynomials (OP) on the unit circle T = {z € C: |z| = 1}, the
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so called CMV matrices
;

o) pial  pipl 0 0 0 0
pé% —aoa]; —aopf 0 0 0 0
0 alpf’ —ajar phad  pipf 0 0
0 pfpf —pfal —agag —agpg 0 0
o 0 0 alpf —alas pial  pipf
0 0 0 pliplt  —pfas —aual —aupl ...

The case of a QW corresponds to a1 = 0 so that pf, ., = pi., = 1 stands for
the number 1 or the 2 x 2 identity matrix for Z, and Z respectively.

The connection between the transition matrix U of a QW and the CMV matrices
ensures that the Laurent polynomials X defined by

UX(z)=2X(2), X=(Xo,Xy1,...)", Xor) =1, (3)

constitute a sequence of orthogonal Laurent polynomials (OLP) with respect to a
probability measure p supported on the unit circle (see [3]), i.e.,

/TXj(z)d,u(z))(k(z)T =104

Such OLP and measures are scalar or 2 x 2-matrix valued for Z, and Z respectively.
The coefficients oy, are known as the Verblunsky or reflection coefficients of the
measure .

The orthogonality and the “eigenvalue” equation (@] yield a KMcG formula for
the QW, i.e., an OLP representation of the n-step transition amplitudes (see [5l
pages 479 and 483])

(U") = / X (2)dp(2) X4 ().

Here (), stands for the (7, k)-th element in Z; and for the (j, k)-th 2 x 2-block
in Z. The KMcG formula is the cornerstone of the CGMV method, which takes
advantage of the OP techniques for the analysis of QWs.

Useful tools in the theory of OP on the unit circle are the so called Carathodory
and Schur functions related to u, defined respectively by

Fe) = [ Fdu, £ =2 (PG - DFE D7, <1
The Carathodory and Schur functions of a probability measure on T can be charac-
terized as the analytic functions on the unit disk D = {z € C : |z| < 1} such
that F'(0) = 1, ReF(z) > 0 and ||f(2)] < 1 for z € D respectively, where
ReA = (A + Af) and ImA = - (A — AT) for any square matrix A. We will assume
that F' and f are extended to the unit circle by their radial boundary values, which
exist for almost every point of T, so ReF(e??) > 0 and ||f(e?)|| < 1 for a.e. 6.

These analytic functions provide a shortcut between the measure p and the
Verblunsky coefficients ay;, because both of them can be recovered from F' or f.
We will now point out the connections needed for the rest of the paper (see [§] for
the general matrix case).
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If dp(e’) = w(0)2L + dp,(e?) is the Lebesgue decomposition of g into an abso-
lutely continuous and a singular part,

w(f) = ReF ("), for a.e. 6,

detw(f) #0 < || f(e?)] <1, forae. 0,
suppp, C {z € T : lim,4y tr(ReF'(rz)) = oo},
p({z}) = lim4 52 F (rz), zeT.

(4)

In particular, if z € T is a pole of an analytic extension of F', such a pole must be of
order one and z is an isolated mass point of g with mass p({z}) = —(22) " 'Res(F; 2).

These properties are well known in the case of scalar measures. Concerning
matrix measures, the first two properties can be found in [§], while the remaining
ones can be reduced to the scalar case by noticing that p is absolutely continuous
with respect to the scalar trace measure trp.

On the other hand, starting at f, = f, the Verblunsky coefficients o, = f,(0)
can be recovered through the Schur algorithm

Fipa(2) =27 o) (Fu(2) — an)(1 — g fi(2) "' pi
= 2o (1= Fr(2)eg) " (Ful2) — au) (p0)

which assigns to f a sequence of Schur functions f,. For this reason, the Verblunsky
coefficients of p are also known as the Schur parameters of f. Obviously, the Schur
parameters of each Schur iterate f, are obtained deleting the first k parameters of
fi ag, a1, . ... The Schur algorithm can be inverted to give

Fe(2) = () (2f () + ap) (1 + achka—l—l(Z))_lpé
= o (14 2frn(a) (e fn(2) + ) (o)

In the scalar case the factors pé’R cancel each other in the above formulas due to
the commutativity, giving

1 fk(z) — O ka+1(2’) + o

= T = . 5
fk+1(z) z1— akfk(z) fk(Z) 1+ @z fran (Z) ( )

Both, the measure and the Schur function, are univocally determined by the

Verblunsky coefficients. Some results relating Schur functions and Schur parameters
will be of interest for us.

Proposition 2.1. If ag, oo, auy, . .. are the Schur parameters of the Schur function
f(2), then a,0, 2,0, 0, ... are the Schur parameters of f(2?).

Proof. Denote gy, {(2) = 2f,(2%) and g,,(2) = f.(2?). The substitution z — 22
in the Schur algorithm for f(z), together with the relation go.(2) = 27gqy,_1(2),
gives the Schur algorithm for g(z) = f(z?). O

Proposition 2.2. If a Schur function f has Schur parameters oy, then for any
unitary matrices Vi, Vo the Schur function Vi fVa has Schur parameters VioyVs.

Proof. Simply check that the Schur algorithm is invariant under the transformation
f — VifVa, o — Viey Vs, bearing in mind that it maps pf — Vi pEVs and
pk = Viphv O
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Proposition 2] states that the Schur functions whose odd Schur parameters van-
ish are the even Schur functions, i.e., those satisfying f(—z) = f(z). In terms of
the Carathodory function this condition reads as F(—z)F'(z) = 1, as follows from
the inverse relation

F(z) = (1+2f(2))(1 = 2f(2)) " (6)
Hence, the Schur function of any QW on Z or Z, must be even. On the other
hand, Proposition has the following consequences of interest for QWs on Z.

Proposition 2.3. Given a sequence of 2 x 2 Schur parameters

0 ap
Qe = a,j 0 )’

the corresponding Schur and Carathodory functions are

(0 f@
f(z)_<f+(2) 0 )

! 1+g(z) 2z2f-(2) 2
F(z)= — - :
O - = (30 ) e-2rere,
where fy is the Schur function with Schur parameters a,f.
If dp(e”?) = w(0) L + dp,(e) is the Lebesque decomposition of the related mea-
sure,
detw(e®) #0 < |fe(e?)] <1, for a.e. 6,

and the singular part g is supported on the roots z € T of g(z) = 1. The mass
points are those roots such that

and the corresponding mass is the singular matrix

(=) = m(2) (ﬁ ”§Z>), nE) = 2f_(=) € T.

In particular, if g extends analytically to a neighbourhood of a root z € T of g(z) =
1, then z is a simple isolated roofl and also an isolated mass point with m(z) =

1/29'(2).

Proof. The result for f is a direct consequence of Proposition and

+
(5 ) mer (52 ()

Then, the expression of F' follows from ({@).
The rest of the results are obtained from () by using the actual form of the Schur
and Carathodory functions. Concerning the singularity of the masses, simply take

into account that the roots z € T of g(z) = 1 must satisfy |fi(z)] = 1 because
|f+| < 1in T. Hence, the non diagonal elements of the mass must be proportional
ton(z) =zf-(2) € Tand 2f1(2) = (2/-(2)) ! = n(2). O

f the root z were not isolated, general principles would imply that ¢ = 1 on DD, which is
not possible since g must be a Schur function. Similar comments for the roots of h = 1 in the
paragraph below Corollary 241
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Proposition 23 holds for QWs on Z with o), = gk, 0, = =949 and ag;; =

Qg = 0, where ag, = Egﬁ)k%/ Aog—1. Then, f, is the Schur function associated
with the Schur parameters with non negative indices, while f_ corresponds to the
Schur parameters with negative indices. Furthermore, f. are even functions, so ¢
is even too, and this has the following consequence.

Corollary 2.4. For any QW on Z, the mass points of the corresponding measure
appear in pairs +z which are symmetric with respect to the origin, and the mass is
given by Proposition 2.3 with m(—z) = m(z) and n(—z) = —n(z).

The mass points of a QW on Z, have no such a symmetry, despite the fact that
the corresponding Schur function f is even too. The reason is that the Carathodory
function is given by

1+ h(z)
1—h(z)
so the singular part of the measure is supported on the roots z € T of the equation

h(z) = 1, which is not invariant under z — —z because h is odd. The mass points
are those roots such that

F(z) =

1—r
n({z}) = hmm #0

When h has an analytic extension to a neighbourhood of a root z € T of h(z) = 1,
such a root is simple and isolated, and is also an isolated mass point with mass

n({z}) = 1/20'(2).
3. SINGLE STATE LOCALIZATION IN QWS

Following [26], we will adopt the definition below for the localization of a state
in a QW. It applies only to qubit states a|k 1) + 5|k |) at a given site k, and
characterizes those states which have a non null probability of asymptotic return to
the same site where they are placed originally.

Definition 3.1. Given a QW on Z or Z., let Pag( n) be the probability that the

walker returns to the site k in n steps having started at the qubit state |\Ifaﬁ) =
alk?T) 4+ Blkl) at the initial time. We will say that such a state exhibits localization

if lim sup,, ., p(n) # 0.

It is known that the structure of the transition matrix for the QWs on Z we
are discussing always gives a null return probability for an odd number of steps,
ie., p((f)ﬁ@n — 1) = 0. Therefore, the only quantity of interest in the case Z is the
asymptotics of p((f)ﬁ(2n)

If 41 is the transition operator of the QW,

n k k n k
pan(n) = KEEQI W) + (P [0 T .
The KMcG formula provides an alternative expression for this probability which is

nicely adapted to study its asymptotics. Indeed, a simple extension of the formula
in [5 page 497] to the case of two arbitrary states |U), |U) gives

(BI9|) = YU = / 2 (2)dp () (=)', (7)
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where t(z) is an L7 (T) function associated with the state W) = >~ ]7) (|i) is the
i-th vector of the ordered basis), which is a scalar function for Z, and a 2-vector
function for Z. The general form of 4(z) is given in the first column of the following

table, while the second column shows the particular case v,/)((f)ﬁ(z) for the qubit state
|T4h)-

P(2) by (2)
Ly > kX aXop + BXok41 (8)
k

Z Z(%miﬁzkﬂ)Xk

k

Relation () gives the identity

(CY, 0)X2j + (O7ﬁ)X2j+1 k :]
(0,8)X2; + (0,0) X 9541 k=—-j—1 =

2
+

)

Piy(n) = ‘ /T 1B (2 () ()

lAww@mmmwwﬁwﬂ

The importance of the KMcG formula in the study of the localization of the states
in a QW was first pointed out by N. Konno et al in [27]. There the authors use

the Riemann-Lebesgue lemma to obtain the asymptotics of p(ak)ﬁ(n) for the case of
a constant coin on Z,. The method can handle other QWs on Z, , as well as QWs
on Z.
For convenience, in what follows we will use the notation
a, ~ b, < lim (a, —b,) = 0.

n n—oo

Lemma 3.2. If is the transition operator of a QW on Z or Z. with measure pu,

() o [ g ()
where p, is the singular part of .

Proof. Let du(e”) = w(6)2 + dp,(e) be the Lebesgue decomposition of the mea-
sure p. The Riemann-Lebesgue lemma implies that
e . < . dl
lim eMap (e w(0)p(e) — =

n—oo [q 2

0

because b (e?)w(A)h(e?)' is integrable with respect to the Lebesgue measure. This
gives the result, bearing in mind the KMcG formula. U

As a consequence, no state can exhibit localization in a QW with an absolutely
continuous measure. As for the singular part, it always can be decomposed into mass
points and a singular continuous part. As we will see, due to Wiener’s theorem, the
presence of mass points will always give localized states, regardless of the presence
of a singular continuous part. However, if the singular part is exclusively continuous
the situation is more involved because the Riemann-Lebesgue lemma holds for some
singular continuous measures, but not for all of them.

To obtain the strongest results about localization for QWs on Z one is greatly
aided by using the freedom in renumbering the sites k& — k + ko, kg € Z. The
consequence of this freedom is that, for any QW on Z, there are infinitely many
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orders of the basis giving a CMV-shape transition matrix. Just as good as the initial
order would be to take

V%T)a |k0 - 1\1/)7 |k0 - 1T>7 |k0\L>7 ‘]{70 + 1T>7 ‘ko - 2\L>7 ‘ko - 2T>7 ‘ko + 1\L>7 cee

where kg is an arbitrary integer. The order of the basis given originally in (II) for
QWs on Z can be understood as a folding of Z at site 0, so these other possibilities
correspond to foldings at an arbitrary site k.

These new foldings lead to different CMV matrices, measures and OLP, any of
them could be used to study a QW on Z. Since the presence of localization in a
QW has to do with the Lebesgue decomposition of the measure, it is important to
know how the measure changes with the renumbering of the sites. This is answered
by the following result.

Lemma 3.3. Giwen a QW on Z, the measures p, fr corresponding to different
foldings are related by

da(z) = A(2)dp(2) A(2)",
where A is a 2 X 2-matriz polynomial.

Proof. The transition matrices U, U related to different foldings are representations

of the same transition operator with respect to basis which only differ in the order.

Thus they are related by conjugation with a permutation matrix I, i.e., U = IITUII.
On the other hand, the KMcG formula ensures that

(U + 21)(U = 21) 1) = /Tt“

— X (t)dp(t) X x(t)",
where (o), stands for the (j, k)-th 2 x 2-block. Thus, the Carathodory function of
the measure p is given by

F(z) = / "2 du(t) = (U + )T — 21) Voo,

t—z

and similarly for the Carathodory function F' of .

Each subindex k stands for a pair of indices which we will denote by kg, s = 4, —.
If II transforms the indices 04 and O_ into j, and k, respectively, then 11, o, = d;,,
Hi,(]f = 52"]%, and

F(2) = (INU + 21)(U — 21) ),
_ <((U +21)(U = 21)7Y)j5. (U +21)(U — 21)‘1)]»-71%) _
(U +21)(U = 21) o (U +21)(U = 21) g, p,

- [ @Eig) du(t) (X301 X101,

t—z

where X" and X stand for the upper and lower row of X respectively. This
proves the proposition with

A(z) =2 (ﬁig’g) ,  for some ! > 0,

since X and X7 are 2-vector Laurent polynomials. O

We are interested in the following consequence of the lemma above.
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Corollary 3.4. Two measures of the same QW on Z with respect to different fold-
ings have the same mass points, and the support of their absolutely continuous and
singular continuous parts coincide.

Proof. Let w, fi be such measures. Then, dfi = AdpA' for some matrix polynomial
A, which implies that fi({z}) = 0 whenever pu({z}) = 0. Since there must be

another polynomial A such that dy = AdﬂAT, we conclude that the mass points
of p and 1 coincide. The rest of the assertions follow similarly from Proposition
and the invariance of the absolutely continuous and singular character of a matrix
measure on T under the transformation dv — AdvA' for any matrix polynomial
A. O

Unless we state specifically a different folding, the measure of a QW on Z means
for us that one related to the folding at site 0 given in ([II). Nevertheless, the previous
corollary ensures that we can refer to some characteristics of the measure without
indicating any folding because they are common for all of them.

Besides exploiting different foldings, the general results about localization for
QWs on Z also require the use of Wiener’s theorem on the unit circle (see [34]
Theorem 12.4.7]): for any scalar measure g on T

N
. 1 , ) .
]\}1—>H<1>o 2N +1 n:z_:N|“"| - E :|N({Z})| ; Hi = /Tz dp(z).

zeT

Thus, 1 has no mass points if and only if limy_, Wlﬂ Zg:—zv |ptn|? = 0, which is
satisfied in particular when lim,,_, i, = 0. The complex numbers p,, are known as
the moments of the measure pu.

The following theorem is the main result of this section. It gives an interpretation
of the single state localization in terms of the measure of the QW.

Theorem 3.5. Let a QW on Z or Z, with transition matriz U and measure p.
(a) If p is absolutely continuous, no state exhibits localization.

(b) If p has a mass point, all the states |\Ifg€)ﬁ> exhibit localization except at most
one state at each site k which must have o, B # 0. The existence of such a
non localized state is mandatory when the singular part of the measure is a
single mass point in Z, or a single pair of opposite mass points in Z.

(¢c) The states |V) which do not exhibit localization must satisfy

Y()u({z}) =0, VzeT. (9)

(d) If w has no singular continuous part:
(i) No state ezhibits localization < p has no mass points <

& lim U™ =0 for all ¥, ¢ € L*(Z).
n—o0
(ii) |W) does not exhibit localization < (@) < lim YU’ = 0.
n—oo
Proof. Statement (a) follows directly from Lemma 3.2l
W) = |\If((f)ﬁ) does not exhibit localization if and only if lim, ., PU"( %)T =
lim,, oo @DU”(w(()kl) )T = 0, which obviously implies that lim,,_,., YU = 0, i.e,

lim [ 2"p(2)dp(2)p(2)" = 0.

n—oo T
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In other words, the n-th moment of the scalar measure dju, = Pdpap' converges
to zero as n — 0o. Wiener’s theorem ensures that 1, has no mass points, which
means that 1 (z)u({z})¥(2)" = 0 for any z € T. Bearing in mind that p({z}) is
positive semidefinite, we get (c).

According to (§)), given a QW on Z,, condition (@) becomes (z) = aXqp(2) +
S Xokr1(2) = 0 for any mass point z of p. Since the OLP have no zeros on T, when
i has a mass point this equation has a one-dimensional subspace of solutions («, 3),
a, B # 0, which represent the same quantum state. The existence of more than
one mass point or a singular continuous part of the measure can give incompatible
equations for «, 3, so the presence of states which do not exhibit localization is only
ensured in the case of at most one mass point. This proves (b) for Z, .

For a QW on Z, () implies that the no localization condition (@) at site £ = 0
reads as ¥(2)u({z}) = (aX§ + BX7)u({z}) = 0 for any mass point z of w, with
X,f the upper and lower rows of X ;. We know that Xy = 1, while X; can be
calculated from the first two 2 x 2-block equations of (),

(0) (0)
—z ¢ c 0
(C(_n _21Z> Xo(2) + ( 61 C(_1)> X»(2) =0,
12 22

(1) (1)
c 0 0 ¢
( H (0)> Xo(Z) - ZXl(Z) + ( (0) 2 ) XQ(Z) = O,

0 ¢y Cig 0
giving

X,() = (7@t Cfey” Y ) (10)
iy /el 27 (det Co) /ey

On the other hand, the mass of any mass point z is the singular matrix given in
Proposition Combining these results we find that

P()p({z}) =0 < a+ %(Cg) + zn(2) det Cp) = 0.
11

The coins are unitary, so |det Cy| = 1. Besides, the assumption of the irreducibility
for the QW implies that cg»(])-) £0,s0 |92 =1- |c§-3)|2 < 1. Since |zn(z)| = 1 for
any mass point z, the above equation becomes « + fr(z) = 0 with x(z) # 0. This
equation is invariant under the reflection z — —z due to Corollary 2.4 Therefore, if
there is a single pair of opposite mass points, such an equation has a one-dimensional
subspace of solutions (a, 8), «, 5 # 0, which represent the same quantum state. The
presence at site k = 0 of non localized states is ensured only when the singular part
consists in at most a single pair of mass points, otherwise incompatibilities can
appear between different equations for (o, [3).

To generalize this results for k£ # 0 is enough to use the folding at site k. Corollary
B dstates that the mass points will not change when choosing this new folding. Thus,
the previous discussion remains unchanged, but the conclusions are now about the
states at the site k, which plays the role of the origin with this new folding. Therefore
(b) is proved for Z too.

Let us return to the general case of a QW on Z or Z,, and assume that the
measure has no singular continuous part, which will be true no matter which folding
we choose in Z, again due to Corollary 3.4l Then (a) and (b) are the only options.

In case (a), Lemma states that lim,_,. wU™)T = 0 for all ¥,1. Also, as we
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pointed out at the beginning of the proof, the condition lim,,_, U = 0 is not
only a consequence of the fact that |¥) does not exhibit localization, but also yields
@). On the other hand, @) gives [, (z)dp,(= Yh(2)T = 0 for any ¢ because the
mass points constitute all the singular part of the measure, thus implying that |¥)
does not exhibit localization. This finishes the proof of (d). O

The previous theorem indicates that the more mass points the measure exhibits,
the less possibilities for non localized states because, apart from the conditions
associated with the singular continuous part of the measure, there are as many no
localization equations (@) as mass points, which makes it more difficult to have non
localized states as the number of mass points increases.

The proof of Theorem B.5] shows that, in Z, the no localization equation (@) is
invariant under the reflection z — —z, hence, only one of such equations must be
taken into account for each pair of opposite mass points.

There are situations in which it is known that the singular part of the measure
is not purely continuous (or even no singular continuous part appears). Theorem
provides in such a case a localization dichotomy: either no mass points and
no localized states exist, or there are mass points and “almost” any state (at most
one exception per site) exhibits localization. When this dichotomy works we can
talk about QWs with or without localization because then localization becomes an
“almost” global property.

Moreover, Lemma shows that in the absence of a singular continuous part of
the measure the asymptotic return probability can be computed exactly through

D IER IO N + > 2 (e({he ()] (11)
z€T

z€T

where the sums are in fact over the mass points z of p.

3.1. Periodic QWs with finite defects. Among the QWs where the localization
dichotomy works are those with periodic coins, with or without a finite number of
defects.

Proposition 3.6. If the coins Cy, of a QW on Z or Z. satisfy Cyip = Ck, p € N,
for all but a finite number of sites k, the corresponding measure has no singular
continuous part and thus the localization dichotomy holds.

Proof. Consider first the case of strictly periodic coins on Z, with period p, i.e.,
Clqp = Cy, for all k € Z,. The related measure p has Verblunsky coefficients

oy = Eéol)a Qrgp, = Egi)e_i(g(ou"'w(kil)), a1 =0, kE>1,
where o*) = 0'§ ) + a . The fact that 021 and o®) have period p ensures that the
new Verblunsky coefﬁments

= et 9 = 1 — (0 . 4 P, (12)
2p
have period 2p.
Let fi and f be the measure and Schur function associated with the Schur pa-
rameters a;. As a consequence of the periodicity of &y, the Schur iterate f2p has
the same Schur parameters &, as f hence f2p = f Bearing in mind that any

step of the Schur algorithm (H) is a rational transformation, the relation f2p = f
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can be written as a polynomial equation for f (z) with polynomial coefficients in z.
Therefore f(z), and thus zf(z), are algebraic functions of z, which implies that the
equation zf (z) = 1 has a finite number of roots. This means that the singular part
of /i has a finite support, so it can not have a continuous part.

Relation ([I2]) between ay and &, implies that the corresponding measures p, fi
are connected by a rotation (see [5, page 473]), du(z) = dji(e=z), thus p has no
singular continuous part neither. Besides, from the link between the measure p and
its Schur function f we find that f(z) = ewf(e_wz), thus f is algebraic too.

Now suppose that we modify a finite number of coins Cj, so that Ciy, = Cj
only holds for k& > kg. Then, the sequence (Gy)r>k, is periodic with period 2p,
and the corresponding Schur function, which is fko, must be algebraic. The Schur
function f is obtained from fko by kg steps of the inverse Schur algorithm ([f), each of
them preserving the algebraic character. Hence, f and f are algebraic too, and the
measures [ and g have no singular continuous part, just as in the strictly periodic
case.

With regard to QWs on Z, the periodicity of the coins C) for any k € Z with
|k| > ko implies again the periodicity of the Schur parameters d; given in (I2)
for the same range of indices. Therefore, the previous arguments show that the
Schur functions fy, f_ associated respectively with the Schur parameters o) = ay,
a, = —0_j_9 are algebraic. Since the singular part of the matrix measure p of the
QW is supported on the roots of 22 f,(2)f_(z) = 1, the result follows from the fact
that 22f,(2)f_(2) is algebraic. O

In the case of QWs on 7Z with strictly periodic coins, stronger results can be
achieved.

Proposition 3.7. Any QW on Z with strictly periodic coins is free of localized
states.

Proof. 1f a QW on Z has strictly periodic coins, the full sequence (d&y)kez appearing
in the proof of the previous proposition is periodic too. The matrix measure p of
the QW is a rotation of the measure 1 with Verblunsky coefficients

. (0 —a_py

The block CMV matrix C with Verblunsky coefficients &y, is obtained by folding
a two-sided CMV matrix C with scalar Verblunsky coefficients dy, (see [5]). Like any
two-sided CMV matrix with periodic Verblunsky coefficients, C has an absolutely
continuous spectrum (see [7]), and the same holds for C because it is related to
¢ by a simple reordering of the basis. This means that the scalar measure [,
defined by Ve Yt = Jp Z"djiy(z), n € Z, is absolutely continuous for all ). Then,

lim,, o0 wénqﬁ = 0 for any ¢ and Theorem [BAld.ii implies that no state exhibits
localization. U

3.2. Quasi-deterministic QWs. QWs with diagonal coins C}, for any k are de-
terministic because the one-step transitions

Z k) = k1) k) = k- 10)
Zp oo [20) = 1) = [04) = 01) = [11) = [24) = -
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take place with probability one. These QWs exhibit no localization, even when a
finite number of defects appear, regardless of the number and details of the defective
coins.

The presence of a finite number of defects means that C}, is diagonal for all but a
finite number of sites k. In such a case, the related measure g has null Verblunsky
coefficients a, except for a finite number of indices k. Hence, oy = 0 for k& > kg
and p is a Bernstein-Szeg6 measure which can be expressed using the OLP as (see
[§] for the general matrix case)

: , v d0
dp(e”) = [X i () X ()] 7
Since p is absolutely continuous, no state exhibits localization.

Concerning the possibility of having a singular continuous part in the measure, it
is known that sparse sequences of Verblunsky coefficients on Z, can give a measure
which is exclusively singular continuous (see [11] and [34] Section 12.5]). This shows
that such a pathological situation can appear surprisingly close to the deterministic
case corresponding to diagonal coins.

Another source of singular continuous measures are those measures supported on
a Cantor type set (see [10] and [33, Section 2.12]) or those given by appropriate
infinite Riesz products (see [32] and [33, Section 2.11]). It would be interesting to
search for QWs corresponding to these kinds of measures, as well as to study the
localization properties of such rather pathological situations. This could shed light
on the general picture for the localization properties of QWs with a measure whose
singular part is purely continuous.

The models which we will analyze in detail are the QWs with a constant coin up to
one defect at the origin. They are a special case of periodic QWs with finite defects,
so the localization dichotomy works for them. We will make an exhaustive analysis
of localization in these examples, both on Z and Z,, to illustrate the effectiveness
the CGMV method beyond the case of a constant coin, and to understand how the
single state localization depends on the parameters of the models.

4. QWS WITH ONE DEFECT

We will consider a general QW with coins C} which are constant except for the
site k =0, i.e.,

ComC= [ @2} pog  cy=p= (% d2) (13)
d21 d22

C21  C22

We will refer to this as a QW with one defect at the origin. To place the defect at
the origin is simply a convention for the numbering of the sites in Z, but it is real
restriction in Z.

Remember that we only need to consider irreducible QWs, which means that we
can assume without loss of generality that c;;,d;; # 0. We will use the notation
o
2 )
where €77 and e’ are the phases of ¢;; and d;; respectively.

The case of a diagonal coin C' is somewhat special. We know that it leads to an
absolutely continuous Bernstein-Szeg6é measure which, therefore, yields a QW with
no localization. Thus, for the general discussion we will suppose that cg; # 0.

o = o0y + 09, T =T + To, Y =
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4.1. QWs with one defect on the non negative integers. Let us consider
first the coins (I3]) on Z,. According to the results described in Section 2] the order
indicated in (D) gives a transition matrix U = ACAT, A = diag(1, A\, Xy, ... ), with

>\2k—1 _ ei(7'2+(k—1)02)’ )\2k _ e—i(7'1+(k—1)01)’ k > 1’
and C = C(ax) a CMV matrix with Verblunsky coefficients
821 lf ]{Z = 0
Qo = iy ’ a =0, k> 0.
2 {zzle—dfﬂk—l)a), if k>0, 2 =

The Verblunsky coefficients can be written as a; = dpe™ k1Y with
(ax) = (0,0,a,0,a,0,a,0,...), a= 0’277 b= dy et (14)

This means that the measure y, the Carathodory function F' and the OLP X of
the QW are related to those ones of C = C(ay) by (see [5 page 473])

du(z) = di(e™™2), F(z) = F(e™2), Xn(z) = MXn(e 2), (15)
[ Aop_1 = Agp_re~tH0 = k™57 +m2—02) B>
0—5 3 _ ik (ka2 T to1—71) -
Aog = Agpe™™ = ¢’ ;

with an obvious notation for the elements corresponding to C. In other words, the
OLP of the QW are, up to a change of phases, a rotation by an angle 9 of those
corresponding to a CMV matrix with Verblunsky coefficients (b, 0, a, 0, a, 0, a,0, ... ).

The related Schur function f = fap has Schur parameters (b, 0, a,0,a,0,a,0,...).
Its second Schur iterate f2 is the Schur function f, whose Schur parameters are
(a,0,a,0,a,0,...), so from (B) we find the relations

fi(z) = L Jarl2) = _ Zfalz) +b

= , ap(2) = ——————. 16
221 —bfup(2) faol2) 1+ b22f,(2) (16)
In particular, setting b = a, f,, becomes f,. This leads to the quadratic equation
a2’ f(2)? + (1 = 2%) fu(z ) —a =0 for fa which yields the expression
-1
fue) = TV A = (el ()
az
Since f, is analytic in D, the choice for the square root must result in the branch
such that /A Z2% 1. Such a choice implies that the boundary values of f, on
the unit cu"cle ar

i0 e .
fa(e?) = - (Ru(0) + isin0),

R il < (18)
R.(0) {sgn(cos@) |a|? — sin® 0, if |sin 6| < |al,

—isgn(sin@)y/sin? 0 — |a|?, if |sind] > |al.

Thus, |f,(e?)] = 1if |sind| < |a| and |f,(e?)] < 1 if |sin@| > |a|. This also
holds for f = fap because any step of the Schur algorithm preserves the relations
|f(z)] < 1 and |f(2)| = 1 at any point z € T. Therefore, according to (4l), the
weight w(#) of the measure [i lives on |sinf| > |a|, which defines two arcs which
are symmetric with respect to the real axis. The singular part is supported on the

2See [l Appendix] for a discussion about the boundary values of /A, on T.
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finite number of roots z € T of zf(z) = 1, so it can have only mass points. When
these mass points are present, they must lie on any of the two complementary arcs
given by

I, ={e"?:|sinf] < |a|},

which are symmetric with respect to the imaginary axis. This is because the equality
2f(z) = 1 implies |f(z)| = 1 for any z € T. The consequences of these conclusions
for the measure of the QW are obvious because p is obtained simply rotating fi by
an angle 1.

Different coins (I3) giving the same pair a,b € D have measures which only differ
in a rotation. Concerning the relative values of a and b, when the defect disappears,
ie., D=C, we get b=a = cye'. Nevertheless, the defect not only changes the
first Schur parameter from a to b, but it affects also the value of a which acquires an
extra phase ¢/®~7). Due to this, the equality b = a can happen even with D # C,
indeed it is equivalent to do; = ¢1€"%). The restriction ¢y # 0 that excludes the
special case of a diagonal coin C' means that we are considering a # 0.

4.2. QWs with one defect on the integers. Assume now that we have the coins
([I3) in Z. From the general results of Section @l we find that the order indicated in
() gives a transition matrix U = ACAT, A = diag(1, A1, Az, ...), where

etk 0 e~ nt(k=1)a1)
>‘2k—1:< 0 ei(rtk=1)02) | Agp, = 0 o—ikoz | k> 1.

and C = C(ay) is the CMV matrix with Verblunsky coefficients

0 —Qq_ o9k
Ao = < O2k 2) ) Qo1 = 07 k Z 07

Qo
day, if k=0,
Qagp, = { Core tTHE=Do) Sf k>0,
Core~ ko if k<0,

As in the case of Z,, a rotation plays a useful role in our analysis. Defining,

. jo—T . Co1 jr—0— . Co1 T
a=ilcnlem, b=i—e 2 dy, w=i—0eG7, (19)
|Ca1 |can |
we can rewrite oy, = e “*tD%&, . where

wa 0

AN (0 wa (0 wa
(@) =(B.0.0,0.00,00..) a= (2 ) 5= (5 )

As a consequence, the measure p, the Carathodory function F' and the OLP X,
of the QW are given by

du(z) = dis(e772), F(2) = F(e™2), Xi(2) = MXp(e772), (20)

Aors = At = (€ !
— — —1€ — . o9 —0
R 2k—1 2k—1 0 6Z(k 229 4 ry—0) |

)‘0 = 1a R . ei(kmgﬂ to1—71) 0 k > 1a
Agp, = Agpe™? = 0 ok a2 |
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where elements with a hat are related to ¢ = C(éy). Therefore, just as in the
case of Z,, up to phases, the OLP of the QW are obtained rotating by an an-
gle ¥ the OLP going along with a one defect sequence of Verblunsky coefficients
(3,0,,0,,0,,0,...). We should remark that the defect is only at the (2,1)-th
coefficient of 3.

The corresponding Schur function f has as Schur parameters the antidiagonal
sequence (3,0, a,0,,0,,0,...). Applying Propositions and 2.2 we conclude

that ;
- 0 Wi,
f‘(wfa,b o)’ vt

where f, and f,; are the scalar Schur functions introduced in the previous sub-
section, although here a and b bear a different relation to the coefficients of the
coins.

The measure p of the QW is obtained as a simple rotation of fi, so we only need
to discuss this last one. We know that |f,| = |fss] = 1 in the two closed arcs I',
and | f,|, | fap| < 1 in the two open arcs T \ I',. Therefore, the same result holds for
17l = max{|fal, |fos|}. Using (@), we find that, for a.e. 0, the weight @(0) of fu is
singular if and only if ¢ € I',. Furthermore, () also yields for a.e.

w(0) = Re[(1+ ¢?F)(1 — ¢ F)71]
— (L= e P F) 1= R FE)) (1 — )

A _ 2
- pr = ()

shows that det w() = 0 implies |f,,(¢?)| = 1 or |f.5(e?)] = 1. Since these two
conditions hold simultaneously, detw(#) = 0 necessarily gives f(e)f(e?) = 1
and thus w(#) = 0. We conclude that w is zero in I', and non singular in T \ T',.

As for the singular part of f1, it is supported on a finite number of points, the roots
z € T of 22f,(2)fus(z) = 1, and any of these roots must satisfy |f,(2)fas(2)| = 1.
Hence, the singular part only can have mass points located at I',.

In contrast to the case of Z,, three parameters a,b € D, w € T characterize now
the coins (I3) with the same measure up to rotations. On the other hand, just
as in the case of Z,, the equality b = a does not hold only for D = C' because,
remarkably, it is equivalent to the same condition do; = c1€""~?) appearing for the
non negative integers. Also, the consequences of the defect are not only encoded in
b, but the imaginary value a = i|cy;| for a constant coin C' acquires with the defect

The equality

o—T

an extra phase e! 2 which is the square root of the similar extra phase for the case
of Z,. Asin Z,, we only need to consider a # 0 because we know that a = 0 yields
no localization.

5. LOCALIZATION: ONE DEFECT ON Z

The previous discussions indicate that the study of localization in QWs leads to
the analysis of the mass points (in general, the singular part) of the corresponding
measure. This analysis is worth doing specially for QWs where the localization
dichotomy works, such as periodic QWs with a finite number of perturbations. The
QWs with one defect are just the simplest examples of this case. As we pointed
out, in such situations we will talk about QWs with or without localization because
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then localization can be viewed as a global property: it holds for no state or for
almost any state.

Surprisingly, for QWs with one defect, the mass points analysis is simpler for Z
than for Z,, among other reasons, due to the symmetry of the mass points with
respect to the origin, which is lost for Z,. Hence, we will study first localization in
a QW on Z with coins (I3)).

Concerning previous related results, N. Konno has proved in [26] that the state
%\O T+ ﬁ|0 1) exhibits localization in Z for the perturbation of the constant

Hadamard coin
1 /1 1
=500

1 1 e
) o
whenever e/® # 1. We will recover this result as a particular case of our analysis but,
assuming it for the moment, observe that we have a stronger result: the dichotomy
implies that all the states should exhibit localization up to, at most, one state
per site. Indeed, we will see that in this model any state «|071) + 5|0 ]) exhibits
localization.

The aim of this section is to perform a systematic study of localization for any
QW with one defect on Z, which can reveal in the simplest examples the coin
dependence of localization properties.

Therefore, our purpose is to determine which coins ([3)) give in Z a measure with
mass points. Subsection L2l shows that these models fall into groups with a common
measure up to rotations, each such a group characterized by the three parameters
a,b €D, w € T given in ([I9). A canonical representative of the measures in a given

given by

group is that one 1 = g, associated with the common CMV matrix C = C(ay,) of
the group given in Subsection [1.2] whose weight and mass points live in T \ I, and
I', respectively.

Coins (I3]) with the same values of these parameters have the same mass points
up to rotations and, therefore, the corresponding QWs have the same localization
character. For instance, in 7Z, the constant Hadamard coin has the same values
a=0b= %, w = 1 as its perturbation

1 [e? 1
C—H, D—ﬁ<1 _6—1'(;5)7

which proves in a very simple way that no state in such a QW exhibits localization
(see [25] for a different proof in the particular case of the state %|OT> + 5104)).

5.1. Mass points of u%,. Bearing in mind that localization in a QW with one
defect on Z only depend87 on the associated parameters a, b, w, we can restrict our
attention to the canonical representative p;,. Proposition states that the cor-
responding mass points are the roots z € T of g,4(2) = 22fu(2) fas(z) = 1 such
that

(2) = lim—— " 2 (22)

Map 11— gap(rz) '

These conditions do not depend on w, so the mass points, and thus the localization
behaviour, only depend on a, b but not on w.
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The choice of the square root /A, makes f, analytic in T except at the branch
points, i.e., the solutions of A, = 0, which are the four boundary points 0I', of the
two arcs I'y,

ol = {:l:Za, :l:za}v Za = Pa t+ Zb‘a|v Pa=11— |a‘2‘

The relation (I6]) between f, and f,; shows that f,; is analytic in T\ 0I', too, and
so the same is true for g,;. In consequence, we find from Proposition that the
measure g, has a mass point at any root z € T \ dI', of g.5(2) = 1. Indeed, we

know that these roots must be in the interior I'? of ', because there is no root in
T\ T,.

Therefore, the roots z € T of g,4(z) = 1 can lie on I'?, and then they are mass

points for sure, or they can be on dI'y, in which case we should check ([22)) to decide
if they are mass points or not.

5.1.1. Mass points on OI',. We will prove that, although the points of 0I', can be
roots of ga(2) = 1, they are never mass points of p, because condition (22) is not
satisfied. We will only consider z,, the analysis for the remaining three points is
similar.

First, let us find the values of b which make z, a root of g,;(2) = 1. We know
that |f.(z,)] = 1 because z, € I'y, so from (I6) we obtain

2
Gab(%a) = 72;]0(1(2&) +_[37
Z[lfa(za) _'_ b

and ¢,4(z,) = 1 becomes equivalent to Im(22f,(2,) + b) = 0. On the other hand,
the expression ([IT) for f, gives 22 f,(2,) = itar%a> S0 that z, is a root of ga(2) = 1 if
and only if Imb = —Im(iﬁza).

Now, assume that b satisfies the condition Imb = —Im(i%‘za), and let us compute
lim,+; m(rz,). The first order Taylor expansion of A,(rz,) at r =1 gives

Au(rzy) = Ki(1 =)+ O((1 —1)?), K, #0,
which, using (I7), yields

(r22)2 fa(120) = z%z FREWT 7401 —71), Ky#0. (23)

Inserting this into the relation

(22fa(2) + 1)(2%fa(2) = 1) + 2i(Imb)22 f,(2)
1+ 022 f,(2)

ga,b(z) —-1=

)

obtained from (I6), leads to
Gap(12) =1 = KRe(iﬁZa)\/l —r+0(1—r), K #0.

This proves that lim,4; m(rz,) = 0 when Re(iﬁza) # 0. The equality Re(i‘%lza) =0
would imply |[Imb| = |Re(iﬁza)\ = 1, which is not possible, thus we conclude that
there is no mass point at z,, even if it is a root of g,4(z) = 1.
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£

a
Za=pa+ ilal {§=E(Ia|tipa)

FIGURE 1. The transformation z — ¢ maps both I'/ and T', one
to one onto %,. S(a) is the open set limited by the arc ¥, and the
straight line passing through ;" and (;, in grey color in the figure.

5.1.2. Mass points on I'). At this point we know that the mass points of uZ, are the
roots of g,5(z) = 1 in I'%. We can restrict our analysis to the right arc I'} = {¢? €
I'%: cosf > 0} of I'Y because the mass points appear in pairs £z, one belonging to
I} and the opposite one lying on the left arc I'; = {e? € T? : cos < 0}.

The study of the roots in '} is simplified under the change of variables

(= C(Z) = _Z2fa(z)>
which maps I'}" one to one onto the arc (see figure [I)
Ya = {jge" : cost <|al},

and O} = {z,%,} onto 9%, = {C7,¢H} ¢& = = (lal £ ip,). These mapping
properties can be inferred from the expression

0
&%=—%(|w—wwm+mw) e” € TF,
a

obtained from (I8)), which shows that ((z,) = (;, ((Za) = (;” and the argument of
(') is increasing in 6 for ¢ € T'}. The inverse mapping is

z=2(0) = 7=

The arc ¥, can be alternatively described as
S, ={Ce€T:Re@) <|a*} ={CeT:|a—5| <1},

a result that will be of interest later on.
Bearing in mind that |f,| =1 in '}, we find that

22f.(2)+0b
gavb(z)zg)_, z eI,
Zafa(2) + 0
so the translation of the equation for z to the new variable ( is

dap(2) =1, zel! & TImb=Im¢, (€,
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Given b € D, the solutions ¢ € T of the equation Imb = Im( are

C+(b) = £V 1 — Im?b + ilmb.

The values of @ which are compatible with (.(b) are given respectively by any of
the equivalent conditions
(+(b) € By & Re(@() < laf* & |a— 3¢ (b)] > 3 (M)
Therefore, the measure p;, has mass points if and only if at least one of the
conditions M, , M_ is satisfied. For each of the conditions M,, M_ which is
satisfied, there is a pair of mass points at +z (a,b), +z_(a, b) respectively, where
- 5@:(6) + —
z4(a,b = ———=¢cI, —z4(a,b cl',. 24
0= T ) o 2
Hence, we have the following possibilities:

(M) If none of My are satisfied, p, has no mass point.
M?2) If M, is satisfied but M_ is not, u*, has 2 mass points:
+ a,b
zi(a,b) € TF and —z, (a,b) € T, .
(M?) If M_ is satisfied but M is not, p, has 2 mass points:
z_(a,b) € TF and —z_(a,b) € T, .
(M*) If M. are both satisfied, g, has 4 mass points:
zi(a,b) € I'F and —z4(a,b) € I .
The case of 2 mass points is characterized by M? = (M2 or M2), while M =
(M, or M_) is the condition for the existence of mass points.

5.2. Localization pictures on Z: dependence on a and b. The localization
dichotomy for one defect on Z does not depend on w, but only on a,b. Hence, we
can discuss two kind of problems: Given a, which values of b yield localization?
Given b, which values of a yield localization?

5.2.1. From b to a. The last way of expressing M. in (ML) above means that a
lies outside the closed disk Dj of center (.(b)/2 and radius 1/2. Therefore, the
different cases can be stated as (see figure [2]):

(M°) a € Df ND; < p, has no mass point.

(M?) a € D, \ D) < pZ, has 2 mass points £z (a,b).

(M?) a € D \ D, < p, has 2 mass points +2_(a, b).

(M%) a ¢ D UD, < pe, has 4 mass points £z, (a,b), +2_(a,b).
We conclude that, given a value of b, a QW with one defect on Z exhibits localization
if and only if a ¢ D N D, .

5.2.2. From a to b. Now we look at the first condition in (M) above. To make it
more explicit let us decompose ¥, = ¥ U X into its right and left parts ¥ =
{C €Y, :ReC >0}, ¥, ={Ce€X,:ReC <0}. Then, a choice of a fixes ¥F, and so
the interval ImXF where Imb must lie to fulfill My. This means that localization
for QWs with one defect on Z only depends on a and Imb, but not on Reb.

Taking into account that the angular amplitude of X3, is bigger than 7 (remember
that we are considering a # 0), we find three possibilities for Im¥, (see figure [3)):

(A) (Re)(Re(s) >0 & (~1,1) C Im3,.

(B1) (Re¢; )(Re¢;) <0, Ima>0 < Im%,=[-1,ry), ry <Ll

(B_) (Re¢; )(Re¢;) <0, Ima<0 < Im%,=(r_,1], r- > —1.
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() I L+(b)

FIGURE 2. Localization for one defect on Z (from b to a). In
green color the values of a giving localization for the choice of b in
red. They only depend on Imb. In light green the values of a with 2
mass points and in dark green those with 4 mass points.

The value (Re¢;)(Re¢;) = ‘“'4‘; |I;m “a turns these three cases into the following local-
ization criteria:

(A) Localization Vb < [Ima| < |a]* < [a—%| > ora+ 4| >
(B, ) Localization for Imb < r, € (0,1) & Ima > |a]*> & |a—
(B_) Localization for Imb > r_ € (=1,0) < Ima < —|a]*> & |a+1i| < 3.

Roughly speaking, the values of a split into three regions delimited by two circles
with radius 1/2 centered at 4i/2. Outside these circles localization holds for any
defect. Inside the upper or lower circle there is respectively an upper and lower
bound for Imb which delimits the defects giving localization (see figure [3]).

Notice that, for any a € D, localization holds at least for b lying on the open set
S(a) limited by the arc 3, and the straight line joining ¢ and (,; (see figure [I]),
that is,

S(a) = {rﬁe“ cost < |a|,r < 1}. (25)

Indeed, S(a) yields exactly the values of b giving localization when a is imaginary
because in that case Im{;” = Im¢;. Thus, among the values of a with the same
modulus, the biggest region of values of b without localization holds for Rea = 0.
Since ImY = ImX; for an imaginary value of a, it also ensures 4 mass points in
case of localization.

For a fixed a, the bounds ry = r4(a) are v, (a) = maxIm{¢{S,(; } and r_(a) =
min Im{¢;", (; }, i.e.,

ry(a) = Ima + %\Rea\.
These bounds also permit to distinguish between the values of b giving 2 or 4 mass
points, once a is chosen. There are 4 mass points when Imb € Im¥F N ImY,
and only 2 mass points if Imb € Im>} \ Im¥, or Imb € ImY; \ Im>}. Looking
separately at the three previous possibilities we find that 2 mass points appear when
b lies on a band limited by two horizontal lines passing through ;" and ;. Hence,

the situation in the three cases above can be more precisely described as follows
(see figure [):



ONE-DIMENSIONAL QUANTUM WALKS WITH ONE DEFECT 27

E +
ag é’ ;1 {;'2
g;z
é/;l
iy Za, fay

FIGURE 3. Localization for one defect on Z (from a to b). The
upper figure shows in dark green the values of a giving localization
for any b. The upper (lower) circle in light green are the values of
a such that localization fails for b lying on an upper (lower) band

Imb > ry (Imb < r_).

The lower figures represent in red color the

values of b giving localization for each of the three values of a shown
in the upper figure. They are characterized by Imb € ImY,. A pair
of mass points appears for each of the conditions Imb € ¥F which is
satisfied. Therefore, the dark red covers the values of b with 4 mass
points, while the light red covers those with 2 mass points.

(Imb < r_(a),
(A) S r_(a) <Imb < ri(a),
|7+ (a) < Imb,
(Imb < r_(a),
(B.) {r () <Tmb < r(a),
| r+(a) < Imb,
(Imb < r_(a),
(B_) ¢ 7_(a) <Imb <ry(a),
|7+ (a) < Imb,

4 mass points,
2 mass points,
4 mass points.
4 mass points,
2 mass points,
no mass points.
no mass points,
2 mass points,
4 mass points.

6. ASYMPTOTIC RETURN PROBABILITIES: ONE DEFECT ON Z

To compute the asymptotics of pgk)ﬁ (n) as in ([II]) we need, not only the mass points
(known from the previous results), but also their masses and the OLP related to the
site k. Let us see how to make the computations with the canonical representative
diy = dpg, instead of the actual measure dp(z) = dfr(e™"z) of the QW.
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NGO
Introducing (20) in (§) we obtain the relation 'l,b((f)ﬁ(z) = '1/127)3(6_“92) between the

corresponding functions for the state |\I/((f)6), where

a=A\ja, B=AD,8, ifk=j .
4 50 L) e J =0,

< 1) < N (k)

and Ay = diag()\,(:),)\k ). In particular, @bgkg(z) = &gl)@bi,g(e‘lﬂz) and v,[)((]kl)(z) =
NO.

n§2)¢§,3(e_mz) with /@y) € T. Hence, () can be written as

foa(n) ~

2

+ 132 @ ad b ()] - (26)

zeT

S () (2)

zeT

For convenience, while performing the calculations we will omit the hat on &, B SO

that at the end of the computations we should make the substitution «, 8 — &, B
We also remember that pgg)ﬁ(Qn — 1) =0, thus we only must consider pgg)ﬁ(Qn)
6.1. Masses of f1 = u,. There are 4 possible mass points: +z, (a,b), £2_(a,b).
We only need to calculate the mass of the two points z+(a,b) given in (24) be-
cause the mass of the opposite points follow from Corollary 2.4. We will make the
calculations for a general point of the form

1 —ad
11 —alo|’
The mass of zy(a,b) is obtained setting (o = (+(b).

Proposition 2.3 states that

o € Xa- (27)

20 —

. 1 n(z0) n(20) = w20 fa(20),
it = (525 ") Vaogsla).
In this case (o
(z0) = —wzlo = _WICZ — Z|, (29)

because we know that inverting 27) yields (o = —23 fo(20).
For the calculation of g/, ,(2), first perform the change ((z) = —2°fo(2) in gas(2),

C—b
Gap = Cq
so that , ¢ o
Yap ' P
=2 (1 _
Jap G < - (1—-0¢)(¢C — b)) ’
" (20 : (20) 1 - Re(B0)
/ _C/Zo Py )_ ("(20) 1 — Re(bGo
Gasl20) = Co (1 " Go—b2) ’ G [G—b* "
It only remains to compute (’(2p). From (I7)) we obtain
/ o C(Z) —a
C (Z) - 22 Aa(z)’
hence _
((z0) 1—ale _  [1—1aG|

(1 —ady). (30)

< V]a|? — Im?z ~ |af?> — Re(a¢)
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Combining the previous results we get

2
1]¢ — b? |a]?> = Re(agy) 11— g2p

- - : 31
2[¢o—al* 1 —Re(b¢p) 21+\<’+”b\2 (31)

m(zo) =

6.2. Asymptotics of p&o)ﬁ(n) on Z. The asymptotic return probability to the origin
involves zAbio)ﬁ = (a,0)X, + (0,8)X;. We know that X, = 1, while X; can be
obtained specializing the general expression ([I{) for the coins

é_lz(_f’“ m), éoz(p*i ‘w”), oo = VT= O,

wa  Pg wb

related to the CMV matrix C of fi. This gives
‘ e pa —wa/p
X ="/ “.
1(2) (—Wb/Pb =

We finally find that

~ (0

Bih(z) = a(1,0)+ (a2,

Po

6.2.1. The case of 2 mass points. Assume the case M? = (M2 or M?), so that
there are exactly 2 mass points: £z (a,b) for M2, and +z_(a,b) for M2. For
convenience, let us write 2o = z4(a, b) and (o = ((20) for M2.. Then, from (28) and
[29) we find that

B o) {0} o) = miz) (a - gate b)

Pb

TAPS)B(ZO)IAJJ({ZO})QLE?())(ZO)T = —m(z) wCo +b (a B cho + b) |

Pb Pb

where m(z) is given in (3I]).
The result for —z, is the same because m(z) is even and 7(z) is odd, thus, ac-
cording to (20),
= 2
. b
o Co +
Pb

|Co + b|2)
Oé

pb

lim p{(2n) = (2m(2)))? (1 +
n—00 ’
Setting zp = z4(a, b), then (o = (+(b) and
Py

L+ P R VA el U
Co — bJ? I V1 —ImszFReb’

which gives
lim p”,(2n) = pZ 4(a,b,w)  for M2,

n— oo
with
(-ee) |,
—al? b
pha(abi) =+ gl th
’ 14+ 2 Po
|Co—0|? (32)

:1<1_ pe )2 13F(Idlz—IBF)ReprbRe(@B)
V1 — Im?b ’
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Here we have used that |a|* + |3 = 1.

We see that the asymptotic return probability pi B(a, b,w) to the origin depends
on the coefficients o and 3 of the state, as well as on the parameters a, b, w associated
with the QW. Indeed, there is a state a|01) + £|0]) which exhibits no localization,
given by

A

B=a

for M2. (33)

Pb
w
Reb+ /1 —Im?b

6.2.2. The case of 4 mass points. In the case M* there are 4 mass points: +z,,
where z, = z,(a,b) is related to (. = (. (b), and £z_, where z_ = z_(a,b) is
related to (_ = (_(b). Therefore

pg])ﬁ(2n) ~ Z 2m(z) (& — Awg i b) n
7 " Z=z+ Po
_ _ 2
C+b < s C+ b) )
+ 2m(z a— fw z"
ZZZ:i ( ) Pb Pb

The cross terms of both summands cancel each other because
Co+b+b
Pb Pb

_1’

hence,
nll_)tg()pg])ﬁ@n) = pasla,b,w) +p (a,b,w)  for M,
with piﬁ(a, b,w) given in (B2).

In other words, the 4 mass points +2,, +2_ contribute to the asymptotic return
probability to the origin simply by adding the contributions that they should have
if considered as two independent cases with 2 mass points. As a consequence, the
existence of 4 mass points ensures that all the states at the origin exhibit localization
because the two conditions in (33]) are incompatible for (a, 3) # (0, 0).

Particularly simple is the case of an imaginary value of a which, according to
(@A), corresponds to a defect such that €™ = ¢, Then, localization appears if and
only if Ima > 0,Imb or Ima < 0,Imb, and in such a case there exist always 4 mass
points. The simplicity of the asymptotic return probability to the origin comes from

the fact that, for an imaginary a, we have |(, — a| = |(_ — a| and thus
2 2 2
, 2Ima(Ima — Imb)
lim p®(2n) = (1- L2 ) = N GY
n1—>I£lopa’B( n) ( |(x — al? 1+ Im?*a — 2ImaImb (34)

In this case the asymptotic return probability to the origin does not depend on the
state. ' Ny

For instance, the model (21I) givgs a = %, b = %, w = 1, which exhibits
localization when Imb < Ima, i.e., € # 1. The application of ([34]) to this model

yields
_ 2(1 —cos )\’
1 (0) om) = A P
nl—{gopa’ﬁ( n) ( B—QCOSQS) ’

which shows that the result obtained in [26] for the special case a@ =
indeed true for any «, 3.

,B:%is

S
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6.3. Maximum asymptotic return probabilities on Z. The previous results
seem to indicate that the maximum values of

Q)

. 0
pl, = lim p\(2n)

’ n—o00
should be reached for a close to the unit circle, which means that the non defec-
tive coin C' has an almost anti-diagonal shape. Let us analyze the behaviour of
max, g pg)’)ﬁ when |a| — 1.
Given a value of a with a fixed phase different from that of (1(b), the localization

pictures in subsection 1.2 show that the measure p; ) has 4 mass points as far as |a|
is close enough to 1. Take g, By such that 8y = iwdp, so lag| = [Bo| = % Then,
we find from (32)) that, in the case of 4 mass points,

2 2
© <, 0 _1(/_ 7 L T
il >0 =5 (1 )+ (- o)
Therefore,
lim maxply =1,  ao €T\ {¢(b)}.

a—ag «,f

That is, if Ima # Imb and |a| is close enough to one, there exist qubits which
asymptotically return to the origin with probability almost one. According to (I9),
given a defect D, this holds for almost any coin C' as long as its diagonal is close
enough to zero.

These results become stronger when a is imaginary. Then pg)’)ﬁ is independent

of a,, f and (34)) yields lim, pfjg = 1 for any state. In other words, if a is close
enough to 7 or —i, all the qubits asymptotically return to the origin with probability
almost one. Looking at (I9) we see that, given a defect D, this is the case of any coin
C' which is close enough to an anti-diagonal one provided that €% is close enough
to e'".

7. LOCALIZATION: ONE DEFECT ON Z,

We will study the localization for the coins (I3]) in Z.. As in the case of Z, this
requires the analysis of the mass points of the corresponding measure. Subsection [4.]]
shows that these models fall again into groups with the same localization behaviour
because any such a group has a unique measure up to rotations. Nevertheless, these
groups are characterized now by only two parameters a,b € D given in (I4). The
measure [i = [, of the CMV matrix C=¢C (@) introduced in Subsection ] serves
as a canonical representative for the measures in a group. The corresponding weight
and mass points are supported in T \ I, and T, respectively.

7.1. Mass points of ji,;. Concerning localization properties for one defect on
Z we can restrict ourselves to the measures f,;, without loss of generality. The
corresponding mass points are the roots z € T of h,;(2) = zf.5(2) = 1 such that

(=) =lim - #0 (3)

w({z}) =lim —— :
Hap 1 1 — hap(rz)

These roots must lie on ', and when they lie on I'Y condition (B3]) is always satisfied
because h,; is analytic in T.
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Moreover, the points of dI';, can be roots of h,;(2) = 1 but never mass points of
[tap because condition (B3]) is not satisfied on OI',. Consider for instance the point
2z, and assume that h,(2,) = 1. Then, using (23]) we find that

h(rz,) —1=K'vV1—r+0(1—r), K' #0,

which, according to (BH), implies that p,5({z,}) = 0. A similar proof works for the
remaining points of JI',.

Therefore, the mass points of p,, are exactly the roots of h,p(2) = 1 in % To
study these roots we will use the same chage of variables as in the case of Z. However,
since the symmetry of the mass points with respect to the origin disappears in Z,,
we must study independently the roots in the right and left arcs I'F of T,

The transformation

(=((2) = —2*ful2)
maps both arcs I's onto Y, (see figure [T), with and inverse mapping given respec-
tively by
1—acC

z=+2(¢) €Ty, Z(C):m-

Therefore, the equation for z € I'T reads in terms of ( € ¥, as

B " l—a¢ ¢—b
hop(2) =1, zely & $H—501—R7_L (E€X,
(€ —b) (—a (¢ —b)?
= Y, RT, Y-
o T Ty S5 T e 8

The last of the above equivalent conditions states that b lies on a straight line
passing through ¢ in the direction given by iy/( —a or \/( — a respectively. The
first case is equivalent to the presence of a mass point at z(¢) € '}, while the second
case means that there is a mass point at —z(¢) € I';,.

In other words, any a € D defines two orthogonal one-parameter families of
straight lines (see figure [): those b, - passing through each ¢ € ¥, in the direction
of v/{ — a, and those bzc passing through each ¢ € 3, in the orthogonal direction
iv/C — a. The points of D swept by the family {bic}cega are the values of b giving
mass points for p,; at I'F respectively. Hence, the values b € D which yield mass
points for (i, are those swept by {b;c}gega U {b, ¢ }cen,. Given b, the number
of mass points of fi,; is equal to the number of straight lines of both families
{bic}cega which pass through b. Moreover, each line bic passing through b provides
the corresponding mass point z = +z(() because it crosses the unit circle at ¢ and
z. This follows from

C-w)? [C—w?

weT = = Wz
(—a I¢ —al

(©),

which implies that

we T\ {C}, (C{fwjew & w==+2(0).
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FIGURE 4. For different choices of a, the families of straight lines
{b:’c}(eza and {b, : }¢cen, in blue and purple color respectively. The
corresponding envelopes E=(a) are the continuous curves in the same
dark color lying on the exterior of T. The arc ¥, appears in grey
color and T \ ¥, in yellow. The dashed curves in the interior of T
are the envelopes E(a) of the families {bic}ge'ﬂ‘\ga (which are not
depicted here). The tangent points to T split E.(a) into 3, 4 and 5
connected components respectively from the upper to the lower figure.
The straight lines corresponding to such components sweep different
sectors of . The subset of D swept by any of these sectors is the
region of values of b giving localization for the choice of a. When
several sectors overlap, the corresponding values of b yield as many
mass points as overlapping sectors cover b.

33
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7.2. The envelopes of {big}geza. The envelopes of the two families {big}geza
of straight lines can help us to determine the points of D swept by them. For
the computation of the envelopes it is convenient to rewrite the equations for the
families in a different way. Denoting A =( —a and B=( — b,

%GW & B||VFA & BLVEA & BL(|Al+A).

Therefore, the equation for the family bf;c can be written as
Re[(A £ |A])B] = 0.

Remember that ¢ € X, is given by ( = ﬁe“, cost < |a|, so A and B can be
considered functions of t which parametrizes the lines of the two families. Then, the
envelope of each family is given parametrically with respect to ¢ by the equation of

the family together with its derivative with respect to ¢. This leads to the equations

Re[X1B] =0, Im[Y.B + X,(] =0, (36)
for the envelopes of bf;c respectively, where
d— = Im(aQ)
=A+|A Yi=i—Xy=(=%
X:t | |? + Zdt + C Q3 |A| Y

only depend on a and ¢, but not on b.
The system (B6) can be solved in B(t), thus in b(t) = ((t) — B(t), giving the
envelopes b (t) of the two families big,

Im(X.()

+ _
be = C - ZRe(XiYi)

a

X, (37)

When we let ¢ € [0,27], then ¢ runs over the whole unit circle and the two
envelopes b (t) obviously describe a closed curve because t enters in bZ(t) only
through (. We will refer to

E*(a) = {bz(t) : t € [0,27]}
as the full envelopes, to distinguish them from the original ones
EZ(a) = {b5 () : cost < |al},

in which ¢ runs over ¥,. The closure Ej(a) = {bE(t) : cost < |a|} allows ¢ to

run over the closed arc X, that is, it only adds to EX(a) the two limit points in

OE*(a) = {bF(t) : cost = |a|]}. Apart from being useful in some reasonings, the

rest of the envelope E(a) = {bF(t) : cost > |a|} has no interest for us because it

comes from points ¢ € T\ 3,. When referring to the set of two + envelopes we will

use the notation F(a) = E*(a) U E~(a), E.(a) = Ef(a) U E (a) and so forth.
The following properties of the envelopes follow from ([B7) (see figure [)):

e The full envelopes E*(a) are deformed deltoides, i.e., deformed triangles
with concave curve sides joining at three cusps. Also, E*(a) N E~(a) = 0.

e E.(a) CC\D, Ej(a) CD and dE,(a) C T. Indeed, dEF(a) = OI'E. Hence,
we will call E.(a) the exterior envelope, Fj;(a) the interior envelope and
O0FE.(a) the limit points of the envelope.
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e Two contiguous cusps lie on the closed exterior envelope E.(a) if and only
if there is a tangent point to T in the side joining such cusps. In particular,
a cusp lies on T if and only if it is a tangent point to T, and this is also
equivalent to stating that the cusp is a limit point of the envelope.

Consider a given value of a.
If the 3 cusps of one of the two full envelopes E*(a) lie on the corresponding

closed exterior Ej(a), then Ej(a) becomes tangent to T at 2 points (see the lower
image in figure ). In such a case the straight lines corresponding to the points of
EZ*(a) between the two tangent points sweep the whole unit disk D and, thus, any
value b € D gives a mass point for ji,

In general, if T'(a) are the tangent points to T of the exterior envelope FE.(a),
then E.(a) \ T'(a) splits into connected components with a single cusp inside each
component (see figure [l). The straight lines corresponding to a given connected
component do not intersect in D, so a value b € D yields as many mass points as
connected components have a straight line passing through b. The region of D swept
by the straight lines corresponding to a connected component is the open sector
limited by the tangents to the two extreme points of the connected component. If
one of the extreme points of a connected components is tangent to T and the other
one is a limit point of the envelope, the only straight line which limits the related
sector of I is that one tangent to the envelope at the limit point in question. If
both extremes of the connected component are limit points, then the related sector
is limited by the two straight lines associated with such limit points. If a limit
point is simultaneously a tangent point to T of the closed exterior envelope E,(a),
then the corresponding straight line does not provide any restriction for the related
sector of values b € D.

In other words, each connected component of E,.(a)\7(a) has an associated sector
of values b € D to which it gives a mass point for fi,;,. The elements deciding the
sectors are the tangent points to T of F.(a) and the straight lines corresponding to
the limit points of the envelope, which we will call the limit lines of the envelope.
Let us have a closer look at such elements.

7.2.1. Limit lines of the envelopes. The limit points OE,(a) of the envelopes corre-
spond to setting ¢ = (& = % (|a|] & ip,). The related straight lines b~ b:c‘i pass

= ol a,Gg
through such points in the directions v/( — a and i/ — a respectively, which are
the orthogonal directions v/+ia and v/Fia respectively (notice that v/+ia points in
the same direction as 1 + Z\%I)

More precisely, the limit lines of Ef(a) are the orthogonal lines b” . and the

Sa

limit lines of E (a) are the orthogonal lines b oL which are parallel to the previous
ones. Thus the limit lines of the envelope are two pairs of parallel lines which are
orthogonal between themselves.

On the other hand, we know that bic crosses the unit circle at ¢ and +2(C).
Therefore, the limit lines are:

+
° b

o b:c,, joining ¢, to £2((;) = £z, respectively.

joining ¢ to £2((}) = £z, respectively.

7.2.2. Tangent points to T of the full envelopes. If the full envelope E*(a) is tangent
to T at a point (, then big passes through ¢ in the direction orthogonal to (.
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FI1GURE 5. The curve in orange is the epicycloid which delimits the
values of a with a different number of tangent points of F(a) to T.
The cusps are at :t%. The tangents to the epicycloid passing through
a given a cross the unit circle exactly at the tangent points of E(a)
to T. Due to the shape of the epicycloid there are three possibilities
according to the relative position of a and the epicycloid. These
possibilities are shown in the figures above, where the orange points
are the tangencies between F(a) and T.

This means that ¢ L iv/( —a or ( L+/¢ — a, which is equivalent to ¢ || v/ —a or
¢ || 14/C — a. Thus, the tangency condition can be expressed as

C2
(—a
This condition is satisfied by the values of a lying on a straight line a, passing
through ¢ in the direction ¢?. The line a; picks up the values of a with E(a) having
¢ as a common tangent point to T.
The envelope of the family of lines {a¢}cer will help us in counting the number

of tangent points to T of F(a) for any value of a. Setting ¢ = e, t € [0, 27], this
envelope is given by equation (B8]) together with its derivative with respect to t,

Im(¢ —ac¢?) =0, Re(¢ — 2a¢?) = 0.

eR. (38)

The solution
a(t) = (Re(ac?) — im(ac?))¢? = (4Re¢ —ilm¢)¢ = 3et — Leb

is the envelope of {a¢}cer, which is an epicycloid inscribed in the unit circle with
two cusps at the points 3 (see figure [).
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Given a € D, the number of tangents to the epycicloid passing through a counts
the number of points in E(a) which are tangent to T. Therefore, due to the shape
of the epycicloid we have the following possibilities for a € D (see figure [):

(T?) If a lies inside the epycicloid, E(a) has 2 tangent points to T.
(T3) If a lies on the epycicloid, E(a) has 3 tangent points to T, except at the
_ 1 :
cusps a = £3, where E(a) has 2 tangent points to T.
(T?) If a lies outside the epycicloid, E(a) has 4 tangent points to T.

7.2.3. Tangent points to T of the closed exterior envelopes. To complete the picture
of the mass points of ji,; we need to know the tangent points to T of E.(a).

We know that every line a¢, ¢ € T, includes all the values a € I with ¢ as a
common tangent point of F(a) to T. However, ¢ lies on E,(a) if and only if ¢ € ¥,
i.e.,, Re(a() < |al*. Bearing in mind that the parametric equation of a; is

ac(\) = ¢+ A A €ER,

we find that the curves separating the points of the lines {a¢()\)}cer lying on the
exterior and the interior envelopes are given by

A =0,

Re(ac(A)¢) = lac(V* & {A = —Re(.

The curve corresponding to A = 0 is the unit circle, so it does not impose any
limitation to the values a € D. Writing ( = ¢", the remaining curve is given by
A = —cost, so it has the form
) ) 1 . 1 ..
a(t) = e — e* cost = —e't — =3,
(t) 5¢ 5
which is an epitrochoid inscribed on the unit circle with two loops and two self-

intersections at the points :I:% (see figure [G).

The set A = {a(t) : t € [0,2n]} is formed by all the values a € D with E,(a)
tangent to T at some point of JF,(a), i.e., at some limit point. Given a € A, the
number of tangencies at the limit points 0F.(a) is equal to the number of lines ac,
¢ € T, passing through a, i.e., the number of tangent lines to the epitrochoid at the
given point a. Therefore, all the values of a lying on the epitrochoid have a single

limit point where E.(a) is tangent to T, except the self-intersections a = :t%, in

which case F,(a) is tangent to T at two limit points (see figure [6 and the right
column of figure [1).

For any value a € D\ A, E.(a) has no tangent point to T on dF,(a), thus the
tangent points to T of E,(a) must lie on E,(a). The set D\ A splits into 6 open
connected regions. By continuity, the number of points of E,(a) which are tangent to
T must be constant on each of these connected regions. Also, continuity arguments
together with the fact that the envelopes E*(a) and E~(a) do not intersect, ensure
that the distribution of tangent points between E:(a) and E_ (a) must be the same
inside each of the above connected regions. Hence, the picture for the number of
tangent points to T of the closed exterior envelopes Ej(a) can be completed by
simply calculating such number for one value of a in each connected region. This
gives the following results (see figures [l [6] and the left column of figure [7):

(T9*1) If @ lies inside the loops of the epitrochoid, E.(a) has 1 tangent point to T
and it lies on one of the open envelopes EX(a).
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(TL1) If a lies inside the epitrochoid but outside the loops, E.(a) has 2 tangent
points to T, one in each open envelope E*(a).

(T!*2) If a lies outside the epitrochoid, F.(a) has 3 tangent points to T, two of
them in one of the open envelopes EZ(a) and the other one in the remaining
open envelope.

When a € A we know that E.(a) has one or two limit points tangent to T,
depending whether a # :I:% or a = :t%. The complete picture for a lying on the

epitrochoid can be inferred by continuity from the previous results (see figure [6l and
the right column of figure [1):

(THT) If 0 # :I:\/ié lies on the loops of the epitrochoid, F.(a) has 2 tangent points
to T, one in an open envelope EZ(a) while the other one is a limit point of
the remaining envelope.

(TH2) If a = :t%, E.(a) has 3 tangent points to T, one in an open envelope E=(a)
while the other two are the limit points of the remaining envelope.

(T1+'1) If g lies on the epitrochoid but outside the loops, E.(a) has 3 tangent points
to T, two of them in different open envelopes EF(a) while the other one is
a limit point.

7.3. Localization pictures on Z,: dependence on a and b. The previous
section shows that T? = (T!2 or T!™ or T!*) picks up the values a € D such

that one of the closed exterior envelopes E;t(a) has 2 tangent points to T. The
sector associated with the connected component of E.(a) \ T'(a) ending in such
tangent points fulfills D (see the cases as, as and ag in figures [6] and [7]). Therefore,
the region covered by T?, which is the closed exterior of the epitrochoid A, gives all
the points a with 14, having mass points for any b € D.

Consider now a value a € D satisfying T!™'. In this case E.(a) \ T(a) has 4
connected components, each of them ending in a tangent point to T and a limit
point. The associated sectors of D are all included in one of them (see the case as in
figures [6] and [7]). Therefore, such a dominant sector provides the values b € D with
ftap having mass points. In the case T1*! we have a similar conclusion, although
only 3 connected components appear in E.(a) \ T'(a) (see the case a4 in figures
and [). Summarizing, the condition T! = (T!*! or T!*1), which means that a lies
on the interior of A but not on the interior of the loops, ensures that localization
holds for all the values of b bounded by a single limit line.

Finally, assume T%™ for ¢ € D. Then, there are 3 connected components in
E.(a) \ T(a), whose related sectors are included in that one bounded by two limit
lines (see the case a; in figures @l and [7). The points of this dominant sector are the
values of b giving mass points for 1.

This provides the following localization criteria, which are the analogue of (A)
and (B4) for the case of Z, at the end of section [l (see figures[6land [7): localization
holds for the values b € D bounded by

(Lo) No limit line < a lies on the closed exterior of A.

(Ly) One limit line < a lies on the interior of A, but not on the interior of the
loops.

(Ly) Two limit lines < a lies on the interior of the loops of A.
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FIGURE 6. The left figure represents the epicycloid (in orange) and
the epitrochoid A (in green). The self-intersections of A are at ﬂ:\%.
For all the values of a in a given region enclosed by these cycloids the
number of tangent points to T is constant for both E.(a) (left number)
and E;(a) (right number). Each crossing of the epicycloid from the
exterior to the interior reduces the total number of tangencies to T of
E;(a) in 2, keeping invariant the number of tangencies of E.(a). On
the other hand, any crossing of A from the exterior to the interior
changes a tangency of E.(a) into a tangency of E;(a). The number
of tangencies to T of E,.(a) is determined exclusively by A. This
number, going from 1 to 3 as a runs over the unit disk, is indicated
by the darkness of the green color in the right figure.

An independent argument proves that, like in the case of Z, , for any a € D, there
exists localization for all the values b lying on the open set S(a) defined in (25)),
limited by the arc X, and the straight line joining (" and (, (see figure ). The
reason for this is that, when ¢ runs over %,, the phase of ( — a performs a rotation
of an angle 7, so the orthogonal straight lines big rotate by an angle /2. Then,
geometric arguments show that the pair of orthogonal families {big}gega sweep a
region of I limited by at most two of the limit lines and that this region includes
the set S(a).

As a consequence, there are at most two limit lines crossing the open arc T \ 3,
and these limit lines define in any case the sector of values b € D giving localization.
Hence, the number of limit lines crossing T \ ¥, is k in the case L; (see figures
and [7). In any of the cases Ly, the measure (i, can have 1, 2 or 3 mass points, but
only in the cases L; and Ls it can have no mass points.

In the borderline case a € A the envelope F,(a) is tangent to T at a limit point,
so that a limit line is tangent to T at such a point. Then 9%, and 90", must have
in common such a limit point (see figures [@l and [7).

When a is imaginary the limit lines are parallel to the real and imaginary axes
because (& —a € R, and the two limit lines which are parallel to the real axis
coincide because Im(;" = Im¢; . In such a case the region of values of b giving
localization becomes exactly S(a). Therefore, as in the case of Z, among the values
of a with the same modulus the imaginary ones provide the largest region for values
of b without localization.
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FIGURE 7. Localization for one defect on Z, (from a to b). In
red the values of b giving localization for each of the values of a in
the right hand side of figure [l The values of a in the first column
are those already represented in figure Ml and the darkness of the
color shows the number of overlapping sectors swept by the straight
lines corresponding to the connected components of E.(a) \ T'(a), so
it indicates the number of mass points (running from 1 to 3) for the
related value of b. The right column represents similar figures for
different borderline situations corresponding to values of a lying on
the epitrochoid A. The value a; leaves two disconnected bands for b
without localization (condition Ls). For ay and a4 a unique band of
values of b is free of localization (condition Lj). The values as, a5 and
ag yield localization for any b (condition Lg). Given a, the bands of

b which are localization free are bounded by the limit lines crossing
the arc T\ X, (in yellow).
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8. ASYMPTOTIC RETURN PROBABILITIES: ONE DEFECT ON Z_;,_

Like in the case of Z, we can perform the computation of the asymptotics of
pik)ﬁ(n) using ([II]) and the canonical representative dji = dy,, instead of the measure

du(z) = di(e 2) of the QW. From () and (I5) we find that the corresponding
functions for the state |\If((f)ﬁ) are related by v,/)akﬁ( ) = v:/)(akfg(e_m ) with & = Ay

and B = Aarsa . Hence, () = daudhg(e2), {11 (2) = Aarathysy (e772) and
() can be expressed as

2

IS @Bl )| - (39)

zeT

~ I3 Vil{=D (=)

z€T

Again, we will omit the hat on &, B making the substitution o, § — @, B at the end
of the calculations.

8.1. Masses of i = ft,5. Any mass point of i, has the form

1—a . (Co—b)*

=4+———€T N=F—~—>0 Y- 40
Since hqp(20) = 20fap(20) = 1, the corresponding mass is given by

1 1
1 = = ) 41
D = ) T+ ) )

Performing the change of variables ((z) = —2%f,(z) we obtain
C —b ’ / pl%

a — _7_7 a = — - = _ . 42
fo= T Ja= gt (42)

The expression of (’(zp) remains as in [B0) for zo € I', but has opposite sign for
2o € I',. Therefore,

ppll —alo| 1—ag,
|a|* — Re(a@(o) (1 — b¢o)?

f;,b(’zo) =+ 4.07 20 € Fizv

which finally yields

~ 1 1
S 7 S
la|? — Re(acp) Ao la]? — Re(a@(o) [¢o — bf?
1 (43)
_ ——
149 |C0—b[|)22
~ TGo—al

8.2. Asymptotics of pfxo)ﬁ(n) on Z,. We need the function 17),(3)5 = Xy + X1,
where Xo(z) = 1 and X;(z) = (27! — b)/p, follows from the the first two equations
of CX(z) = 2X(z). Hence,
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Any mass point zy satisfies 2 f,4(20) = 1, which using ([42]) gives

2
z—o—b:—c_pb_
. —

Therefore,

~ (0) N Pb
B B0 = il{an}) (0= L),

(0) 7_ . Pb
Do) 90 = <l () 2 (0= =2 ).

The cases with more than one mass point give in general a non convergent return

probability p ( ) due to the different factors 2" appearing in ([BY). Nevertheless,
the case with only one mass point zy yields

2 2
A Py A 5 Pb
hmpa) = n({= 2(1—|—7) — f=——
s 00 ,ﬁ( ) ({ 0}) |<—0 - b‘Q CO o b
1+ s 2
_ [Co—bP? f Bl
- PR e
I< b\z
1+ 21 o
[¢o—al?

Then, all the states at the origin exhibit localization except that one defined by

5 Co — b
B =

Pb
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