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1. Introduction

Some time ago Horn and Weinstein[1] proposed a systematic nonperturbative technique

for the calculation of ground–state expectation values of arbitrary operators. It is

based on the well–known expansions in terms of cumulants or semi–invariants[2, 3] of

quantum–mechanical expectation values in which the exponential operator e−tĤ takes

place. Although the theoretical results are rigorous there remains the practical problem

of summing the resulting t–expansion in order to obtain the desired expectation value in

the limit t → ∞. They resorted to Padé approximants and later Stubbins[4] proposed

other ways of extrapolating the t–series. However, those results were not encouraging.

Cioslowski[5] proposed a clever extrapolating technique based on a series of

exponential functions and derived an appealing expression that has become popular as

the connected–moments expansion (CMX). Later Knowles[6] derived a more systematic

way of obtaining the CMX.

The CMX results on the H2 molecule appeared quite promising; however it seems

that the promised test of the CMX on multideterminant wave functions[5] has never

been published. Knowles[6] showed that although the initial terms of the CMX recover

a large fraction of the correlation energy in molecular calculations, subsequent terms

converge to an incorrect energy.

The CMX is quite appealing because it provides approximate values for the ground–

state energy of a quantum system directly in terms of a finite number of connected

moments. This may be the reason why the CMX and its variants[6, 4, 7] were applied

to several simple physical problems[5, 6, 12, 13, 8, 9, 10, 11, 14, 15] in spite of its

limitations[6, 4, 7, 12, 13, 16, 17, 18].

In order to overcome some of the drawbacks of the CMX several authors

have proposed alternative strategies like the generalized moment expansion (GMX)

[19, 20, 21]. Bartashevich[22] proposed the connected–moments polynomial approach

that yields approximate eigenvalues for all states as roots of a simple polynomial function

of the energy with coefficients that depend on the moments of the Hamiltonian operator.

This approach was later proved to be equivalent to the Rayleigh–Ritz variational

method[23] in the Krylov space[24, 25, 26] that we will call RRK from now on. Numerical

experiments proved that the RRK converges more smoothly and is therefore more

reliable than the CMX when both methods are applied to the simple models so far

chosen for testing the latter[26, 27].

Some time ago Fessatidis et al[14] applied the CMX and one of its variants, the

alternative moments expansion (AMX), to a non–trivial problem with many physical

applications: the Rabi hamiltonian. Because they only considered low order expansions

there is no clear indication about the convergence of the moments expansions for that

important model. The purpose of this paper is to investigate the convergence of the

CMX for the Rabi Hamiltonian numerically. Such analysis requires moments expansions

of sufficiently large order for different values of the model parameters. We expect that

the conclusions drawn for the Rabi Hamiltonian may be of utility for future applications
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of the CMX and its variants to more realistic physical problems.

The paper is organized as follows: in Section 2 we introduce the Rabi Hamiltonian

and discuss the diagonalization of its matrix in an appropriate basis set; in Section 3

we outline the t–expansion; in Section 4 we outline the main equations of the CMX

and compare its results with those obtained by means of the RRK and the accurate

diagonalization. Finally in Section 5 we draw conclusions.

2. The Rabi Hamiltonian: exact diagonalization

The Rabi Hamiltonian is a model of a two level atom or spin system coupled to a

single–mode bosonic field given by the Hamiltonian operator

Ĥ =
1

2
ω0σz + ωb̂†b̂+ g (σ+ + σ−)

(

b̂† + b̂
)

.

where σi are the well known Pauli matrices ω and ω0 are the physical parameters that

determine the spectrum in absence of coupling, and g is the coupling between the atom

and the bosonic field. When g = 0 the spin and bosonic degrees of freedom decouple and

the problem is exactly solvable. For this reason it is expected that any approach yields

better results for small values of g. Recently Pan and coworkers [29] have shown that

the Rabi hamiltonian can be solved almost exactly using a progressive diagonalization

scheme.

Although this model is not exactly solvable for g 6= 0, one can easily obtain

highly accurate numerical results by, for example, straightforward diagonalization of the

Hamiltonian matrix in an appropriate basis set. Since we will need such results in our

analysis of the performance of the CMX, we proceed to describing the diagonalization

procedure. The Hilbert space for this problem is spanned by a basis set of states given

by the direct product of the spin and bosonic ones. We label them in the following way:

|n〉 =
{

| ↓〉 ⊗ |
[

n−1
2

]

〉 , n odd

| ↑〉 ⊗ |
[

n−1
2

]

〉 , n even
,

where n = 1, 2, . . . and [a] means integer part of a.

The calculation of the matrix elements of the operators that are relevant for the

model is straightforward; for example:

Bnm ≡ 〈n|b̂|m〉 =
{
√

[

m−1
2

]

,
[

n−1
2

]

=
[

m−1
2

]

− 1

0 , otherwise
,

(Σz)nm ≡ 〈n|σ̂z|m〉 =
{

(−1)n , n = m

0 , otherwise
,

(Σ+)nm ≡ 〈n|σ̂+|m〉 =
{

2 , m odd and n = m+ 1

0 , otherwise
, (1)

and those for b̂† and σ− are the hermitian conjugates of the matrices for b̂ and σ+. The

matrix for the Rabi Hamiltonian follows from obvious straightforward products of those
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Figure 1. Matrix plot of the matrix corresponding to the Rabi Hamiltonian for

ω0 = ω = 1 and g = 5, with N = 2000.

matrices. If we restrict the space to the first N states then we obtain an N ×N matrix

H that we can diagonalize numerically in order to obtain approximate eigenvalues and

eigenvectors. The calculation is greatly facilitated by the fact that the matrix H is

sparse; i.e. most its matrix elements are zero. This property is quite useful from a

computational point of view because it allows one to save computer memory. Fig.1

shows a simple graphical representation of the matrix H for N = 2000, ω0 = ω = 1 and

g = 5. It is worth noting that the truncation of the Hilbert space preserves the symmetry

of the problem determined by the commutation of the operators Ĥ and Π̂ = eiπn̂, where

n̂ = b̂†b̂+ 1
2
+ 1

2
σz (the corresponding matrices also commute).

Table 1 shows the ground–state energy of the Rabi Hamiltonian for several values

of N and for the same set of parameters chosen by Bishop et al[30]. Present results

are more accurate than those obtained earlier and will be a useful benchmark for the

investigation of the convergence properties of the CMX. We have calculated the matrix

H analytically in terms arbitrary model parameters so that we do not have to calculate

it again each time that we decide to modify those parameters. This strategy makes the

calculation quite efficient.

We have calculated the lowest eigenvalues of the matrices by iterative application

of the conjugate gradient method (CGM) to the numerical matrix H. Notice that our

results are fully converged for a 1000× 1000 matrix, except in the last case considered

where just the last digit is not correct.
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Table 1. Ground state energy of the Rabi Hamiltonian for specific values of the

parameters. N is the number of states used in the exact diagonalization. The results

may be compared with the variational results of ref.[30].

N ω0 ω g E1

1000 1 1 5 -100.000626570374178204295743532860688625653449650

1500 1 1 5 -100.000626570374178204295743532860688625653449650

2000 1 1 5 -100.000626570374178204295743532860688625653449650

ref.[30] 1 1 5 -100.001

1000 1 2 5 -50.001262757900797977214814102896046471301336432

1500 1 2 5 -50.001262757900797977214814102896046471301336432

2000 1 2 5 -50.001262757900797977214814102896046471301336432

ref.[30] 1 2 5 -50.0013

1000 2 1 5 -100.002506281526606167493915731790865439561963879

1500 2 1 5 -100.002506281526606167493915731790865439561963878

2000 2 1 5 -100.002506281526606167493915731790865439561963878

ref.[30] 2 1 5 -100.003

3. The cumulant or t–expansion

For concreteness, in this section we outline the main ideas behind the so–called t–

expansion (or cumulant expansion)[1]. The moment–generating function

Z(t) = 〈ϕ| e−tĤ |ϕ〉 =
∞
∑

j=0

(−t)j
j!

µj (2)

gives us the moments µj = 〈ϕ| Ĥj |ϕ〉 of the hamiltonian operator Ĥ, where |ϕ〉 is a

properly chosen trial state. The expectation value of Ĥ in the state e−tĤ/2 |ϕ〉

E(t) = −Z
′(t)

Z(t)
=

〈ϕ| Ĥe−tĤ |ϕ〉
〈ϕ| e−tĤ |ϕ〉

(3)

exhibits several interesting properties: first, E(t) ≥ E0, where E0 is the ground–state

energy, second, E ′(t) ≤ 0 and, third, limt→∞E(t) = E0 provided that the overlap

between |ϕ〉 and the ground state |ψ0〉 is nonzero.
The function E(t) is closely related to the cumulant function K(t) defined by

Z(t) = eK(t).[2, 3] The formal Taylor series of E(t) about t = 0 yields the t–expansion:

E(t) =

∞
∑

j=0

(−t)j
j!

Ij+1 (4)

where the cumulant coefficients (or connected moments) Ij can be easily obtained from

the recurrence relation

Ij+1 = µj+1 −
j−1
∑

i=0

(

j

i

)

Ii+1µj−i (5)
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The main advantage of the methods based on the cumulant or connected–moments

expansion is that they are size extensive[1, 6].

Any practical application of this method requires a suitable extrapolation of the

t–expansion (4) to t→ ∞ in order to obtain E0. This is not a simple task and different

extrapolation techniques may lead to different results. As we have already mentioned

before the first application of the t–expansion was based on Padé approximants that

provide the simplest and most straightforward strategy[1]. At this point we want to

point out a common misconception about the theorem of Horn and Weinstein[1]. Many

authors state that the function (4) converges for t → ∞[5, 12, 13, 28, 17, 20] which is

not the case as one can easily verify. For some complex values of t the function Z(t)

may vanish and therefore the t–expansion converges for t < |ts| where ts is the singular

point of E(t) closest to the origin in the complex t–plane. This fact has already been

discussed by Witte and Shankar[18] and one may easily convince oneself that it is so by

means of the exactly solvable two–dimensional model discussed by Knowles[6].

Note that the expansion in terms of exponential functions of t

E(t) = E0 +

∞
∑

j=1

Aj exp(−bjt), (6)

which is the basis of the CMX[5], does not take into account the singular points of E(t)

and therefore the matching of the t–expansion is only valid for t < |ts|. Consequently,

it is unlikely that we can successfully extrapolate the expression (6) thus derived to the

limit t→ ∞.

Regardless of which extrapolation scheme we may use, it is clear that the application

of the theorem proved by Horn and Weinstein requires the calculation of a certain

number of connected moments of the Hamiltonian. For problems of great complexity,

such as for example many–body or quantum field theory problems, it may be quite

difficult (or even impossible) to carry out this task for sufficiently large (or even modest)

orders. In such cases one should therefore rely on the extrapolation of the expansion with

a few connected moments. It is not easy to prove the accuracy of such extrapolations

in the general case, and for this reason it is useful to verify what happens in the case

of a simple though non–trivial model, like the Rabi Hamiltonian, where it is possible

to obtain large–order moments and sufficiently accurate numerical results. We expect

that a careful investigation of the convergence properties of the connected moments

expansions for this model will then serve as a guide for others in which one cannot carry

out calculations to such large orders.

We first outline the procedures that we follows for the calculation of exact analytical

moments of the Hamiltonian. In the first place, we resort to an N × N matrix

representation H of the Hamiltonian operator, as a function of the parameters of the

model. for simplicity we assume that N is even, i.e. that we are working in a subspace of

the Hilbert space containing at most N/2 bosons. If N is sufficiently large (for example,

N = 2000) we can safely calculate the first (say 100) moments exactly. The effect of the

space truncation does not affect the calculation because of the band form of the matrix
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shown in Fig. (1) §. In this approximation the moment µj =
〈

Ĥj
〉

is simply given

by the corresponding diagonal element of Hj. We have also resorted to the coordinate

representation and calculated the moments analytically in order to verify the accuracy

of the matrix approach just outlined.

In order to calculate the moments we follow Fessatidis et al [14] and choose

the trial state |ϕ〉 = | ↓〉 ⊗ |0〉 = |1〉 to be the ground–state of the noninteracting

Hamiltonian (g = 0). In this way we can readily calculate the moments of the

Rabi Hamiltonian systematically and analytically by straightforward matrix–matrix and

matrix–vector multiplications (or in the alternative way indicated above). To this end

we resorted to the symbolic operations provided by available computer algebra software

like Mathematica and wrote a code that produces the desired moments and connected

moments in a reasonably short time. On the other hand, Fessatidis et al [14] only derived

the first five moments of the Rabi Hamiltonian, a fact which considerably limited the

accuracy of their results as well as the reliability of their conclusions.

Alternatively the moments of the Rabi hamiltonian may be calculated by

representing the Hamiltonian operator as

Ĥ =

(

ω0−ω
2

− 1
2

d2

dx2 +
ω2x2

2
2
√
2ωgx

2
√
2ωgx ω0+ω

2
− 1

2
d2

dx2 +
ω2x2

2

)

(7)

and writing the trial state as

Ψ0(x) =

(

0
(

ω
π

)1/4
e−ωx2/2

)

. (8)

In this way we can obtain moments of sufficiently large order by straightforward

differentiation and integration and compare them with those provided by the matrix–

vector procedure outlined above.

With the purpose of comparison we show the first five moments calculated in the

two ways indicated above:

µ1 = − ω0

2

µ2 =
ω2
0

4
+ 4g2

µ3 = g2(4ω − 2ω0)−
ω0

3

8

µ4 = 48g4 + 2g2
(

2ω2 + ω2
0

)

+
ω4
0

16

µ5 = 8g4(20ω − 3ω0) + g2
(

4ω3 + 2ω2ω0 + 2ωω2
0 − ω3

0

)

− ω5
0

32
. (9)

It is worth noting that our moment µ3 is different from the one shown in Eq. (12) of the

paper by Fessatidis et al[14]. We have verified that this discrepancy was not merely a

§ The Rabi Hamiltonian allows transitions which involve a change in the number of bosons by one unit

and a spin flip. This means that, as long as N is chosen large enough, the moments of the Hamiltonian

in |Ψ0〉 may be obtained exactly.
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Figure 2. Ratio of moments µn/µn−1 (dashed line) and of connected moments

In/In−1 (solid line) for the Rabi Hamiltonian with ω0 = ω = 1 and g = 5.

misprint so that their results and conclusions may be incorrect. We will come back to

this point later on.

Once we have the moments the calculation of the connected moments by means of

Eq. (5) is straightforward. The first five ones are

I1 = − ω0

2
I2 = 4g2

I3 = 4g2(ω + ω0)

I4 = 4g2(ω + ω0)
2

I5 = 4g2
(

(ω + ω0)
3 − 16g2ω0

)

. (10)

Fig. 2 shows the ratios µn/µn−1 and In/In−1 for the Rabi Hamiltonian with

ω0 = ω = 1 and g = 5. Note that the ratio of the connected moments exhibits an

irregular oscillatory behaviour that suggests that we may encounter difficulties in the

summation of the t–series (in fact, in this case the function f(t) proposed by Knowles[6]

is not even close to a Stieltjes series).

4. Connected–Moments Expansion

In order to apply the CMX to the Rabi Hamiltonian we resort to the beautifully compact

expression for the correlation energy Ecorr = E0 − I1 derived by Knowles:[6]

E(m)
corr =

(

I2 I3 . . . Im+1

)











I3 I4 . . . Im+2

I4 I5 . . . Im+3

. . . . . . . . . . . .

Im+2 Im+3 . . . I2m+1











−1 









I2
I3
. . .

Im+1











(11)
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Knowles[6] also discussed the following alternative expression for the correlation energy:

E(m)
corr = −S

2
21

S31

(

1 +
S2
22

S2
21S32

(

1 +
S2
23

S2
22S33

(

1 + . . .

(

1 +
S2
2m

S2
2,m−1S3m

))))

, (12)

where Sk1 = Ik (k = 2, 3, . . .) and Sk,i+1 = SkiSk+2,i−S2
k+1,i developed by Cioslowski[5].

These two expressions are not equivalent and yield different series in powers of the

coupling constant g. In this paper we calculate the correlation energy by means

of Eq. (11) that appears to be more accurate and suitable for present large–order

calculations.

We have been able to obtain a sufficiently large number of moments and connected

moments of the Rabi Hamiltonian by means of the procedures described above. The

square matrix appearing in Eq. (11) may be badly conditioned and therefore its inverse

may contain large numerical errors unless its elements are known with sufficiently large

accuracy.

In this paper we have decided to compare the performance of the CMX with that of

the Rayleigh–Ritz variational method in the Krylov space (RRK). In the latter approach

we choose the nonorthogonal basis set
{

|φj〉 = Ĥj |ϕ〉
}∞

j=0
, where |ϕ〉 is a properly

chosen trial state. In this particular implementation of the Rayleigh–Ritz variational

method the secular equations become[6, 25, 26, 27]

N−1
∑

i=0

(µi+j+1 −Wµi+j) ci = 0, j = 0, 1, . . . , N − 1 (13)

There are nontrivial solutions to the homogeneous system of linear equations (13) only

for the N values of W = W0,W1, . . . ,WN−1 that are roots of the secular determinant

|µi+j+1 −Wµi+j|N−1
i,j=0 = 0. (14)

It is well known that the Rayleigh–Ritz approximate eigenvalues Wj converge

monotonously from above towards the actual eigenvalues Ej of the Hamiltonian operator

Ĥ . In particular, if |ϕ〉 is not orthogonal to the ground state |ψ0〉 then W0 approaches

the ground–state energy E0 as N increases.

We have considered the same set of values of ω, ω0 and g used by Fessatidis et

al.[14] in their application of the CMX to the Rabi Hamiltonian. For each set of values

we have obtained CMX results for m ≤ 49 that requires up to 99 connected moments.

As we have already mentioned, we do not expect to confirm the results of Fessatidis et

al[14], even qualitatively, because their approach based on only five moments is affected

by an error in µ3.

For concreteness we restrict the discussion to the case ω = ω0 = 1 and three values

of g. The conclusions apply to the other cases as well. In order to compare the rate of

convergence of the RRK and CMX we calculate lW = log |W (n+1)
0 −W

(n)
0 | where W (n)

0

is the approximate ground–state eigenvalue of the Rabi Hamiltonian calculated with n

moments by means of either method.

Figures 3 and 4 show that the RRK converges faster and more smoothly than the

CMX for g = 1 and g = 2, respectively. When g = 5 the rate of convergence of the
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RRK is extremely slow. However, although the CMX appears to give better results at

some orders, the great oscillations of lW render this method rather unreliable as shown

in Fig. 5. Those figures look quite similar to plots of log |W (n)
0 − E0| vs. n and are

therefore reasonable estimates of the rate of convergence of the moments methods.

5. Conclusions

Some time ago the moments expansions appeared to be a promising tool for the

calculation of the ground–state energy of quantum–mechanical problems of physical

interest. However, some judicious investigations suggested that the moments expansions

are unreliable and that in some cases they can even yield wrong results[6]. In spite of

this fact there is still some unclear and inconclusive investigation on the convergence

properties of the moments expansions. With the purpose of adding valuable information

to that research we have tested the CMX on the Rabi Hamiltonian that has already

been treated by means of the moments expansions[14]. We have calculated moments

and connected moments of much larger order than those considered before. Our results

clearly show that the CMX is unreliable because the successive approaches to the

ground–state energy oscillate so strongly that one is never sure of the accuracy of any

particular calculation. Lee and Lo[17] arrived at similar conclusions for another model

although by numerical calculations of only fifth order.

We have contrasted the CMX with the RRK and showed that the latter converges

more smoothly from above towards the exact eigenvalues. It is reasonable to compare

these approaches that are based on the same kind of moments of the Hamiltonian

operator. Whereas the CMX provides an approximation to the lowest eigenstate–

eigenvalue of a given symmetry, the RRK yields all the eigenstates–eigenvalues

simultaneously because it is based on the Rayleigh–Ritz variational method. The main

advantage of the connected–moments expansions, namely, size consistency[1, 6], is not

an issue in the case of simple problems like the one discussed here. In other words: the

RRK is preferable to the CMX and its variants in most (if not all) the cases treated so

far by means of the connected–moments expansions.

In our opinion most standard approximation methods are more reliable than the

moments expansions.
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[29] Pan F, Guan X, Wang Y, and Draayer J P 2010 J. Phys. B 43 175501 (5 pp).

[30] Bishop R F, Davidson N J, Quick R M, and van der Walt D M 1999 Phys. Lett. A 254 215.

http://arxiv.org/abs/0807.1442


High–order connected moments expansion for the Rabi Hamiltonian 12

10 20 30 40 50 60 70 80 90 100
n

�14

�12

�10

�8

�6

�4

�2

0

2

l W
 

CMX

RRK
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Figure 5. Rate of convergence of the RRK (solid line) and CMX (dashed line) for

ω = 1, ω0 = 1, g = 5
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