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0 Deciding the Continuum Hypothesis

with the Inverse Power Set

Patrick St-Amant

Abstract

We introduce the concept of inverse power set by adding two ax-

ioms to the Zermelo-Fraenkel set theory. This extends the Zermelo-

Fraenkel set theory with a new type of set. We present different ways

to extend the definition of cardinality and show that one implies the

continuum hypothesis while another disproves the continuum hypoth-

esis.

1 Introduction

Relying on Gödel’s results, Cohen proved the independence of Cantor’s con-
tinuum hypothesis from Zermelo-Fraenkel set theory with the axiom of choice
[4, 1, 2]. Since then, many axioms have been considered to extend Zermelo-
Fraenkel set theory in a way which would permit a proof or a disproof of the
continuum hypothesis. In particular, the axiom of constructibility implies
the generalized continuum hypothesis [4] and the Freiling’s axiom of sym-
metry is equivalent to the negation of the continuum hypothesis [3]. More
recently, Woodin developed an extensive framework aimed at disproving the
continuum hypothesis [7, 8]. Accepting or rejecting such axioms often be-
comes a matter of taste and ‘intuition’, but each of those suggestions give
rise to new systems of axioms which are worth studying by themselves or
in relation with the others. In the following, we give another view which is
analogous to numbers.

The negative numbers have been defined to allow us to solve equations
such as 2 + y = 1. Similarly, the complex numbers have been introduced by
Euler to consider solutions of equations such as y2 = −1. In the realm of
set theory, in particular Zermelo-Fraenkel set theory, we can ask a similar
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question and try to find a set Y such that the statement P (Y ) = X is true
for some fixed set X . For example, if we take X = {∅, {a}, {b}, {a, b}}, then
we find that Y = {a, b} satisfies the statement. But if we want a set Y which
would satisfy the statement P (Y ) = {{a}, {a, b}}, we have to define a new
type of set in a way that is similar to the introduction of the negative and
complex numbers.

The goal of this paper is twofold, first to introduce the concept of the
inverse power set, extend the Zermelo-Fraenkel set theory and develop some
of its theory. Secondly, in this extended setting, we will show that it is pos-
sible to prove or disprove the continuum hypothesis by choosing the suitable
extended definition of cardinality.

2 Extending Zermelo-Fraenkel

We extend Zermelo-Fraenkel set theory (ZF ) by adding the concept of the
inverse power set in the form of two axioms and prove a few practical propo-
sitions.

2.1 Axioms

We call EZF the following extended Zermelo-Fraenkel set theory. We will
take ZF along with the new axioms of inverse power set and invertibility.
These new axioms apply, in a recursive manner, to sets which arise from
EZF. For now, we will only extend the definition of subsets and the axiom
of extensionality. We will leave the axiom of power set in the same form but
for sets which arise from EZFp instead of ZF, where EZFp is a collection of
sets which will be defined below. We will keep the other axioms of ZF in the
same form and consider that they only apply to sets which arise from ZF.

Axiom 1 (Inverse Power Set).

∀X∃Y [(P (Y ) = X)]

We will denote Y as P−1(X) and call it the inverse power set of X .
Hence, for some fixed X , we introduce a new type of set Y which satisfies
the statement P (Y ) = X . Similarly to what is commonly done with the
power of a set, we can consider P−1 to be an operator. For example, the set
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Y = {a, b} satisfies the statement P (Y ) = {∅, {a}, {b}, {a, b}}. Also, since
P (∅) = {∅}, we have that P−1({∅}) = ∅.

We now introduce the second axiom which expresses the notion that P−1

is the inverse operator of P .

Axiom 2 (Invertibility).

∀X [P−1(P (X)) = X ]

If we take the set {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} and apply
P−1 to it, we find

P−1({∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}) = P−1(P ({a, b, c})) = {a, b, c}.

We will see that the axiom of invertibility permits us to prove the uniqueness
of P−1(X).

We will say that Y is a real set if Y is a set which arise from EZF.
We will call a set X which arises from ZF a Zermelo set. Sets which arise
from EZF but not from ZF will be called non-Zermelo. Examples of non-
Zermelo sets are P−1({1, 2, 4}), P−1({{1, 2, 4}}), P−1({A}), P−1({A,B}),
P−1({B, {A,B}}), P−1(P−1(C)) and P−1(P−1(P−1(C))) for any sets A, B
and C. It is important to note that we will not introduce what are the
explicit elements of sets such as P−1(X), but we will explore the concept of
cardinality of such sets in the next sections and we will see that the concept
of subsets can replace the explicit elements.

We will now introduce the subsets of a non-Zermelo set such as P−1(X).
The idea behind the extended definition of subsets is to have

P−1(X ′) ⊆ P−1(X) if and only if X ′ ⊆ X .

In analogy with the negative numbers, having defined the negative numbers
−1 and −2 by equations such as 2 + y = 1 and 3 + y = 1, we need to order
them. Since it has proven difficult to introduce explicit elements of a set such
as P−1(X), we need to shift our perspective by using subsets (⊆) instead of
membership (∈). This is the essence of the modifications which will be made
in the axioms of extensionality and of union.

Recall that the classical definition of a subset is

A ⊆ B ⇔ ∀x(x ∈ A ⇒ x ∈ B).

We now give an extended definition of subsets which includes the classical
definition and make sure that the new type of sets are ordered via the subset
symbol ‘⊆’. Note that it is a recursive definition.
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Definition 3 (Extended Subsets). A ⊆ B if and only if

∀x(x ∈ A ⇒ x ∈ B) or P (A) ⊆ P (B)

This reduces to the classical definition if A,B are Zermelo.

Proposition 4. Let A,B be Zermelo sets, then,

A ⊆ B ⇔ ∀x(x ∈ A ⇒ x ∈ B).

Proof. (⇐) Immediate by the extended subsets definition.
(⇒) If A,B are Zermelo, we have that

P (A) ⊆ P (B) implies ∀x(x ∈ A ⇒ x ∈ B),

since it is well known that P (X) ⊆ P (Y ) ⇔ X ⊆ Y in ZF (see p.48 of [5]).
Hence, we find by the extended subsets definition that

A ⊆ B ⇒ ∀x(x ∈ A ⇒ x ∈ B).

Since we did not define the elements of non-Zermelo sets and since the
axiom of extensionality is classically written in terms of membership, we have
to write the axiom of extensionality in terms of subsets.

Axiom 5 (Extended Extensionality).

∀S[S ⊆ A ⇔ S ⊆ B] ⇒ A = B

We want to show that the axiom of extended extensionality reduces to
the axiom of extensionality of ZF in the case where A,B are Zermelo sets.
For this purpose, we prove the following.

Proposition 6. If A,B are Zermelo, then

∀S(S ⊆ A ⇒ S ⊆ B) ⇔ ∀x(x ∈ A ⇒ x ∈ B).

Proof. (⇒) Take A for S, then we have (A ⊆ A ⇒ A ⊆ B) and this means
that for all x ∈ A we have that x ∈ A ⊆ B and hence x ∈ B.

(⇐) Take an arbitrary S ⊆ A, then for all x ∈ S we have x ∈ S ⊆ A. By
assumption, x ∈ A implies that x ∈ B. Therefore for every x ∈ S we must
have that x ∈ B, which can be expressed as S ⊆ B by proposition 4. Hence,
∀S(S ⊆ A ⇒ S ⊆ B).
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Corollary 7. Let A,B and all S be Zermelo sets, then

∀S(S ⊆ A ⇔ S ⊆ B) ⇔ ∀x(x ∈ A ⇔ x ∈ B).

Proof. Immediate.

Assuming the axiom of extended extensionality and taking only Zermelo
sets, the axiom of extensionality ∀x[x ⊆ A ⇔ x ⊆ B] ⇒ A = B follows
immediately from corollary 7.

2.2 Propositions

We now proceed to prove four propositions concerning the inverse power set.
In the following, four propositions X, Y, Z, ... are assumed to be any arbitrary
sets from EZF.

Proposition 8. P (P−1(X)) = X and P−1(P (X)) = X.

Proof. By the inverse power set axiom and since we denote Y by P−1(X),
we find the first identity P (P−1(X)) = X and by the invertibility axiom we
directly find P−1(P (X)) = X .

Proposition 9 (Uniqueness). There exists a unique set Y satisfying P (Y ) =
X.

Proof. Suppose there are two sets satisfying P (Y ) = X , then P (Y1) = X =
P (Y2). Taking P (Y2) as X in the inverse power set axiom, we must have that
Y1 = P−1(P (Y2)), but by proposition 8, we find Y1 = P−1(P (Y2)) = Y2.

Proposition 10. X ⊆ Y if and only if P (X) ⊆ P (Y ).

Proof. (⇐) Immediate by definition 3 (extended subsets).
(⇒)By the definition of extended subsets, if X ⊆ Y , then ∀x(x ∈ A ⇒

x ∈ B) or P (A) ⊆ P (B). Note that by proposition 4, the case ∀x(x ∈ A ⇒
x ∈ B) will only happen when A,B are Zermelo. Thus, we only need to
show that ∀x(x ∈ A ⇒ x ∈ B) implies P (A) ⊆ P (B) for A,B Zermelo. By
proposition 6, since

∀x(x ∈ A ⇒ x ∈ B) ⇒ ∀S(S ⊆ A ⇒ S ⊆ B),

we have that each element of P (A) is in P (B) and thus, P (A) ⊆ P (B).
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Proposition 11. X ⊆ Y if and only if P−1(X) ⊆ P−1(Y ).

Proof. (⇐) By the inverse power set axiom we have that X = P (P−1(X))
andX = P (P−1(Y )). IfX ⊆ Y , then we have that P (P−1(X)) ⊆ P (P−1(Y )).
Thus, by the definition of extended subsets we find P−1(X) ⊆ P−1(Y ).

(⇒)If P−1(X) ⊆ P−1(Y ), then using proposition 10, we find P (P−1(X)) ⊆
P (P−1(Y )). By the inverse power set axiom, we find X ⊆ Y .

We now give useful definitions which will help our notation.

Definition 12. If P−1 occurs n times in P−1(P−1(...P−1(X)...)), we will
denote P−1(P−1(...P−1(X)...)) as P−n(X). A set of the form P−n(X) with
n > 0 and X a Zermelo set such that X 6= P (X ′) for all Zermelo sets X ′

will be said to be powered non-Zermelo set.

If P occurs m times in P (P (...P (Y )...)), we will denote P (P (...P (Y )...)) as
P n(Y ). A set of the form Pm(X) with m > 0 and X a Zermelo set such that
X 6= P (X ′) for all Zermelo sets X ′ will be said to be a powered Zermelo set.

If a set Z is a powered Zermelo set or a powered non-Zermelo set we will say
that it is a powered set. If Z is neither we will say that it is a non-powered
set.

Considering P and P−1 as operators, it is important to note that in the
previous definition that those operators are only applied a finite number of
times.

For the next five propositions, we will formally restrict EZF to EZFp

where EZFp contains all Zermelo set and all non-Zermelo powered sets. The
reason for restricting EZF is to make sure that we explicitly know the form
of each set in our domain. In particular, we make sure that we are not con-
sidering sets where the operators P and P−1 are applied an infinite number
of times. The collection EZFp can also be viewed as ZF augmented with the
powered non-Zermelo sets.

Definition 13. We define the collection EZFp of real sets from EZF as:

1. If U is a Zermelo set, then U ∈ EZFp,

2. If U is a powered non-Zermelo set, then U ∈ EZFp,
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By definition, we have that a set of EZFp is a Zermelo set or a powered
non-Zermelo set.

We now show transitivity in the setting of EZFp.

Proposition 14. For A,B,C sets of EZFp, If A ⊆ B and B ⊆ C, then
A ⊆ C.

Proof. If A,B,C are Zermelo, by proposition 4, A ⊆ B implies ∀x(x ∈
A ⇒ x ∈ B). Similarly, B ⊆ C implies ∀x(x ∈ B ⇒ x ∈ C) and thus,
∀x(x ∈ A ⇒ x ∈ C) which means that A ⊆ C.

If A,B,C are not all Zermelo, let A = P na(Xa), B = P nb(Xb) and C =
P nc(Xc) with Xa, Xb, Xc each a non-powered set and for na, nb, nc integers
different from zero such that at least one is negative. Hence, P na(Xa) ⊆
P nb(Xb) and P nb(Xb) ⊆ P nc(Xc). Without loss of generality, take na =
min(na, nb, nc) and note that it is a negative integer. Using proposition 10,
we apply the operator P on each side −na times and find P−na(P na(Xa)) ⊆
P−na(P nb(Xb)) and P−na(P nb(Xb)) ⊆ P−na(P nc(Xc)). By proposition 8, we
find Xa ⊆ P nb−na(Xb) and P nb−na(Xb) ⊆ P nc−na(Xc). We now have that
Xa, P

nb−na(Xb) and P nc−na(Xc) are all Zermelo sets, therefore this implies
that Xa ⊆ P nc−na(Xc). Applying P na on each side of Xa ⊆ P nc−na(Xc)
and by using proposition 8 again, we find P na(Xa) ⊆ P nc(Xc), which can be
written as A ⊆ B.

Proposition 15. A ⊆ A.

Proof. If A is Zermelo, then it is a logical truth that ∀x(x ∈ A ⇒ x ∈ A),
thus by the extended definition of subsets A ⊆ A.

If A is not Zermelo, then we can write it in the form A = P−n(X)
with n > 0 and X a Zermelo set such that X 6= P (X ′) for all Zermelo
sets X ′. The set P n(P−n(X)) is Zermelo, thus from the first part of the
proof, P n(P−n(X)) ⊆ P n(P−n(X)). Hence, by proposition 11, we have
P−n(P n(P−n(X))) ⊆ P−n(P n(P−n(X))), which becomes by the invertibility
axiom, A = P−n(X) ⊆ P−n(X) = A.

Proposition 16. If A ⊆ B and B ⊆ A if and only if A = B.

Proof. (⇒) Let S ⊆ A, then by transitivity and since by assumption A ⊆ B,
we have that S ⊆ B and hence ∀S(S ⊆ A ⇒ S ⊆ B). Similarly, from the
assumption B ⊆ A, we have that ∀S(S ⊆ B ⇒ S ⊆ A). Hence by the axiom
of extended extensionality, we find A = B.
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(⇐) Since A ⊆ A is true and since A = B, we can replace the A on the
right hand side or the left hand side by B. Hence, we find that A ⊆ B∧B ⊆ A

is true.

Proposition 17. X = Y if and only if P−1(X) = P−1(Y ).

Proof. By proposition 16, X = Y if and only if X ⊆ Y ∧X ⊆ Y . Since by
proposition 11, we have that X ⊆ Y ⇔ P−1(X) ⊆ P−1(Y ), we find that

X ⊆ Y ∧X ⊆ Y ⇔ P−1(X) ⊆ P−1(Y ) ∧ P−1(X) ⊆ P−1(Y )

Thus by proposition 16, X = Y ⇔ P−1(X) = P−1(Y ).

Proposition 18. X = Y if and only if P (X) = P (Y )

Proof. From proposition 10 and since by proposition 16, X ⊆ Y ∧Y ⊆ X ⇔
X = Y , we deduce that X = Y ⇔ P (X) = P (Y ).

Let Y ⊆ P (X) such that Y is a Zermelo set and Y 6= P (Y ′) for all
Zermelo sets Y ′, then by using proposition 11 and axiom 2, we have that
P−1(Y ) ⊆ X where P−1(Y ) is not a Zermelo set. One way to look at
this result is to consider that in the EZFp, we can take ‘fractions’ of a set
X . This is similar to the case of taking a fraction of an integer or like
having 1

2
≤ 2. We also find that if Z ⊆ P (Y ) such that Z is a Zermelo set

and Z 6= P (Z ′) for all Zermelo sets Z ′, then by using proposition 11 and
axiom 2, we have that P−1(P−1(Z)) ⊆ P−1(Y ). Continuing this way, we
find ... ⊆ P−1(P−1(P−1(W ))) ⊆ P−1(P−1(Z)) ⊆ P−1(Y ) ⊆ X . Note that
this doesn’t contradict the axiom of regularity since the axiom of regularity
concerns infinite sequences of memberships.

We now have to extend the notion of cardinality. For some sets the
usual cardinality definition is adequate, for example |P−1(P (N)| = ℵ0 since
P−1(P (N)) = N by axiom 2. Also, for some finite sets we have a nice inverse,
in particular, |P−1({∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}})| = 3 since
P−1({∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}) = {a, b, c}. For sets such
as P−1({1, 2, 3, 4, 5}) and P−7(N) it is not clear what is the correct concept
of cardinality. This is what we will investigate in the following section.

Note that the first four propositions of this section are all well defined for
EZFp. This is assured because applying P or P−1 to a set of EZFp gives a
set of EZFp.
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3 The Continuum Hypothesis

By extending Zermelo-Fraenkel set theory with the concept of the inverse
power set, we now have a setting where the truth or falsity of the continuum
hypothesis can be decided. This will be done by restricting EZF and by giving
two extensions of the definition of cardinality. The extended definitions must
apply to non-Zermelo sets such as P−1({1, 2, 3, 4, 5} and P−1(P−1(X)). As
seen in the case of complex numbers, there are many ways to define a norm.
We will give three ways to extend the definition of cardinality, in particular
two which induce the continuum hypothesis and one which induces its falsity.
This can also be seen as giving an explicit model of ZF in which the continuum
hypothesis is true and giving a model in which the continuum hypothesis is
false.

3.1 Proving the Continuum Hypothesis

We now give an extended definition of cardinality which will induce the
continuum hypothesis in the setting of EZFp. We will use the notation |X|
to denote the classical cardinality of a set X .

Definition 19 (CH-cardinality). Let U be a set of EZFp. If U is a Zermelo
set then

|U |ch = |U |

Otherwise, if U is a powered non-Zermelo set, let U be written as P−n(X)
with n ≥ 1 and X a Zermelo set which is not a powered Zermelo set (i.e. X
cannot be written as P k(X) for some k ≥ 1). Then,

|U |ch = |X|.

Definition 20. Let U, U’ be sets of EZFp. Let |U |ch = |Y | and |U |ch = |Y ′|.
Then,

|U |ch ≤ |U ′|ch if and only if |Y | ≤ |Y ′|.

Note that if U is a Zermelo set, the definitions reduce to the usual def-
inition of cardinality. We will refer to this extension of cardinality as the
CH-cardinality.

We now prove the extension of the Shroeder-Bernstein theorem.
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Proposition 21. If |U |ch ≤ |U ′|ch and |U ′|ch ≤ |U |ch then |U |ch = |U ′|ch.

Proof. Let |U |ch = |Y | and |U |ch = |Y ′|, then by definition 20 we have that
|Y | ≤ |Y ′| and |Y ′| ≤ |Y | which implies by the Shroeder-Bernstein theorem
that |Y | = |Y ′|. Hence, we have |U |ch = |U ′|ch.

Proposition 22. If |U |ch ≤ |V |ch and |V |ch ≤ |W |ch then |U |ch ≤ |W |ch.

Proof. Let |U |ch = |Y |, |V |ch = |Y ′| and |W |ch = |Y ′′|, then by assumption
and by the transitivity of cardinal numbers, we have |Y | ≤ |Y ′′| and thus,
|U |ch ≤ |W |ch.

Following the approach given in [5], we extend a few useful definitions.

Definition 23. α is a CH-cardinal number if and only if there is a set X of
EZFp such that |X|ch = α.

In [5], there is a similar definition, but for cardinal number in ZF. The
validity of that definition is assured by the axiom of cardinality, for more
details, see p.111 of [5]. In EZFp, the validity of definition 23 is guaranteed
by the axiom of cardinality of [5] and since, by the CH-cardinality definition,
we have that |U |ch = |V | for a particular Zermelo set V .

Proposition 24. If α is a cardinal number, then α is a CH-cardinal number.

Proof. If α is a cardinal number, by the usual definition of cardinality there is
a set of ZF such that |X| = α. By the CH-cardinality definition 19, we have
|X|ch = |X| = α since X is Zermelo, thus by definition 23, α is a CH-cardinal
number.

In [5], Suppes give the two following definitions regarding the context of
ZF.

Definition 25. Let A,B be sets of ZF, then A � B if and only if there exists
a set C of ZF such that |C| = |A| and C ⊆ B.

Definition 26. α ≤ α′ if and only if there are sets A and B of ZF such that
|A| = α, |B| = α′ and A � B.

We extend those definitions to EZFp in the following way.

Definition 27. Let A,B be sets of EZFp, then A � B if and only if there is
a set C of EZFp such that |C|ch = |A|ch and C ⊆ B.
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Definition 28. α ≤ α′ if and only if there are sets A and B of EZFp such
that |A|ch = α, |B|ch = α′ and A � B.

Note that if we take A,B to be Zermelo sets, the definitions 27 and 28
reduce to 25 and 26, since by the CH-cardinality definition |A|ch = |A| and
|B|ch = |B|.

Lemma 29. Let A be a set of EZFp and let B be a Zermelo set, then |A|ch ≤
|B|ch if and only if there is a Zermelo set C ′′ such that |C ′′|ch = |A|ch and
C ′′ ⊆ B.

Proof. (⇒)Using the definition 28 and 27, there is a set C of EZFp such that
|C|ch = |A|ch and C ⊆ B. By the definition of CH-cardinality, |C|ch = |C ′|
for some Zermelo set C ′ and thus |C|ch = |C ′|ch. Since B is Zermelo we have
|B|ch = |B| and since |C|ch = |A|ch and |C|ch = |C ′|ch = |C ′|, we have that
|A|ch = |C ′|. By assumption, |A|ch ≤ |B|ch, hence by replacing |A|ch and
|B|ch, we find |C ′| ≤ |B|. By definition 26 and 25, there exists a set C ′′ of ZF
such that |C ′′| = |C ′| and C ′′ ⊆ B. This is what we were looking for since
|C ′′|ch = |C ′′| = |C ′| = |C|ch = |A|ch.

(⇐)by definition 27 and 28 and since Zermelo sets are sets of EZFp we
find that |A|ch ≤ |B|ch.

Definition 30. α < α′ if and only if α ≤ α′ and not α′ ≤ α.

Definition 31. Let U be a set of EZFp and let |U |ch = |Y |, then U is finite
if and only if |Y | is finite. A set of EZFp is infinite if it is not finite.

We will now evaluate the CH-cardinality of P−1(N). It is important to
note that by definition, N is a Zermelo set, but it is not clear if it is a powered
Zermelot set or not.

Theorem 32. Let A be a Zermelo set such that |A|ch = |N|ch then |P−1(A)|ch =
|N|ch.

Proof. If A is not a powered Zermelo set, by definition of CH-cardinality, we
have |P−1(A)|ch = |A|. Since |N| = |N|ch and by assumption |A|ch = |N|ch, we
find that |P−1(A)|ch = |N|ch. Thus, if we show that A cannot be a powered
Zermelo set, we are finished.

Assume that A is a powered Zermelo set, then there is a Zermelo set A′

such that P (A′) = A.
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Suppose that |P−1(A)|ch ≥ |N|ch, then replacing A we find |P−1(P (A′))|ch ≥
|N|ch which becomes |A′|ch ≥ |N|ch by the invertibility axiom. Since |A′| =
|A′|ch ≥ |N|ch = |N|, we find |P (A′)| ≥ |P (N)| by using a known result
|X| ≥ |Y | ⇒ |P (X)| ≥ |P (Y )| (see the lemma on p.95 of [6]). But this
means that |N| = |A| = |P (A′)|ch ≤ |P (N)|, a contradiction to Cantor’s
theorem.

Now, suppose that |P−1(A)|ch < |N|ch. Since A is a powered Zermelo set,
then there is a Zermelo set A′ such that P (A′) = A. Replacing on the left
hand side of |P−1(A)|ch < |N|ch we find |P−1(P (A′))|ch < |N|ch and thus by
the invertibility axiom and because A′ and N are Zermelo sets, |A′| = |A′|ch <

|N|ch = |N|. Using the definition of [6] p.74, which says that a subset S is at
most countable if |S| ≤ |N|, this mean that A′ is at most countable. By the
corollary of p.74 of [6], a set is at most countable if and only if it is finite or
countable. If A′ is finite, we find that P (A′) = A is finite, a contradiction
with |A| = |N|. Thus, we must have that A′ is countable. This means that
|A′| = ℵ0. Thus we have that ℵ0 = |A′| = |A′|ch < |N|ch = |N| = ℵ0, an
impossibility.

We are now in a context where we can prove the continuum hypothesis.

Theorem 33. In EZFp, there exists no CH-cardinal number β such that
ℵ0 < β < c where ℵ0 is the CH-cardinality of a countable set and c is the
CH-cardinality of the continuum.

Proof. Assume that there is such a CH-cardinal β. Since ℵ0 = |N|ch = |N|
and c = |P (N)|ch = |P (N)| we have that by definition 23, there exists set B
of EZFp such that |N|ch < |B|ch < |P (N)|ch.

Since |B|ch < |P (N)|ch, by lemma 29, there exists a Zermelo set B′ such
that B′ ⊂ P (N), |B′|ch = |B|ch and |B′|ch 6= |P (N)|ch. Also, since |N|ch <

|B|ch = |B′|ch, by lemma 29, there exists a Zermelo set N ′ such that N ′ ⊂ B′,
|N ′|ch = |N|ch and |N ′|ch 6= |B′|ch.

Hence, by the proposition 14 of transitivity, we have N ′ ⊂ B′ ⊂ P (N).
By proposition 11, we find P−1(N ′) ⊂ P−1(B′) ⊂ P−1(P (N)) and by propo-
sition 8, we get P−1(N ′) ⊂ P−1(B′) ⊂ N. By definition 27 and 28 this
means that |P−1(N ′)|ch ≤ |P−1(B′)|ch ≤ |N|ch. By theorem 32, we have
|N|ch = |P−1(N ′)|ch ≤ |P−1(B′)|ch ≤ |N|ch and by proposition 21, we find
that |P−1(B′)|ch = |N|ch.

We now have two cases to consider: B′ is a powered Zermelo set or B′ is
not a powered Zermelo set.
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If B′ is a powered Zermelo set, then we can write B′ as P n(X ′) with
X ′ a Zermelo set. Since the power set of a Zermelo set is Zermelo, we
can write B′ as P (X) with X being a Zermelo set. Replacing B′ = P (X)
in |N|ch = |P−1(B′)|ch, we find |N|ch = |P−1(P (X))|ch which becomes by
proposition 8, |N|ch = |X|ch. Since N and X are Zermelo we have, by the
classical result |X| = |Y | ⇒ |P (X)| = |P (Y )| (see p.95 lemma of [6]), that
|P (N)|ch = |P (X)|ch. But since B′ = P (X) and |B′|ch = |B|ch we have
|P (N)|ch = |B|ch which is a contradiction with our assumption.

If B′ is not a powered Zermelo set, then by definition of B′ it must
be a non-powered Zermelo set. The CH-cardinality definition tells us that
|B′|ch = |P−1(B′)|ch. Thus, since we have found that |P−1(B′)|ch = |N|ch
and since |B′|ch = |B|ch, we have that |B|ch = |B′|ch = |P−1(B′)|ch = |N|ch,
a contradiction with the assumption that |N|ch < |B|ch.

Corollary 34. In EZFp, there exists no cardinal number β such that ℵ0 <

β < c.

Proof. This follows from 24, since every cardinal number is a CH-cardinal
number.

3.2 Disproving the Continuum Hypothesis

We now give two extended definitions of cardinality which will induce the
falsity of the continuum hypothesis in the context of EZF∗ which will be
defined below. The first extended definition is much weaker than the second
in the sense that in the second there are many more ¬CH-cardinal numbers
between N and c. The definitions are closely related to the lexicographic
order. We will call the weaker extended definition of cardinality ¬CHW-
cardinality and the other ¬CH-cardinality. We will see that those definitions
give a richer theory of cardinality, which is similar to enriching the natural
numbers with the rational numbers.

For the following, we extend the axiom of pairing of EZF to apply to
sets of EZF instead of sets of ZF. The statement of the axiom is the same
as in Zermelo-Fraenkel set theory. We will say that X is a Zermelo form
if it is of the form of a set which arises from ZF, but which can have el-
ements that are real sets, for examples {1, 2, X, Y, P−1(Z), P−6(1, 3, A, B)}
and {1, 2, 4, P−1(Y ), P−1(Z)}. Note that most of the results presented above
can be proved by using Zermelo forms instead of Zermelo sets.
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For our purpose, we need to extend the axiom of union. We take C to be
a Zermelo form, that is, a collection of sets of EZF which is constructed by
the use of the extended axiom of pairing.

Axiom 35 (Extended Union).

∃U∃U ′∀S[S ⊆ U ∧ S ∈ U ′ ⇔ ∃B(S ⊆ B ∧ B ∈ C)]

This definition is similar to the extended extensionality axiom where
membership is replaced by the subset relation. We had to add the com-
ponent S ∈ U ′ in the extended definition, because the union of two subsets
of U is a subset and this would imply that the union of those two subsets
would have to be in C. Furthermore, without the component S ∈ U ′, since
U ⊆ U , we would have that U ∈ C. Thus, the component S ∈ U ′ is used to
remember which subset comes from C. We will denote U as A1∪A2∪ ...∪An

if C = {A1, A2, ..., An}. Note that the union is commutative and associative.

Proposition 36. If we assume U, U ′, S, B and C are Zermelo sets which
satisfy the axiom of extended union, then

∃U∀x[x ∈ U ⇔ ∃B(x ∈ B ∧ B ∈ C)].

Proof. If x ∈ B, then x ∈ B ⊆ B and this implies by the axiom of extended
union that x ∈ B ⊆ U . Hence we have ∃U∀x[x ∈ U ⇐ ∃B(x ∈ B ∧B ∈ C)].

If x ∈ U , then by construction of U , x must be in some S where S ⊆ U

and S ∈ U ′. This implies by the axiom of extended union that ∃B(x ∈ S ⊆
B ∧ B ∈ C). Hence, we have ∃U∀x[x ∈ U ⇒ ∃B(x ∈ B ∧ B ∈ C)].

The axiom of extended union gives rise to a wider range of non-Zermelo
sets, for example P−1({1, 2, 3, 4, 5} ∪ P−1(P−1(X)) and P−1(X) ∪ P−1(Y ) ∪
Z ∪ P−1(P−1(W )).

In EZF plus the axiom of extended union (along with the axiom of pairing
extended to sets of EZF), we have sets which can have an infinite number of
operators P and P−1, hence, we will restrict the domain. We will take EZF∗

to be EZF plus the axiom of extended union restricted to all the Zermelo
sets, powered non-Zermelo sets and the sets which arise from the finite union
of a combination of Zermelo and powered non-Zermelo sets, for example
X∪Y ∪P 4(Z)∪P−3(U)∪P−3(V )∪P−4(W ). Since the union is commutative
and associative and since the union of two Zermelo sets is a Zermelo set, we
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can combine all the Zermelo sets together. Also, since P−1(P (X)) = X , we
have that every set of EZF∗ can be written as

X∪P−1(Y1)∪P
−1(Y2)∪...∪P

−1(Yn1
)∪...∪P−k(Z1)∪P

−k(Z2)∪...∪P
−k(Znk

),

with X, Y1, Y2, ..., Yn1
, ..., Z1, Z2, ..., Znk

each a Zermelo set which is not a
powered set (Zermelo or non-Zermelo). Formally, we define EZF∗ as follows.

Definition 37. We define the collection EZF∗ of real sets from EZF with
the extended axiom of union as:

1. If U is a Zermelo set, then U ∈ EZF∗,

2. If U is a powered non-Zermelo set, then U ∈ EZF∗,

3. If U is a Zermelo set and Vi is a powered non-Zermelo set for all i,
then U ∪ V1 ∪ ... ∪ Vk ∈ EZF∗.

We define two functions which will be used in the extended definitions of
cardinality.

Definition 38. Let Y1 be Zermelo and let Y2, Y3 be non-empty non-powered
Zermelo sets and let m be a positive integer. We define ρ, a function which
takes as input a set X of EZF∗ and returns an integer or −∞, as follows:

ρ(X) =







0 if X = Y1

−m if X = P−m(Y3)
−∞ if X = ∅

Definition 39. Let Y1 be Zermelo and let Y2, Y3 be non-powered Zermelo sets
and let m be a positive integer. We define τ , a function which takes as input
a set X of EZF∗ and returns a cardinal number, as follows:

τ(X) =

{

|Y1| if X = Y1

|Y3| if X = P−m(Y3)

We now give a useful formal definition, but in a few words it is equivalent
to ordering the components of the union in the following way:

X ∪ P−1(Y1) ∪ ... ∪ P−1(Yn1
) ∪ ... ∪ P−k(Z1) ∪ ... ∪ P−k(Znk

)

with |Y1| ≤ |Y2| ≤ ... ≤ |Yn1
| and ... and |Z1| ≤ ... ≤ |Znk

|.
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Definition 40. Let X be a set of EZF∗ such that X = X1 ∪ X2 ∪ ... ∪ Xn,
then X is well-represented if and only if

ρ(X1) ≥ ... ≥ ρ(Xn)
and

if τ(Xi) = ... = τ(Xi+k) then τ(Xi) ≥ ... ≥ τ(Xi+k) .

3.3 Weak ¬ Continuum Hypothesis

In analogy with numbers, the definition of the weaker extended definition
of cardinality ¬CHW-cardinality can be seen as ordering numbers in the
following manner.

0.223 < 0.224 < 0.225 < ... < 0.255 < ...

< 0.324 < 0.3241 < 0.3242 < 1 < ...

< 1.111 < ... < 1.99999 < ...

Definition 41 (¬CHW -cadinality). Let X, Y be sets of EZF∗. Let X =
X1∪X2∪ ...∪Xn and let Y = Y1∪Y2∪ ...∪Ym where only X1, Y1 are Zermelo
(possibly empty) and where X2, ..., Xn, Y2, ..., Ym are all non-empty and non-
Zermelo with X2 ∪X3 ∪ ... ∪Xn and Y2 ∪ Y3 ∪ ... ∪ Yn both well-represented.
Then,

|X|¬chw ≤ |Y |¬chw if and only if |X1| < |Y1| or each of the following are
simultaneously valid:

|X1| = |Y1|,
n ≤ m,

ρ(Xi) ≤ ρ(Yi) for all i such that n ≥ i ≥ 2,
τ(Xi) ≤ τ(Yi) for all i such that n ≥ i ≥ 2,

We have equality on the left hand side if and only if |X1| = |Y1|, n = m,
ρ(Xi) = ρ(Yi) and τ(Xi) = τ(Yi).

Since the union is commutative and since the union of two Zermelo sets is
a Zermelo set, each set of EZF∗ can be written as required in the definition.
We have introduced the function τ because EZF∗ includes all Zermelo sets
and we cannot assume that Zermelo sets can be written as a powered set or
a set of the same cardinality of N. Note that the transitivity of ≤ on the
¬CHW -cardinal numbers follows from the transitivity of ≤ on the integers
and ≤ on the classical cardinal numbers.
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Proposition 42. Let X and Y be Zermelo, then |X|¬chw ≤ |Y |¬chw if and
only if |X| ≤ |Y |.

Proof. Since X and Y are Zermelo, we have that X = X1, Y = Y1 and m =
n = 1. By definition of ¬CHW -cardinality we have that |X|¬chw ≤ |Y |¬chw
if and only if [|X1| < |Y1| or (|X1| = |Y1| and m = n)]. But |X1| < |Y1| or
|X1| = |Y1| is equivalent to |X| ≤ |Y | and hence we find |X|¬chw ≤ |Y |¬chw ⇔
|X| ≤ |Y |.

We are now in a context where we can prove the falsity of the continuum
hypothesis.

Theorem 43 (Weak ¬ Continuum Hypothesis). Let Z be a Zermelo set such
that |Z|¬chw < |P (Z)|¬chw, then |Z|¬chw < |Z ∪ P−n(Z)|¬chw < |P (Z)|¬chw
where n is any integer greater than or equal to 1.

Proof. First, we must show that |Z|¬chw < |Z ∪P−n(Z)|¬chw. Taking X = Z

and Y = Z ∪ P−n(Z), then since |X1| = |Z| = |Y1|, n = 1 ≤ 2 = m,
ρ(X1) = ρ(Y1) and τ(X1) = τ(Y1), we have by definition 41 that |Z|¬chw <

|Z ∪ P−n(Z)|¬chw.
Secondly, we must show that |Z∪P−n(Z)|¬chw < |P (Z)|¬chw. Taking X =

Z∪P−n(Z) and Y = P (Z), then since |Z| = |X1| < |Y1| = |P (Z)| by Cantor’s
theorem, we have by definition of ¬CHW -cardinality, |Z ∪ P−n(Z)|¬chw <

|P (Z)|¬chw.

Since n is an arbitrary integer, the statement of the theorem tells us
that there are infinitely many ¬CHW -cardinal numbers between |N|¬chw and
|P (N)|¬chw. Moreover, strictly between |Z ∪ P−n(Z)|¬chw and |P (Z)|¬chw
there are also infinitely many ¬CHW -cardinal numbers. Taking n ≥ 2,
examples are:

|Z ∪ P−n+1(Z)|¬chw, |Z ∪ P−n(Z) ∪ P−n−1(Z)|¬chw,
|Z ∪ P−n(Z) ∪ P−n−2(Z)|¬chw, |Z ∪ P−n(Z) ∪ P−n−1(Z) ∪ P−n−1(Z)|¬chw,

|Z ∪ P−n(Z) ∪ P−n−1(Z) ∪ P−n−2(Z)|¬chw and so forth.

We also have infinitely many ¬CHW -cardinal numbers between |Z|¬chw and
|Z∪P−n(Z)|¬chw, for example |Z∪P−n−1(Z)|¬chw, |Z∪P−n−2(Z)|¬chw and so
forth. An interesting question is to ask if there is a ¬CHW -cardinal number
between |Z ∪ P−n−1(Z)|¬chw and |Z ∪ P−n(Z)|¬chw. This question, which
relies on the definition of ¬CHW -cardinality, might also be undecidable.
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We will see in the following that it is possible to give an extension to the
definition of cardinality which can then answer this question. Furthermore,
to ask if there is always an extended cardinal number between two extended
cardinal numbers could be seen as the real question behind the falsity of the
continuum hypothesis. Seen as an analogy with numbers, it is similar to ask
if between each pair of rational numbers there is a rational number.

We can also prove an extended version of Shroeder-Bernstein theorem for
the ¬CHW -cardinality.

Proposition 44. If |X|¬chw ≤ |Y |¬chw and |Y |¬chw ≤ |X|¬chw then |X|¬chw =
|Y |¬chw.

Proof. When |X|¬chw ≤ |Y |¬chw and |Y |¬chw ≤ |X|¬chw, the only possibility
is when |X1| = |Y1|. Since, if |X1| < |Y1| this implies that |Y |¬chw � |X|¬chw.
By assumption, we have m ≤ n, n ≤ m, ρ(Xi) ≤ ρ(Yi), τ(Yi) ≤ τ(Xi),
ρ(Xi) ≥ ρ(Yi) and τ(Yi) ≥ τ(Xi) for all i and thus we have |X1| = |Y1|,
n = m, ρ(Xi) = ρ(Yi) and τ(Xi) = τ(Yi). Therefore we can conclude that
|X|¬chw = |Y |¬chw.

3.4 ¬ Continuum Hypothesis

Before giving the ¬CH-cardinality definition, note that if X = X1 ∪ X2 ∪
...∪Xn, Y = Y1∪Y2∪ ...∪Ym and n > m, we can write Y as Y1∪Y2∪ ...∪Yn,
by adding a certain amount of union components which are empty sets.

Definition 45 (¬CH-cardinality). Let X, Y be sets of EZF∗. Let X =
X1 ∪X2 ∪ ... ∪ Xn and let Y = Y1 ∪ Y2 ∪ ... ∪ Yn where X1, Y1 are Zermelo
(possibly empty) and where X2, ..., Xn, Y2, ..., Yn are non-Zermelo or empty
with X2 ∪ X3 ∪ ... ∪ Xn and Y2 ∪ Y3 ∪ ... ∪ Yn both well-represented. Then,
|X|¬ch < |Y |¬ch if and only if

for some k such that k ≤ n, we have ρ(Xi) = ρ(Yi), τ(Xi) = τ(Yi), ρ(Xk) <
ρ(Yk) and τ(Xk) ≤ τ(Yk) for all i < k.

or

for some k such that k ≤ n, we have ρ(Xi) = ρ(Yi), τ(Xi) = τ(Yi), ρ(Xk) ≤
ρ(Yk) and τ(Xk) < τ(Yk) for all i < k .
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Definition 46. Using the same assumptions as in definition 45.
|X|¬ch = |Y |¬ch if and only if

for all j ≤ n, we have ρ(Xj) = ρ(Yj) and τ(Xj) = τ(Yj).

The definition of ¬CH-cardinality is basically the lexicographic order
or in analogy with numbers, it is similar to ordering of rational numbers
in decimal notation. Note that the transitivity of < on the ¬CH-cardinal
numbers follows from the transitivity of < on the integers and < on the
classical cardinal numbers.

Proposition 47. If |X|¬ch ≤ |Y |¬ch and |Y |¬ch ≤ |Z|¬ch, then |X|¬ch ≤
|Z|¬ch.

Proof. Let X, Y, Z be sets of EZF∗. Let X = X1 ∪ X2 ∪ ... ∪ Xn, Y =
Y1∪Y2∪...∪Yn and let Z = Z1∪Z2∪...∪Zn where X1, Y1, Z1 are Zermelo sets
(possibly empty) and where X2, ..., Xn, Y2, ..., Yn, Z2, ..., Zn are non-Zermelo
or empty with X2 ∪X3 ∪ ...∪Xn, Y2 ∪ Y3 ∪ ...∪ Yn and Z2 ∪Z3 ∪ ...∪Zn are
each well-represented. This can be done by adding empty union components
to make sure that each X, Y, Z have exactly n components.

If |X|¬ch = |Y |¬ch and |Y |¬ch = |Z|¬ch then by definition 46, we must
have that |X|¬ch = |Z|¬ch.

If |X|¬ch < |Y |¬ch and |Y |¬ch = |Z|¬ch then there is a k1 such that for all
i < k1, ρ(Xi) = ρ(Yi), τ(Xi) = τ(Yi) and such that

[ρ(Xk1) < ρ(Yk1) ∧ τ(Xk1) ≤ τ(Yk1)] ∨ ρ(Xk1) ≤ ρ(Yk1) ∧ τ(Xk1) < τ(Yk1).

Since τ(Yj) = τ(Zj) and ρ(Yj) = ρ(Zj) for all j < n, we can take k = k1
and conclude, using the ¬CH-cardinality definition, that |X|¬ch < |Z|¬ch.
Similarly, we prove that if |X|¬ch = |Y |¬ch and |Y |¬ch < |Z|¬ch, then |X|¬ch <

|Z|¬ch.
If |X|¬ch < |Y |¬ch and |Y |¬ch < |Z|¬ch, then we take k1 for the k which

appears in the ¬CH-cardinality definition for |X|¬ch < |Y |¬ch and take k2
for the k which comes from |Y |¬ch < |Z|¬ch. Let m = min{k1, k2}.

If m = k1, this means that k2 > m and that τ(Yi) = τ(Zi) and ρ(Yi) =
ρ(Zi) for all i < k2. Therefore, we have τ(Xm) < τ(Ym) = τ(Zm) or
ρ(Xm) < ρ(Ym) = ρ(Zm) which implies by the ¬CH-cardinality definition
that |X|¬ch < |Z|¬ch. In a similar manner, if m = k2, then we find that
τ(Xm) = τ(Ym) < τ(Zm) or ρ(Xm) = ρ(Ym) < ρ(Zm) which implies that
|X|¬ch < |Z|¬ch.
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We now prove the stronger version of the negative of the continuum hy-
pothesis.

Theorem 48 (¬ Continuum Hypothesis). Let X, Y be sets of EZF∗ such that
|X|¬ch < |Y |¬ch, then there is a set U of EZF∗ such that |X|¬ch < |U |¬ch <

|Y |¬ch.

Proof. Let X, Y be sets of EZF∗. Let X = X1 ∪ X2 ∪ ... ∪ Xn and let
Y = Y1 ∪ Y2 ∪ ... ∪ Yn where X1, Y1 are Zermelo (possibly empty) and where
X2, ..., Xn, Y2, ..., Yn are non-Zermelo or empty with X2 ∪ X3 ∪ ... ∪ Xn and
Y2 ∪ Y3 ∪ ... ∪ Yn both well-represented.

Since |X|¬ch < |Y |¬ch, there is a k such that [ρ(Xk) ≤ ρYk and τ(Xk) <
τYk] or [ρ(Xk) < ρYk and τ(Xk) ≤ τYk]. Let r be the minimum integer
(different from −∞) of {ρ(X1), ..., ρ(Xn), ρ(Y1), ..., ρ(Yn)}. Suppose that the
smallest cardinal number (different from |∅|) of τ(X1), ..., τ(Xn), τ(Y1), ..., τ(Yn)
is τ(Z) such that τ(Z) = |K| with K a non-powered Zermelo set.

Take U = X ∪ P r−1(K). We will show that |X|¬ch < |X ∪ P r−1(K)|¬ch
and |X ∪ P r−1(K)|¬ch < |Y |¬ch.

In X = X1 ∪X2 ∪ ...∪Xn there are finitely many empty Xh components.
Let X = X1 ∪X2 ∪ ... ∪ Xm where m ≤ n and where all Xi are not empty.
Since ρ(P r−1(K)) < ρ(Xj) for all j ≤ m , we have that X ∪ P r−1(K) =
X1 ∪X2 ∪ ...∪Xm ∪P r−1(K) is well-presented. Thus, we have that Xi = Xi

for all i ≤ m, 0 < ρ(P r−1(K)) and 0 < τ(P r−1(K)) for k = m + 1 which
means, by definition 45 of ¬CH-cardinality, that |X|¬ch < |X∪P r−1(K)|¬ch.

Similarly, we have X ∪P r−1(K) = X1∪X2∪ ...∪Xm∪P r−1(K) where all
Xi are non-empty. In Y = Y1 ∪ Y2 ∪ ... ∪ Yn there are a finitely many empty
components. Let Y = Y1 ∪ Y2 ∪ ... ∪ Ym′ where m′ ≤ n and where all Yi are
not empty. There are two cases to consider, either m < m′ or m ≥ m′.

Suppose that m ≥ m′. Since |X|¬ch < |Y |¬ch there is some k which sat-
isfies a statement of definition 45. Thus, since ρ(P r−1(K)) < ρ(Xj) for all j,
adding the union component P r−1(K) to X cannot make |X∪P r−1(K)|¬ch ≥
|Y |¬ch, therefore we have that |X ∪ P r−1(K)|¬ch < |Y |¬ch.

Suppose m < m′, since ρ(P r−1(K)) < ρ(Yi) for all i ≤ n we can take
k = m + 1 and have that ρ(P r−1(K)) < ρ(Yk) and τ(P r−1(K)) ≤ τ(Yk).
Thus, by definition 45 of ¬CH-cardinality we have that |X ∪P r−1(K)|¬ch <

|Y |¬ch.
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4 Further Investigations

The full extension of ZF with the concept of the inverse power set has not
been fully investigated here since we restricted our context to EZF∗. We
have called the sets which arise from EZF the real sets. The reason for this
is that the sets of EZF∗ come from a finite number of applications of the
operators P and P−1. Those can be called rational sets by analogy with
the rational numbers and the sets which arise from an infinite number of
applications of the operators P and P−1 can be called irrational sets. It
would be interesting to find extended definitions of cardinality in the context
EZF instead of only EZF∗, in particular what will be the cardinality of an
irrational set P−1(P−1(...P−1(z)...)) where P−1 occurs an infinite number of
times. We could further extend the power set axiom to apply to sets such as
P−1({1, 2, 3, 4, 5}∪P−1(P−1(X)) and P−1(X)∪P−1(Y )∪Z ∪P−1(P−1(W )).

An idea related to EZF∗ and well-represented sets would be to generalize
the concept of well-represented for rational sets and to find a ‘fundamental
theorem of set theory’ where each rational set A can be represented uniquely
as

X∪P−1(Y1)∪P
−1(Y2)∪...∪P

−1(Yn1
)∪...∪P−k(Z1)∪P

−k(Z2)∪...∪P
−k(Znk

),

where A is ‘well-represented’, where X, Y1, Y2, ..., Yn1
, ..., Z1, Z2, ..., Znk

are
‘well-represented’ rational sets, where the sequence of nested rational sets
eventually ends with Zermelo sets and where uniqueness of representation is
up to the choice of representative for the cardinality of the Zermelo sets. This
theorem would imply, in the realm of ¬CH-cardinality, something similar to
the uniqueness of representation of a rational number in decimal notation.

The continuum hypothesis is undecidable in ZF and in ZF with the ax-
iom of choice, but extending to EZF∗ permitted us to decide the continuum
hypothesis. A key feature about EZF is that it can be seen as ‘closed’ under
the powerset. To which extent can we diminish the quantity of undecidable
statements by setting those statements in the context of the ‘algebraic clo-
sure’ of a certain theory? Could the number of undecidable statements be
reduced to a finite amount?

Since most of mathematics relies on set theory, further investigations
could be to consider introducing the non-Zermelo sets in the context of dif-
ferent mathematical theories. It might also be interesting to generalize the
power set operation to an operation which takes as input a set X of ZF (or
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EZF) and outputs a certain collection of subsets of X . In this generaliza-
tion, the power set is the operation which returns the collection of every
subset of X . Thus, we could introduce its inverse operation and consider its
implication on cardinal arithmetic.
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[4] Gödel K., The Consistency of the Axiom of Choice and of the Gener-
alized Continuum Hypothesis with the Axioms of Set Theory. Annals of
Mathematics Studies, Princeton University Press, Princeton, New Jersey,
1940.

[5] Suppes P., Axiomatic Set Theory. Dover, New York, 1972.

[6] Hrbacek K., Jech T., Introduction to Set Theory. Marcel Dekker, New
York, 1999.

[7] Woodin H. W., The Continuum Hypothesis, Part I. Notices of the AMS
48 (6): 567576. 2001

[8] Woodin H. W., The Continuum Hypothesis, Part II. Notices of the AMS
48 (7): 681690. 2001

22


	1 Introduction
	2 Extending Zermelo-Fraenkel
	2.1 Axioms
	2.2 Propositions

	3 The Continuum Hypothesis
	3.1 Proving the Continuum Hypothesis
	3.2 Disproving the Continuum Hypothesis
	3.3 Weak  Continuum Hypothesis
	3.4  Continuum Hypothesis

	4 Further Investigations

