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Abstract

Quantum Rabi oscillations driven by a pulse stream are basic operations in Cirac-Zoller scheme of

quantum computation. We investigate the failure probability and population inversion of quantum

Rabi oscillation of trapped ion in this case. It is shown that when the wavelength of the driven field

is of the order 10−6 m, the mean number of photons cannot be greater than 104, and the failure

probability of quantum Rabi oscillation is of the order 10−2 after about 100 coherent 2π pulses

considering of the sideband transition in Cirac-Zoller scheme. We find also that the envelope of

population inversion is different from the Gaussian function which is that for oscillation driven by

a continuous-wave field. The conclusion we arrived at is that the quantum computations via Cirac-

Zoller scheme cannot be reliable if the number of Controlled-NOT operation on any physical qubit

involved is greater than 100, except making use of driving fields with much smaller wavelength.

This conclusion may be independent of any possible technical improvement in future.
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I. INTRODUCTION

The quantum Rabi oscillation and the accompanied collapse and revival phenomenon are

essential in quantum optics. When a coherent field is used to drive Rabi oscillation, different

number state components of the driving field lead to different oscillation amplitudes, and

the different amplitudes become uncorrelated gradually. It has been proved that the cosine

oscillations are terminated by Gaussian envelope [1].

J. H. Eberly et al. studied the dynamics of coherent Jaynes-Cummings model, in which

the field mode is initially a coherent state, and confirmed the existence of periodic sponta-

neous collapse and revival of coherence [2]. Then, N. B. Narozhny et al. gave a description

of the temporal behavior of the dynamic elements of coherent Jaynes-Cummings model [3].

P. L. Knight and P. W. Milonni studied the effects of intense coherent resonant radiation on

the dynamics of atoms, and found that Rabi oscillations of state probability amplitudes lead

to many new effects in optical spectra [4]. Later, P. L. Knight and P. M. Radmore inves-

tigated the coherent Jaynes-Cummings model in a transformed representation emphasizing

quantum corrections to the semiclassical Rabi problem, and gave an intuitive explanation

of the collapse and revivals of oscillations in the population inversion [5]. H. I. Yoo and

J. H. Eberly presented a dynamical theory of an atom with two or three levels interacting

with quantized cavity fields in the framework of models of the Jaynes-Cummings type, and

discussed phenomena like quantum wave packet collapse and revival [6].

However, quantum Rabi oscillation driven by coherent pulse streams has not been fully

investigated. In this paper we discuss it in details. The discussion focus on oscillation of

trapped ion, which is a fundamental issue in physics, and has wide applications, such as in

Cirac-Zoller physical realization scheme of quantum computations, laser control of chemical

reaction [7], etc..

Quantum computers (QC) can solve some problems intractable on classical computers

[8], and challenge most public-key cryptosystems currently in use [9, 10]. Many proposals

for implementing QC have been raised. The cold ion trap method [11] is a classic one. In

this scheme, implementation of quantum logic gates is realized right through the ions’ Rabi

oscillation driven by pulse streams of laser fields.

C. Monroe et al. [12]demonstrated the essence of controlled-NOT (CNOT) gate in Cirac-

Zoller scheme in 1995. The complete CNOT gate was implemented by F. Schmidt-Kaler et
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al. [13]. Since then, much effort has been made towards large-scale, robust ion trap QC.

There is a scheme to perform probabilistic quantum gates on remote trapped atom qubits

[14]. A method to achieve scalable quantum computation based on fast quantum gates on an

array of trapped ions was also proposed [15]. An experimentally feasible scheme to achieve

quantum computation based solely on geometric manipulations of a quantum system [16]

offers a possible method for robust quantum computation. In 2009, D. R. Leibrandt et al.

[17] developed a scalable, multiplexed chip for ion trap quantum information processing and

tested ion lifetimes and heating rate of it.

This paper is arranged as follows: in Section II, we develop a method to describe quantum

Rabi transformation of trapped ion after one coherent pulse. In Section III we deal with the

relationship between the density matrices for the ion before and after one coherent pulse,

and gives failure probability of quantum Rabi oscillation of trapped ion driven by coherent

pulse streams. In Section IV we give out some discussions. In Section V some conclusions

are reached.

II. QUANTUM RABI TRANSFORMATIONOF TRAPPED IONRELATED WITH

ONE COHERENT PULSE

A. Modeling

Consider of a two-level ion trapped in a Paul trap interacts with a laser field. The

laser field is actually a multimode field, but when the bandwidth of the laser satisfies some

requirements, it is justified to take the field to be a single-mode coherent state [18]. Then

the ion-field system can be described by Jaynes-Cummings interaction [19]

H = ~g(e−iφσ+a + eiφa†σ−), (1)

where g is the coupling constant, φ is the beam phase, σ+ and σ− are the raising and lowering

operators of the ion, and a† and a are the creation and annihilation operators of photons

respectively. Then the unitary time-evolution operation is given by

U(t) =cos(gt
√

a†a + 1)|1〉〈1|+ cos(gt
√
a†a)|0〉〈0|

− i[eiφ
sin(gt

√
a†a + 1)√

a†a+ 1
a|1〉〈0|+ e−iφa†

sin(gt
√
a†a+ 1)√

a†a + 1
|0〉〈1|],

(2)
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here, |0〉 and |1〉 denote the ground and excited state of the ion respectively.

The coherent state is usually described by
∑∞

n=0 cn|n〉, here |cn|2 = e−n̄n̄n

n!
is the probability

that the state is in the n-photon state. If the ion is initially in the ground state, then the

ion-field state is
∑∞

n=0 cn|0, n〉, the state for the ion-field system at time t is therefore

|Ψ(t)〉 =
∞
∑

n=0

cn[cos(gt
√
n + 1)|1, n〉 − ie−iφsin(gt

√
n+ 1)|0, n+ 1〉]. (3)

Similarly, if the ion is initially in the excited state, then the ion-field state is
∑∞

n=0 cn|1, n〉,
the state for the ion-field system at time t is

|Ψ(t)〉 =
∞
∑

n=0

cn[cos(gt
√
n)|0, n〉 − ieiφsin(gt

√
n)|1, n− 1〉]. (4)

Now move to the practical case, the ion’s initial state is generally a superposition of the

ground and excited states, thus initially the ion-field state is |ψ(0)〉 =
∑∞

n=0 cn|n〉(α|0〉 +
β|1〉), where |α|2+ |β|2 = 1. A single qubit gate is usually implemented through a kπ pulse,

whose duration t0 satisfy gt0
√
n̄ = kπ

2
, here n̄ is the mean number of photons in the pulse.

Without loss of generality, consider the case we apply a 2π pulse, then the ion-field state

becomes

|ψ(t)〉 =α{
∞
∑

n=0

cn[cos(
π
√
n+ 1√
n̄

)|1, n〉 − ie−iφsin(
π
√
n+ 1√
n̄

)|0, n+ 1〉}

+ β{
∞
∑

n=0

cn[cos(
π
√
n√
n̄
)|0, n〉 − ieiφsin(

π
√
n√
n̄
)|1, n− 1〉}.

(5)

B. Estimation of mean number of photons

In the discussions followed we need to know the mean number of photons. When a

laser beam is applied to a trapped ion, it is actually a scattering problem. The effective

interaction area is the same order of magnitude as the scattering cross section. The total

resonant scattering cross section for an atomic dipole transition is σ = 3λ2/2π [20], and

for inelastic scattering which we are interested in, the cross section is virtually that for

scattering out of the paraxial modes σeff = 3λ2/8π [21]. Thus it is the number of photons

n̄ =
Iσeff t

~ω
in volume σeffct that is important for the decoherence of the ion, not n̄′ = IAt

~ω

in volume Act, here I is intensity of the laser, t the duration of the laser pulse, and A the

cross section area of the beam. The beam can not be focused to less than a wavelength, so

we will always have A > σeff , thus n̄′ > n̄ [22].
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In estimating the effective mean number of photons of one pulse, we can not apply

Jaynes-Cummings model directly. Consider two pulses propagating in opposite directions,

then when they meet they form a standing wave. The standing wave fits well into the

Jaynes-Cummings model, and the mean number of photons in each pulse is half of that in

the standing wave. Thus we only need to focus on mean number of photons in the standing

wave. The electric field E can be expressed as

E = E
√
n̄. (6)

E is usually given as E =
√

~ω
ǫ0V

[23] , where ω is the frequency of the single mode in a cavity,

and V is the volume of the cavity. It can be seen that V ∼ σeffct, then E =
√

~

ǫ0σeffλt
.

Thus

n̄ =
ǫ0σeffct

~ω
E2. (7)

Moreover, for a kπ pulse, gt
√
n̄ = kπ

2
, g ∼ pE

~
= PE

~
√
n̄
, here p ∼ ea0 is the electric dipole

moment of the ion, with e the charge of a electron, and a0 Bohr radius, then we get

t =
kπ~

2pE
. (8)

Then

n̄ =
k

4

ǫ0σeffλ

p
E. (9)

One case of interest is the sideband transition, where the laser detuning ∆ = ±ωt,

here ωt is the frequency of the trap. Sideband transition is necessary for two-qubit gates

in quantum computation [11]. For sideband transition, because of AC-Stark shift and off-

resonant transitions, the sideband Rabi frequency Ω+ has upper bound. People have adopted

methods to partially cancel the effect, and it seems feasible to have Ω+ close to ωt for special

temporal and spectral arrangements of the laser field [24, 25].

As we know, Ω+ = ηΩ, so we have

Ω <
ωt

η
. (10)

here

η =
2π

λ

√

~

2Mωt

(11)

is the Lamb-Dicke parameter, with M the mass for a single ion, For Ω, there exists the

relation Ω = −ea0E
4~

[26], then

E <
4~ωt

pη
. (12)
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As to ωt, the separation between ions ∆z satisfies [27]

∆z ∼ (
e2

4πǫ0Mω2
t

)1/3,

so

ωt ∼
√

e2

4πǫ0M(∆z)3
. (13)

In Eq. (13), ∆z should be large enough to ensure individual addressing of ions, thus it can

be expressed as ξλ, with ξ ≥ 2, thus ωt has a corresponding lower limit.

Thus, from Eqs. (11) to (13), we get

E <
2
√
2~

pπ
(
e2

4πǫ0
)
3

4M− 1

4 ξ−
9

4λ−
5

4 . (14)

Substitute E in Eq. (9) with that in Eq. (13), we get

n̄ <
k

2

3
√
2~ǫ0

8π2p2
(
e2

4πǫ0
)
3

4M− 1

4 ξ−
9

4λ
7

4

=
3ǫ

1

4

0

32a20π
11

4

√

~

e
kM− 1

4 ξ−
9

4λ
7

4

= 6× 107kM− 1

4 ξ−
9

4λ
7

4 .

(15)

In the cases we consider here, k ≤ 2, 9u ≤ M ≤ 200u, with u = 1.66057× 10−27 kg. When

M = 9u, k = 2, ξ = 2, λ ∼ 10−6 m, we get the maximum for mean number of photons when

optical frequency is used

n̄ ∼ 2.3× 103.

For ξ = 5 case which is the best result experimentally reached [28], we can get

n̄ ∼ 2.9× 102.

When microwaves are used to drive the oscillation, the frequency ν is usually below 10GHz

[25]; and it should be much greater than 1/2π GHz [27], which is the upper bound for a

phonon used in experiments. Suppose ν > 5 GHz, then 3× 10−2 m < λ < 0.38 m, then for

ξ = 5 case, we get

2.9× 109 < n̄ < 1.7× 1012.

There exists another way to calculate the mean number of photons in a kπ pulse [18]:

they considered the situation where a single laser is used to drive Rabi oscillation of the
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atom, and adopted the formalism introduced by K. J. Blow et al. [29], taking the laser as a

continuous-mode coherent state, then they worked out the interaction time t for kπ pulse is

t =
kπ~

d

√

ǫ0cA

2P
, (16)

here d is the coupling distant between the atom and laser, and for a dipole transition it is

the atomic dipole moment p, and W is the power of the laser. Thus, the mean number of

photons in one kπ pulse is

n̄ ≈ Pt

~ωL

=
kπ

ωLd

√

ǫ0cAP

2
, (17)

where ωL is the frequency of the fictitious single-mode coherent state. Thus, obviously, they

take all the photons in area A as effective photons when considering the interaction, but

actually the effective photons is much less.Substitute parameters in Eq. (17) with that in

our approach, and use A > 2µm× 2µm [28], the mean number of photons with λ ∼ 10−6 m

is 1.4× 104 when ξ = 5.

C. The Density Matrix

The corresponding density matrix for the state in Eq. (5) is ρ
(1)
total = |ψ(t)〉〈ψ(t)| . This

matrix contains the information of both the ion and the field, but we are interested only in

the ion. Thus we perform a partial trace over the field to obtain the reduced state of the

ion alone, the reduced density matrix ρ(1) is

ρ(1) =





|α|2s4 + i(αβ∗ − α∗β)s2 + |β|2(1− s6) αβ
∗s5 + i(|α|2s1 − |β|2s7) + α∗βs3

α∗βs5 − i(|α|2s1 + |β|2s7) + αβ∗s3 |α|2(1− s4)− i(αβ∗ − α∗β)s2 + |β|2s6



 ,
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s1 =
∞
∑

n=0

e−n̄n̄n

n!

√

n̄

n+ 1
cos(

π
√
n√
n̄
)sin(

π
√
n+ 1√
n̄

),

s2 =

∞
∑

n=0

e−n̄n̄n

n!

√

n̄

n+ 1
sin(

2π
√
n+ 1√
n̄

),

s3 =

∞
∑

n=0

e−n̄n̄n

n!

√

n

n+ 1
sin(

π
√
n√
n̄
)sin(

π
√
n+ 1√
n̄

),

s4 =

∞
∑

n=0

e−n̄n̄n

n!
cos(

π
√
n√
n̄
)2,

s5 =

∞
∑

n=0

e−n̄n̄n

n!
cos(

π
√
n√
n̄
)cos(

π
√
n+ 1√
n̄

),

s6 =
∞
∑

n=0

e−n̄n̄n

n!
cos(

π
√
n + 1√
n̄

)2,

s7 =
∞
∑

n=0

e−n̄n̄n

n!

√

n

n̄
cos(

π
√
n + 1√
n̄

)sin(
π
√
n√
n̄
).

(18)

D. Calculation of the sums in the density matrix

We can’t get accurate results for s1 to s7 in ρ(1) via usual method. The precision of

method generally used is of the order 1√
n̄
, which is not enough to validate the result for the

iteration. Our approach with much better precision is as follows.

1. The approach

Given one of the sums in ρ(1) mentioned above, for example,

s1(n̄) =
∞
∑

n=0

e−n̄n̄n

n!

√

n̄

n+ 1
cos(

π
√
n√
n̄
)sin(

π
√
n+ 1√
n̄

),

here we assume n̄ = 104.

1. First deal with the part

f0(n, n̄) =

√

n̄

n + 1
cos(

π
√
n√
n̄
)sin(

π
√
n + 1√
n̄

),

substitute n in f0(n, n̄) with (x+ 1)n̄ , we get

f1(x, n̄) =

√

n̄

1 + n̄(1 + x)
cos

(

π
√

n̄(1 + x)√
n̄

)

sin

(

π
√

1 + n̄(1 + x)√
n̄

)

.
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This actually rewrites f0(n, n̄) as a function of x = n−n̄
n̄

and n̄, and x < 1 is satisfied for

n < 2n̄.

2. Do Taylor expansion forf1(x, n̄)at x = 0, to ensure a sufficiently high precision, we

expand it to x10, and we get f2(x, n̄) .

3. Sums like
∑∞

n=0
e−n̄n̄n

n!
nk can get accurate results, so we replace x in f2(x, n̄) by

n−n̄
n̄

,

and use n̄ = 106. Then we get f3(n).

4. Use f3(n) instead of f0(n, n̄) in the expression of s0(n̄) and calculate the new sum.

The result is f4(n̄).

5. Again use n̄ = 104, and we obtain a high-precision result of the original sum. The

value for s1 to s7 in the cases where we expand f1(x, n̄) to x
10 and x15 are shown in Table I.

TABLE I: Values for s1 to s7, here n̄ = 104. Value1 denote value of the sums when we

expand x to x10 and Value2 denote that when we expand x to x15. Value1 and Value2 are

same to a precision of 10−23.

Sum Value1 Value2

s1 0.000039303916656063668561519091 0.000039303916656063668561194770

s2 0.000039265164255300772996074590 0.000039265164255300772995750283

s3 0.000246659192761352167541307293 0.000246659192761352167542402758

s4 0.999753309972685637856777333369 0.999753309972685637856776237858

s5 0.999753316133881571308212070145 0.999753316133881571308210974684

s6 0.999753322301165250291025614276 0.999753322301165250291024518866

s7 0.000039226416698193975826600887 0.000039226416698193975830095264

2. The precision of our approach

(1) For a given integer l, there exists a appropriate integer k, such that

k
∑

n=0

e−n̄ n̄
n

n!
<

1

n̄l
. (19)

Proof. For each i satisfying i ≤ k + 1 < n̄, we have n̄i

i!
< n̄k+1

(k+1)!
, thus we can get

9



∑k
n=0

n̄n

n!
< (k + 1) n̄k+1

(k+1)!
= n̄k+1

k!
, so the sufficient condition for (19) is n̄k+1

k!
< en̄

n̄l , i.e.

n̄k+l+1

k!
< en̄. (20)

From Stirling’s formula

k! =
√
2πk(

k

e
)ke

θ
12k , 0 < θ < 1, (21)

then (20) becomes
1√
2πk

(
e

k
)ke−

θ
12k n̄k+l+1 < en̄, (22)

and the sufficient condition for (22) is ( e
k
)kn̄k+l+1 < en̄.

Denote k = n̄− α
√
n̄, we then have

n̄n̄−α
√
n̄+l+1en̄−α

√
n̄

(n̄− α
√
n̄)n̄−α

√
n̄
< en̄,

i.e.
n̄l+1

(1− α√
n̄
)
√

n̄
α

(α
√
n̄−α2)

< eα
√
n̄. (23)

When α <<
√
n̄, (23) equals n̄l+1

( 1
e
)α

√

n̄−α2 < eα
√
n̄, i.e. α2 > (l + 1)lnn̄. Then the sufficient

condition for (19) is
√
n̄ >> α >

√

(l + 1)lnn̄, (24)

which equals to k < n̄−
√

(l + 1)n̄lnn̄.

(2) For a given integer l, there exists a appropriate integer k, such that

∞
∑

n=k

e−n̄ n̄
n

n!
<

1

n̄l
. (25)

Proof.

n
∑

n=k

e−n̄ n̄
n

n!
= e−n̄ n̄

k

k!

∞
∑

n=k

n̄n−kk!

n!
= e−n̄ n̄

k

k!

∞
∑

n=k

n̄n−k

n(n− 1) · · · (k + 1)

< e−n̄ n̄
k

k!

∞
∑

n=k

(
n̄

k + 1
)n−k = e−n̄ n̄

k

k!

k + 1

k + 1− n̄
.

Let k+1
k+1−n̄

< k, that means

k > n̄+
1

n̄
. (26)

Suppose (26) is fulfilled, we get a sufficient condition for (25):

e−n̄ n̄k−1

(k − 1)!
<

1

n̄l+1
,

10



then from Stirling’s formula we get the sufficient condition for (25):

(
n̄e

k − 1
)k−1 <

en̄

n̄l+1
. (27)

Let λ = n̄
k−1

< 1, here we require k − 1 > n̄, i.e.

k > n̄ + 1. (28)

It can be seen that (28) implies (26). When (28) is fulfilled, a sufficient condition for (25) is

(
e

η
)λ − eλ > 0, (29)

where η = ( n̄
√
n̄)l+1.

Define

f(x) = (
e

η
)x − ex,

then solving (25) can be reduced to finding zero point of f(x). Suppose f(x0) = 0, then it

is demanded that λ < x0, i.e.

k >
n̄

x0
+ 1, (30)

which is a solution of (25). We can have

η = ( n̄
√
n̄)l+1 = e

l+1

n̄
lnn̄ ≈ 1 + (l + 1)

lnn̄

n̄

△
= 1 + δ,

here δ << 1. From f(x0) = 0, we get x0(1− lnη) = 1+ lnx0, it can be seen that x0 < 1. Let

x0 = 1−∆, from ln(1 + x) ≈ x− 1
2
x2, we get

∆ ≈
√
2
√
δ − δ +

1

2
√
2
δ
√
δ + · · ·

1

x0
≈ 1 + ∆ ≈ 1 +

√
2
√
δ = 1 +

√

2(l + 1)
lnn̄√
n̄
.

Therefore

k = n̄+ α

√
lnn̄√
n̄
.

For n̄ = 104, if the precision demanded is 10−20, then l = 5,

k = n̄ + 4
√
3

√
ln10√
n̄

= n̄ +
10.513√

n̄
.

For n̄ = 106, if the precision demanded is 10−20, then l = 3.3,

k = n̄ +
10.900√

n̄
.
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We expand f1(x, n̄) at x = 0 to x15, and find the value for the sum is the same to a

precision of 10−23 with that when we expand f1(x, n̄) to x
10 (see Table I). The possible reason

may be that in the proof above, we didn’t take into account the periodicity of trigonometric

functions. The precision of the sum’s value can be remarkably improved since the positive

and negative values would cancel. Thus the precision is probably smaller than 10−23.

III. FAILURE PROBABILITY OF THE QUANTUM RABI OSCILLATION OF

TRAPPED ION DRIVEN BY COHERENT PULSE STREAMS

A. Relationship between the density matrices for the ion before and after one

coherent pulse

The final state ρ(1) in Eq. (18) describes the state of the ion after one 2π pulse when

n̄ = 104, and the density matrix of corresponding initial state is

ρ(0) =





|α|2 αβ∗

α∗β |β|2



 . (31)

Now we consider the relationship between ρ(1) and ρ(0), so as to get the state of the

ion after a stream of coherent pulses. For a single ion, the density matrix ρ satisfies the

condition ρ = 1
2
(I + ~r · ~σ) [30], ~r = (rx, ry, rz), known as the Bloch vector for state ρ, is a

real three-dimensional vector such that |~r| ≤ 1, ~σ denote the vector of Pauli matrices.

Let ~r(i) = (r
(i)
x , r

(i)
y , r

(i)
z ) denotes the Bloch vector of ρ(i), we can get ~r(0) and ~r(1). Let

~r(1) =M~r(0) + ~c, here M is a 3× 3 matrix and ~c a three-dimensional vector, we get

M =











s3 + s5 0 0

0 s5 − s3 −(s1 + s7)

0 2s2 s4 + s6 − 1











, (32)

~c = (0, s7 − s1, s4 − s6), (33)

values for si, i = 1, · · · , 7 are those shown in Table I.
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B. Final state of the ion after a pulse stream

Provided ~r(i) =M~r(i−1) + ~c , then

~r(i) =M i~r(0) + (M i−1 + · · ·+M + I)~c,

the state of the ion after i 2π pulses is

ρ(i) =
1

2
(I + ~r(i) · ~σ). (34)

C. Envelope of population inversion after coherent pulse streams

Suppose the initial state is |1〉, if we have applied a kπ pulse stream, then define

Wm
△
=

1

2
(1− r(m)

z )− 1

2
(1 + r(m)

z ) = −r(m)
z ,

wherem = 0, 2/k, 4/k, 6/k, · · · . We plotWm as a function of Rabi periodN which is actually

the envelope of population inversion in the 2π pulse case when n̄ = 104 in Fig.(1a), and

show derivative at the points sampled in Fig.(1b). The result is the envelope of population

inversion of oscillations driven by pulse streams is not a Gaussian function, which describes

the envelope of inversion for oscillations driven by a continuous-wave (cw) field.

D. Accuracy of gate operation

Suppose we have applied m coherent pulses and reached a state ρ(m). Let |Ψ〉 be the

expected state, then the failure probability of the Rabi oscillation driven by that pulse is

pf = 1− 〈Ψ|ρ(m)|Ψ〉 △
= 1− ps.

From Eq. (34) and the relation for pure state

ρ(i) = |αi|2|0〉〈0|+ αiβ
∗
i |0〉〈1|+ βiα

∗
i |1〉〈0|+ |βi|2|1〉〈1|,

we can get for 2π pulse stream

ps = (α∗〈0|+ β∗〈1|)ρ(m)(α|0〉+ β|1〉)

= |α|2ρ(m)
11 + |β|2ρ(m)

22 + α∗βρ
(m)
12 + αβ∗ρ

(m)
21

=
1

2
(1 + r(0)z r(m)

z 1 + r(0)x r(m)
x + r(0)y r(m)

y )

=
1

2
(1 + ~r(0) · ~r(m)),

(35)
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FIG. 1: Envelope of population inversion E(W) versus number of Rabi periods N. Here 2π

pulses are applied and n̄ = 104. In (a) we plot the envelope of inversion, which looks

different from Gaussian functions. In (b) we show derivative of the envelope, and show it is

definitely different from that of Gaussian functions.

for a mixed state, ~r < 1, then ps < 1.

It can be seen that

~r · ~r(m) = (~r(0))TMm~r(0), (36)
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then

ps =
1

2
[1 + (~r(0))TMm~r(0)]

The failure probability for different kπ pulses and mean number of photons are given

in Fig. (2). It can be seen that the failure probability increases with the number of Rabi

periods, and grows with the value k. Moreover, it is in inverse proportion to mean number

of photons n̄.

10 20 30 40 50 60 70 80 90 100
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

N

lg
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f)
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k=1,l=4
k=1/2,l=4
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k=1,l=6
k=1/2,l=6

FIG. 2: Logarithm of failure probability lg (pf ) versus number of Rabi periods N. Here kπ

pulses are applied and n̄ = 10l. It can be seen that the failure probability increases with

the number of Rabi periods and the value k. Moreover, it is in inverse proportion to mean

number of photons n̄.

The fidelity of ρ(m) and |Ψ〉 is

F (|Ψ〉, ρ(m)) =
√

〈Ψ|ρm|Ψ〉 =
√

1− pf . (37)

We can also get the trace distance between ρ(m) and |Ψ〉 under 2π pulse stream [30]

D(|Ψ〉, ρ(m)) =
1

2
|~r(0) − ~r(m)|.
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IV. DISCUSSIONS

A. Threshold theorem of fault-tolerant quantum computation

In ion trap quantum computers, we usually perform many operations on one ion to

implement an algorithm. As we have derived, the failure probability of gate operation is of

order 10−2 after approximate 90 operations.

However, there exists a threshold theorem in quantum computation, which declares that

an arbitrarily long quantum computation can be performed reliably if the failure probability

of each quantum gate is less than a critical value. One form of this theorem is as follows

[30]:

A quantum circuit containing p(n) gates may be simulated with probability of error at

most ǫ using

O(poly(log(p(n)/ǫ))p(n)) (38)

gates on hardware whose components fail with probability at most p, provided p is below

some constant threshold, p ≤ pth, and given reasonable assumptions about the noise in the

underlying hardware.

There has been many discussions about the value of the threshold. M. Liang and L. Yang

has pointed out that [31], the optimal error-correction period to get maximum threshold

depends on the value of level number of concatenated quantum error-correction code. Knill

used numerical calculations and obtained a threshold of the order 10−2 [32]. Then, P. Aliferis

et al. reached a threshold of 10−3 with provable constructions [33]. If the failure probability

for a quantum gate is beyond the threshold, then the whole quantum computation will not

be reliable. Thus for ion trap quantum computers, after 90 2π sideband operations on one

ion, the computation will not be reliable.

B. Error propagation

The error in the calculation is spread as follows: in the beginning to ensure the precision

of final result, we calculate the sum s1 to s7 with precision (10−23). During further computa-

tions, these errors go into M and ~r. In the calculation of density matrix ρ(m) after m times

of successive operations, the errors from M and ~r spread into ρ(m). Finally, the precision of
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failure probability and population inversion we get is at least 10−8.

C. An application of our results in quantum computation

Single qubit and CNOT gates are universal for quantum computation. The quantum

nature of kπ pulses first bring about errors in single qubit gates themselves. Moreover, in

the implementation of Cirac-Zoller gate in an ion trap [11], they use sideband transitions

three times to complete a CNOT gate, including one 2π transition and two π transitions.

As we have calculated, error for the 2π sideband transition is the largest compared to that

of π and π/2, which amounts to 10−2 after approximately 90 operations when n̄ = 104. This

failure probability is already beyond the well-recognized threshold. Then the total CNOT

gate will not be implemented reliably.

Moreover, there also exists a two-qubit gate scheme totally different from the Cirac-Zoller

gate [34]. In the scheme implemented by the NIST group [35], they state that off-resonant

excitations of the stronger carrier transition is absent, which allows a greater gate speed thus

a higher laser intensity. In addition, additional Stark shifts can be efficiently suppressed by

choosing almost perpendicular and linear polarizations for the laser beams [36]. Hence,

studies on this type of gate may lead to different results.

For Rabi oscillation driven by microwaves, the failure probability may be much smaller

because of a large mean number of photons. However, the corresponding qubits manipulated

by microwaves are always Zeeman or the hyperfine structures. For the Zeeman structure,

a strong field may shift the corresponding levels and change the qubits. Then for the

hyperfine structure arisen from nuclear spin, the magnetic moment caused by nuclear spin

will possibly have a non-negligible interaction with strong driving fields and also change the

qubits. Factors above increase failure probability, then whether the total fidelity could be

improved is still an open problem.

V. CONCLUSIONS

Based on the collapse and revival phenomenon of quantum Rabi oscillation driven by a

coherent field, and the fact that similar oscillation driven by a pulse stream is a basic opera-

tion in Cirac-Zoller scheme of quantum computation, we have derived the failure probability
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of quantum Rabi oscillation of trapped ion driven by coherent pulse streams instead of a

cw field. The failure probability of sideband transition driven by π/2 pulse stream is the

smallest, and in the 2π pulse stream case it is the largest.

Moreover, for Cirac-Zoller gate in ion-trap quantum computers, one sideband transition

driven by 2π pulse stream is required to implement the gate. When the wavelength of

the driven field is of the order 10−6 m and n̄ = 104, the failure probability of quantum

Rabi oscillation is of the order 10−2, which is beyond the well-recognized threshold, after 90

coherent 2π pulses considering of the sideband transition in Cirac-Zoller scheme. For Rabi

oscillation driven by microwaves, the failure probability may be much smaller because of

a large mean number of photons, but other factors arise which increase failure probability,

then whether the total fidelity could be improved is still an open problem.

Yang and Chen has pointed out that besides depth of logical operation which describes

an algorithm, there also exists a permitted depth of logical operation, which physically limit

the number of operations on any physical qubit. If the permitted depth of logical operation

is less than the depth of logical operation of an algorithm, then the algorithm will not be

implemented reliably [37]. Considering of the result given above and the threshold theorem

of fault-tolerant quantum computation, the quantum computations with Cirac-Zoller scheme

cannot be still reliable as the depth of logical operation of an algorithm is greater than 90.

This limitation may be independent of any possible technical improvement in future.

Besides, for the quantum Rabi oscillation of trapped ion driven by coherent pulse streams,

we should note that the envelope of population inversion is different from a standard Gaus-

sian function which is the envelope of oscillation driven by a cw field.
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B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Nature 422, 412 (2003).

[36] D. J. Wineland, M. Barrett, J. Britton, J. Chiaverini, B. DeMarco, W. M. Itano, B. Jelenković,
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