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A SIMPLE PROOF OF TYURIN’S BABYLONIAN TOWER THEOREM

IUSTIN COANDĂ

Abstract. Using the method of Coandă and Trautmann (2006), we give a simple proof
of the following theorem due to Tyurin (1976) in the smooth case: if a vector bundle
E on a c-codimensional locally Cohen-Macaulay closed subscheme X of the projective
space Pn extends to a vector bundle F on a similar closed subscheme Y of PN , for every
N > n, then E is the restriction to X of a direct sum of line bundles on P

n. Using
the same method, we also provide a proof of the Babylonian tower theorem for locally
complete intersection subschemes of projective spaces.

Let Pn be the projective n-space over an algebraically closed field k of arbitrary charac-
teristic and S = k[X1, . . . , Xn] its projective coordinate ring. For m > 0, embed P

n into
the projective (n+m)-space Pn+m with coordinate ring R = k[X1, . . . , Xn+m] as the linear
subspace L of equations Xn+1 = · · · = Xn+m = 0. One says that a coherent sheaf F on

P
n extends to a coherent sheaf G on P

n+m if G |Pn ≃ F and T or
O

Pn+m

i (G,OL) = 0, ∀i > 0.
Since L is defined locally in P

n+m by a regular sequence, the later condition is equivalent

to T or
O

Pn+m

1 (G,OL) = 0 (see Matsumura (1986, Thm. 16.5)). A closed subscheme X of
P
n extends to a closed subscheme Y of Pn+m if the structure sheaf OX extends to OY . It

is easy to see that in this case the ideal sheaf IX,Pn extends to IY,Pn+m.

In this note, using the method of Coandă and Trautmann (2006), we shall provide
simple, elementary proofs of the following two results:

Theorem 1. Let E be a vector bundle (= locally free sheaf) on a locally Cohen-Macaulay
closed subscheme X of Pn, of pure codimension c. If, for every m > 0, E extends to
a vector bundle F on a locally Cohen-Macaulay closed subscheme Y of P

n+m, of pure
codimension c, then E is isomorphic to a direct sum of line bundles of the form OX(a),
a ∈ Z.

Theorem 2. Let X be a locally complete intersection closed subscheme of Pn, of pure
codimension c. If, for every m > 0, X extends to a locally complete intersection closed
subscheme Y of Pn+m, of pure codimension c, then X is a complete intersection.

Notice that, under the hypothesis of Theorem 1, E extends to F if and only if F |Pn ≃
E, and, under the hypothesis of Theorem 2, X extends to Y if and only if Y ∩ P

n = X
(as schemes).
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In the case where X and Y are assumed to be smooth, Theorem 1 is due to Tyurin
(1976), and Theorem 2 is due to Barth and Van de Ven (1974), Barth (1975) and Tyurin
(1976). The more general version of Theorem 2 stated above is due to Flenner (1985).

The proofs of these theorems are based on the next three lemmas. The first two of
them are very elementary and the proof of the third one uses the idea of Coandă and
Trautmann (2006). Before stating and proving them, we recall the following notation: for
i ≥ 0, Hi

∗(F) denotes the graded S-module
⊕

d∈Z H
i(F(d)), and, for Z closed subscheme

of Pn+m, GZ denotes the sheaf G ⊗O
Pn+m

OZ .

Lemma 3. Assume that a coherent sheaf A on P
N extends to a coherent sheaf B on P

N+1

with the property that H0(B(−t)) = 0 for t >> 0. Let · · · → G−1 → G0 → H0
∗(B) → 0

be a graded minimal free resolution of H0
∗(B) over k[X0, . . . , XN+1]. If H

0
∗(B) → H0

∗(A) is
surjective then G•/XN+1G

• is a minimal free resolution of H0
∗(A) over k[X0, . . . , XN ].

Proof. Using the exact sequence:

0 −−−→ B(−1)
XN+1
−−−→ B −−−→ A −−−→ 0

one deduces, firstly, that XN+1 is H0
∗(B)-regular, hence G•/XN+1G

• is a minimal free
resolution of H0

∗(B)/XN+1H
0
∗(B) over k[X0, . . . , XN ] and, then, that H

0
∗(B)/XN+1H

0
∗(B) ≃

H0
∗(A). �

Lemma 4. Assume that a coherent sheaf F on P
n extends to a coherent sheaf G on P

n+m

with the property that Hi(G(−t)) = 0 for t >> 0, i = 0, . . . , m − 1. Let · · · → G−1 →
G0 → H0

∗(G) → 0 be a minimal free resolution of the graded R-module H0
∗(G). If there

exists an (n + 1)-dimensional linear subspace P of Pn+m containing L = P
n such that

H0
∗(GP ) → H0

∗(F) is surjective, then G• ⊗R S is a minimal free resolution of the graded
S-module H0

∗(F).

Proof. Consider a saturated flag of linear subspaces P (0) = L ⊂ P = P (1) ⊂ . . . ⊂ P (m) =
P
n+m. By decreasing induction on j = m, . . . , 1 one shows easily that Hi(GP (j)(−t)) = 0 for

t >> 0, i = 0, . . . , j−1. Since H0
∗(GP ) → H0

∗(F) is surjective and H1(GP (t)) = 0 for t >> 0,
it follows that H1

∗(GP ) = 0. One shows now, by increasing induction on j = 1, . . . , m,
that Hi

∗(GP (j)) = 0, i = 1, . . . , j. But H1
∗(GP (j)) = 0 implies that H0

∗(GP (j)) → H0
∗(GP (j−1))

is surjective, j = 2, . . . , m, and one finally applies Lemma 3. �

Lemma 5. Let F be a coherent sheaf on P
n, n ≥ 2, with the property that Hi(F(−t)) = 0

for t >> 0, i = 0, 1. For i ∈ Z, let µi denote the number of minimal generators of
degree i of the graded S-module H0

∗(F). If, for some m >
∑

i>j µi h
1(F(j)), F extends

to a coherent sheaf G on P
n+m with Hi(G(−t)) = 0 for t >> 0, i = 1, . . . , m, then there

exists an (n + 1)-dimensional linear subspace P of Pn+m containing L = P
n such that

H0
∗(GP ) → H0

∗(F) is surjective.

Proof. We recall that h1(F(j)) denotes dimkH
1(F(j)). Now, for i ≥ 0, let Li be the

i th infinitesimal neighbourhood of L in P
n+m, defined by the ideal sheaf Ii+1

L,Pn+m. Let L
′
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be the linear subspace of Pn+m of equations X0 = . . . = Xn = 0, with coordinate ring
S ′ = k[Xn+1, . . . , Xn+m]. If π : Pn+m \ L′ → L is the linear projection then π |Li → L is
a retract of the inclusion L →֒ Li and endows OLi

with a structure of OL-algebra. As an
OL-module:

OLi
≃ OL ⊕OL(−1)⊗k S

′

1 ⊕ · · · ⊕ OL(−i)⊗k S
′

i .

Moreover, if J ⊂ S ′ is a homogeneous ideal then:

OL(−1)⊗k J1 ⊕ · · · ⊕ OL(−i)⊗k Ji

is an ideal sheaf of OLi
, hence defines a closed subscheme Yi of P

n+m with L ⊆ Yi ⊆ Li.
Using the exact sequence:

0 −→ OL(−i− 1)⊗k (S
′

i+1/Ji+1) −→ OYi+1
−→ OYi

−→ 0

one deduces easily, by induction on i, that T or
O

Pn+m

1 (G,OYi
) = 0, ∀i ≥ 0. It follows that,

tensorizing the above exact sequence by G, one gets an exact sequence:

0 −→ F(−i− 1)⊗k (S
′

i+1/Ji+1) −→ GYi+1
−→ GYi

−→ 0 .

Consider, now, a section s ∈ H0(F). Using an argument similar to that used in the
proof of Coandă (2010, Lemma 5), one can show that there exists a homogeneous ideal
J(s) ⊂ S ′, with at most h1(F(−j)) minimal generators in degree j, ∀j ≥ 1, with the
property that if Yi(s) is the closed subscheme of Li defined by the ideal sheaf:

OL(−1)⊗k J(s)1 ⊕ · · · ⊕ OL(−i)⊗k J(s)i

then s can be lifted to a global section of GYi(s), ∀i ≥ 1. Choosing, next, a minimal system

of generators of the graded S-module H0
∗(F) one deduces the existence of an ideal J ⊂ S ′

generated by at most
∑

i>j µi h
1(F(j)) homogeneous elements such that H0

∗(GYi
) → H0

∗(F)
is surjective, ∀i ≥ 1.

Since m >
∑

i>j µi h
1(F(j)), there exists a point p ∈ L′ ≃ P

m−1 such that all the

elements of J vanish at p. Let P ⊂ P
n+m be the linear span of L and p. One has

P ∩ Li ⊆ Yi hence H0
∗(GP∩Li

) → H0
∗(F) is surjective, ∀i ≥ 1. But P ∩ Li is the i th

infinitesimal neighbourhood in P of the hyperplane L of P . Tensorizing by G(d), for a
fixed d ∈ Z, the exact sequence:

0 −→ OP (−i− 1) −→ OP −→ OP∩Li
−→ 0

one gets an exact sequence:

H0(GP (d)) −→ H0(GP∩Li
(d)) −→ H1(GP (d− i− 1)) .

Since Hi(G(−t)) = 0 for t >> 0, i = 1, . . . , m, one deduces, as in the proof of Lemma 4,
that H1(GP (d− i− 1)) = 0, for i >> 0, hence H0(GP (d)) → H0(GP∩Li

(d)) is surjective for
i >> 0. This implies that H0

∗(GP ) → H0
∗(F) is surjective. �
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Proof of Theorem 1. Let µi be the number of minimal generators of degree i of the graded
S-module H0

∗(E) and consider a minimal free S-resolution · · · → L−1 → L0 → H0
∗(E) → 0

with, of course, L0 ≃
⊕

i∈Z S(−i)µi . Let ri := rkL−i, i ≥ 0. We want to show that
r0 = rkE =: r.

Now, from the hypothesis, Hi(E(−t)) = 0 for t >> 0, i = 0, . . . , n − c − 1 and
Hi(F (−t)) = 0 for t >> 0, i = 0, . . . , n + m − c − 1. We may assume that n − c ≥ 2.
Let · · · → K−1 → K0 → H0

∗(F ) → 0 be a minimal free resolution of the graded R-
module H0

∗(F ). It follows from Lemma 4 and Lemma 5 that if m >
∑

i>j µi h
1(E(j)) then

K• ⊗R S ≃ L•.

The sheafified morphism K̃−1 → K̃0 has constant corank r along Y . If r0 > r then the
(r0−r)×(r0−r) minors of the matrix defining this morphism vanish on a closed subscheme
of Pn+m of codimension ≤ (r1 − (r0 − r) + 1)(r0 − (r0 − r) + 1) = (r1 − r0 + r+ 1)(r+ 1).
If dimY ≥ (r1 − r0 + r + 1)(r + 1), i.e., if m ≥ (r1 − r0 + r + 1)(r + 1)− n+ c, then one
gets a contradiction. �

Proof of Theorem 2. Let · · · → F−1 → F 0 → I(X) → 0 be a minimal free resolution of
the homogeneous ideal I(X) := H0

∗(IX,Pn) of S. One has F 0 ≃
⊕

i∈Z S(−i)µi , where µi

is the number of homogeneous minimal generators of degree i of I(X). Let ri := rkF−i,
i ≥ 0. We want to show that r0 = c.

Now, it follows from the hypothesis that Hi(IX,Pn(−t)) = 0 for t >> 0, i = 0, . . . n− c,
and that Hi(IY,Pn+m(−t)) = 0 for t >> 0, i = 0, . . . , n + m − c. We may assume that
n − c ≥ 1. Let · · · → G−1 → G0 → I(Y ) → 0 be a minimal free resolution of the
homogeneous ideal I(Y ) of R. From Lemma 4 and Lemma 5 one deduces that if m >∑

i>j µih
1(IX,Pn(j)) then G• ⊗R S ≃ F •.

The sheafified morphism G̃−1 → G̃0 has constant corank c along Y . If r0 > c then the
(r0−c)×(r0−c) minors of the matrix defining this morphism vanish on a closed subscheme
of Pn+m of codimension ≤ (r1 − (r0 − c) + 1)(r0 − (r0 − c) + 1) = (r1 − r0 + c+ 1)(c+ 1).
If dimY ≥ (r1 − r0 + c+ 1)(c+ 1), i.e., if m ≥ (r1 − r0 + c+ 1)(c+ 1)− n + c, then one
gets a contradiction. �

Using Lemma 4 and Lemma 5 one can also prove the following result, that answers a
question the hypothesis of Theorem 1 might raise.

Theorem 6. Let X be a locally Cohen-Macaulay closed subscheme of Pn, of pure codi-
mension c ≥ 2. If, for every m > 0, X extends to a locally Cohen-Macaulay closed
subscheme of Pn+m, of pure codimension c, then X is arithmetically Cohen-Macaulay.

Proof. Consider, as in the above proof of Theorem 2, minimal free resolutions · · · →
F−1 → F 0 → I(X) → 0 and · · · → G−1 → G0 → I(Y ) → 0. If m is sufficiently large then
G• ⊗R S ≃ F •. Put F−1 := S and G−1 := R. One deduces that the vector bundle E :=
Ker(F̃−c+2 → F̃−c+3) on P

n extends to the vector bundle E(m) := Ker(G̃−c+2 → G̃−c+3) on
P
n+m. By the Babylonian tower theorem for vector bundles on projective spaces of Barth



TYURIN’S BABYLONIAN TOWER THEOREM 5

and Van de Ven (1974), E. Sato (1977), (1978) and Tyurin (1976) (which is, of course,
a particular case of Theorem 1) E is a direct sum of line bundles on P

n. It follows that
Hi

∗(IX,Pn) = 0, i = 1, . . . , n− c = dimX , hence X is arithmetically Cohen-Macaulay. �
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