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ALGEBRAS GRADED BY DISCRETE DOI-HOPF DATA

AND THE DRINFELD DOUBLE OF A HOPF

GROUP-COALGEBRA

D. BULACU AND S. CAENEPEEL

Abstract. We study Doi-Hopf data and Doi-Hopf modules for Hopf
group-coalgebras. We introduce modules graded by a discrete Doi-Hopf
datum; to a Doi-Hopf datum over a Hopf group coalgebra, we associate
an algebra graded by the underlying discrete Doi-Hopf datum, using a
smash product type construction. The category of Doi-Hopf modules
is then isomorphic to the category of graded modules over this algebra.
This is applied to the category of Yetter-Drinfeld modules over a Hopf
group coalgebra, leading to the construction of the Drinfeld double. It
is shown that this Drinfeld double is a quasitriangular G-graded Hopf
algebra.

Introduction

Hopf group coalgebras have been introduced by Turaev [11], and are impor-
tant for the study of certain 3-manifolds. A purely algebraic study of Hopf
group coalgebras and related structures was started in [13], and continued
by several authors, see for example [14, 15, 16]. For a recent survey, we refer
to [12]. A categorical explanation was presented in [2], where it was shown
that group coalgebras, resp. Hopf group coalgebras, are coalgebras, resp.
Hopf algebras in a suitable symmetric monoidal category Tk. We will recall
this construction in 1.4; it provides a natural method to generalize results
of classical Hopf algebra theory to the setting of Hopf group coalgebras. For
example, it is explained in [2, Sec. 4] how Yetter-Drinfeld modules over
Hopf group coalgebras can be introduced: first we introduce the category
of modules over a Hopf group coalgebra, and then we compute its center,
which is a braided monoidal category, by construction.
A crucial result in the classical theory is now the following: to a finite dimen-
sional Hopf algebra H, we can associate a new Hopf algebraD(H), called the
Drinfeld double of H. D(H) is quasitriangular, and the category of modules
over D(H) is isomorphic to the category of Yetter-Drinfeld modules. The
following natural question now arises: can this result be generalized to the
setting of Hopf group coalgebras? At first glance, this looks like another
straightforward application of the methods developed in [2]. This is not the
case, and the underlying reason for this is the fact that the category Tk is
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2 D. BULACU AND S. CAENEPEEL

not rigid. However, we have a duality functor on Tk, but this takes values
in a different category Zk.
To explain this, let us look at a less complicated situation. The dual of a fi-
nite dimensional coalgebra is an algebra, and the category of comodules over
the coalgebra is isomorphic to the category of representations of the dual
algebra. If we look at a group coalgebra, this is a coalgebra in Tk, then the
dual is an algebra in Zk, which turns out to be a G-graded algebra. The cat-
egory of representations of such an algebra is then the category of modules
graded by a (variable) G-set. We have two versions of this representation
category, one with a forgetful functor to Tk, and one with a forgetful functor
to Zk. There are two corresponding duality results, which are explained in
1.5.
Before looking at Yetter-Drinfeld modules, we consider Doi-Hopf modules;
these are more general, but the formalism is easier, see [3]. Doi-Hopf data
and Doi-Hopf modules in Tk are discribed in 1.7 and 1.8. Our aim is then
to describe the category of Doi-Hopf modules as a category of representa-
tions. Before we are able to do this, we have to introduce a new kind of
graded algebra. Recall that a Doi-Hopf datum consists of a Hopf algebra
H, an H-comodule algebra A and an H-module coalgebra C. This con-
struction can be performed in any braided monoidal category, for example
in the category of sets, leading to the notion of discrete Doi-Hopf datum,
see 1.2. In Section 2, we introduce algebras graded by a discrete Doi-Hopf
datum (G,Λ,X), and in Section 3, we discuss modules over a such a graded
algebra, graded by a (G,Λ,X)-set. Now if we have a Doi-Hopf datum in Tk,
then the underlying algebra and the dual of the underlying coalgebra are
both algebras, but in different monoidal categories. However, we can still
form their smash product, and this turns out to be an algebra graded by
the underlying Doi-Hopf datum (G,Λ,X), see Section 2. The main result
of Section 3 states that the category of Doi-Hopf modules is isomorphic to
the category of modules graded by (G,Λ,X)-sets, a result that comes in a
Z-version and in a T -version, similar to the duality result in 1.5.
In Section 4, this result is applied to the category of Yetter-Drinfeld mod-
ules: we introduce the Drinfeld double; it can be constructed as a smash
product, and is an algebra graded by a certain discrete Doi-Hopf datum,
denoted G throughout the paper. In Sections 5 and 7, we introduce quasi-
triangular G-graded Hopf algebras, and we show that the Drinfeld double is
such a quasitriangular G-graded Hopf algebra.

1. Preliminaries

1.1. Monoidal categories. Let C be a monoidal category. One can define
algebras, coalgebras, (bi)modules and (bi)comodules in C. If C is braided,
then we can consider bialgebras and Hopf algebras in C. Doi-Hopf data and
Doi-Hopf modules can then be introduced; in the case where C is symmetric,
this was done in [6], and it is easy to see that this can be extended to arbi-
trary braided monoidal categories. Let us briefly recall the definitions. Let
H be a bialgebra in C. The category CH of right H-comodules is monoidal,
and a right H-comodule algebra is an algebra in CH . The category of right
H-modules CH is also monoidal, and a coalgebra in this category is called
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a right H-module coalgebra. A (right-right) Doi-Hopf datum is a triple
(H,A,C), where H is a bialgebra, A is a right H-comodule algebra and C
is a right H-module coalgebra. An (H,A,C)-Doi-Hopf module is an object
M ∈ C together with a right A-action νM and a right C-coaction ρM such
that thecompatibility condition ρMνM = (νM ⊗C)(M ⊗ψ)(ρM ⊗A), where
ψ = (A ⊗ νC)(cC,A ⊗ A)(C ⊗ ρA) : C ⊗ A → A ⊗ C. ψ is called the en-
twining morphism. c is the braiding. We will denote the category of right
(H,A,C)-Doi-Hopf modules and right A-linear right C-colinear morphisms
by C(H)CA.

1.2. Discrete Doi-Hopf data. Let us describe Doi-Hopf data in Sets. An
algebra in Sets is a monoid. Every set X is in a unique way a coalgebra
in Sets: the comultiplication is the diagonal map X → X × X, and the
augmentation map is the unique map X → {∗}, where {∗} is a singleton.
With this coalgebra structure, every monoid is a bialgebra in Sets. A Hopf
algebra in Sets is then a group. Let G be a monoid. A G-comodule algebra
is a monoid Λ together with a morphism of monoids γ : Λ → G. The
corresponding G-coaction Λ → Λ × G sends λ to (λ, γ(λ)). Finally, a G-
module coalgebra is a right G-set. All these assertions are well-known; they
can be proved as easy exercises, and details can be found in [2]. We conclude
that a Doi-Hopf datum (G,Λ,X) in Sets consists of two monoids G and Λ,
a monoid map γ : Λ → G and a right G-set X. We will call (G,Λ,X) a
discrete Doi-Hopf datum.
Now it is easy to show that an object in Sets(G)XΛ is a right Λ-set Y together
with a map β : Y → X such that β(yλ) = β(y)γ(λ), for all y ∈ Y and
λ ∈ Λ. We call Y a (G,Λ,X)-set.
A morphism Y → Y ′ in Sets(G)XΛ is a map of right Λ-sets η : Y → Y ′

satisfying β′(η(y)) = β(y), for all y ∈ Y .
An example of a (G,Λ,X)-set is Y = Λ×X, with β(λ, x) = x and (λ, x)λ′ =
(λλ′, xγ(λ′)).

1.3. The Fam-category. Let C be a braided monoidal category. To sim-
plify the computations, we assume that C is strict; this assumptions is jus-
tified by the fact that every monoidal category is equivalent to a strict one,
see for example [7]. A new braided monoidal category Fam(C) is introduced
as follows: objects are families of objects in C indexed by a set X, which we
denote as M = (X, (Mx)x∈X), where X is a set, and Mx ∈ C, for all x ∈ X.
A morphism M → M ′ is a couple ϕ = (f, (ϕx)x∈X), where f : X → X ′

is a map and ϕx : Mx → M ′
f(x) is a morphism in C. The composition of

morphisms is defined in the obvious way. The tensor product on Fam(C) is
given by

M ⊗N = (X ×X ′, (Mx ⊗M ′
x′)(x,x′)∈X×X′).

The unit object is ({∗}, k), where {∗} is a singleton, and k is the unit object
of C. The braiding c is given by

cM,M ′ = (t, cMx,M
′

x′
) : M ⊗M ′ →M ′ ⊗M,

where t : X ×X ′ → X ′ ×X is the switch map, and c is the braiding on C.
Obviously, we have a strictly monoidal functor U : Fam(C) → Sets, sending
(X, (Mx)x∈X) to X and (f, (ϕx)x∈X) to f .
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1.4. Group-coalgebras. Group-coalgebras and Hopf group-coalgebras
have been introduced by Turaev in [11]. In [13], Virelizier studied Hopf
group-coalgebras from an algebraic point of view. Group-coalgebras and re-
lated structures have been investigated by several authors, see for example
[14, 15, 16]. For a recent survey, see [12].
Let k be a field (or, more generally, a commutative ring), and Mk the cat-
egory of k-vector spaces (or, in the case where k is a commutative ring,
k-modules). Now consider the categories

Zk = Fam(Mk) and Tk = Fam(Mop
k )op.

Zk and Tk have the same objects M = (X, (Mx)x∈X), where X is a set, and
Mx is a k-module, for all x ∈ X. For the description of the morphisms in
Zk, see 1.3, with C replaced by Mk. A morphism M = (X, (Mx)x∈X) →
N = (Y, (Ny)y∈Y ) in Tk is a couple (f, (ϕy)y∈Y ), with f : Y → X a map,
and ϕy : Mf(x) → Ny a k-linear map, for every y ∈ Y .
It was observed in [2] that a group-coalgebra (resp. a Hopf group-coalgebra)
is a coalgebra (resp. a Hopf algebra) in Tk = Fam(Mop

k )op. An algebra in
Tk is a collection of k-algebras indexed by a set X.
In a similar way, a coalgebra in Zk is a collection of k-coalgebras indexed
by a set X. Algebras in Zk are in one-to-one correspondence to algebras
graded by a monoid.

1.5. Isomorphism of categories. Let C be as in 1.3, and consider the
subcategory Fambij(C) of Fam(C), with the same objects as Fam(C), but with
morphisms of the form (f, (ϕx)x∈X), with f a bijection. Then we have an

isomorphism F between the categories Zbij
k and T bij

k , acting as the identity
on objects. At the level of morphisms, F is defined by

F (f, (ϕx)x∈X) = (f−1, (ϕf−1(y))y∈Y ).

1.6. A duality result. It is well-known that the dual B = C∗ of a k-
coalgebra C is a k-algebra; we have a functor MC → MBop , which is an
isomorphism of categories if C is finitely generated and projective as a k-
module.
We will now discuss a similar result for group coalgebras. Actually, it is
a special case of a more general duality result that will be discussed in
the subsequent sections. But this special case might be illuminating, as it
incorporates some of the subtleties that will reappear later in a more general
situation, and this is why we decided to give an outline here.
Let A be a G-graded k-algebra, and ZA the category of right modules over
A, viewed as an algebra in Zk. The objects of ZA are couples (X,M),
where X is a right G-set, and M = ⊕x∈XMx is a right A-module graded
by X; we refer to [9] for detail on modules graded by G-sets. A morphism
(X,M) → (Y,N) in ZA is a couple (f, ϕ), where f : X → Y is a morphism of
G-sets, and ϕ : M → N is a right A-module map such that ϕ(Mx) ⊂ Nf(x),
for all x ∈ X. It is obvious that we have a forgetful functor ZA → Zk.
We have a second category TA, with the same objects as ZA, but morphisms
defined in a different way: (f, (ϕy)y∈Y ) : (X,M) → (Y,N) consists of a
morphisms of right G-sets f : Y → X, and a bunch of k-linear maps
ϕy : Mf(y) → Ny such that ϕyg(ma) = ϕy(m)a, for all m ∈ Mf(y) and
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a ∈ Ag. Observe that we have a forgetful functor TA → Tk.
In a similar way, we have two categories associated to a group coalgebra
C = (G, (Cg)g∈G), one with a forgetful functor to Tk, and the other one
with a forgetful functor to Zk. The two categories T C and ZC have the
same objects (X, (Mx)x∈X), where X is a right G-set, Mx is a k-module,
and

ρx,g : Mxg →Mx ⊗ Cg

are k-linear maps such that the following coassociativity and counit condi-
tions hold:

(Mx ⊗∆g,h) ◦ ρx,gh = (ρx,g ⊗ Ch) ◦ ρxg,h ; (Mx ⊗ ε) ◦ ρx,e =Mx.

A morphism M → N in T C is a morphism (f, (ϕy)y∈Y ) in Tk such that f is
a morphism of G-sets and

(ϕy ⊗ Cg) ◦ ρf(y),g = ρy,g ◦ ϕyg.

A morphism M → N in ZC is a morphism (f, (ϕx)x∈X) in Zk such that f
is a morphism of G-sets and

(ϕx ⊗ Cg) ◦ ρx,g = ρf(x),g ◦ ϕxg.

Now let C be a group coalgebra, and suppose that the underlying monoid G
is a group. Write Bg = C∗

g−1 . Then B = ⊕g∈GBg is a G-graded k-algebra,

with multiplication maps Bg⊗Bh → Bgh given by opposite convolution: for
ξ ∈ C∗

g−1 , ξ
′ ∈ C∗

h−1 and c ∈ C(gh)−1 , we have

(ξξ′)(c) = ξ(c(2,g−1))ξ
′(c(1,h−1)).

We have functors T : T C → TB and Z : ZC → ZB defined as follows: at
the level of objects, T and F are defined in the same way:

T (X, (Mx)x∈X) = Z(X, (Mx)x∈X) =
⊕

x∈X

Mx,

with the following right B-action: for m ∈Mx and ξ ∈ Bg = C∗
g−1 :

mξ = 〈ξ,m[1,g−1]〉m[0,xg].

At the level of morphisms, T and Z are the identities. If every Cg is finitely
generated and projective as k-modules, then T and F are isomorphisms of
categories. The inverse functors are defined as follows: if M is graded by
the G-set X, then T−1(M) = Z−1(M) = (X, (Mx)x∈X), with coaction maps
ρx,g : Mx,g →Mx ⊗ Cg given by the formula

ρx,g(m) = mξ(g) ⊗ c(g).

We implicitly introduced the following notation, which will be used through-
out the rest of this paper. It is well known that Cg is finitely generated

and projective if and only if there exists a unique ξ(g) ⊗ c(g) ∈ C∗
g ⊗ Cg,

called finite dual basis of Cg (summation is implicitly understood) such that

c = ξ(g)(c)c(g) and ξ = ξ(c(g))ξ(g) for all c ∈ Cg and ξ ∈ C∗
g . Also observe

that

(1) h⇀ξ(g) ⊗ c(g) = ξ(g) ⊗ c(g)h,
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for all h ∈ Hγ(g). Indeed, let ξ
(g) ⊗ c(g) = ξ̃(g) ⊗ c̃(g). Then

h⇀ξ(g) ⊗ c(g) = (h⇀ξ(g))(c̃g)ξ̃g ⊗ c(g) = ξ̃g ⊗ (h⇀ξ(g))(c̃g)c(g) = ξ(g) ⊗ c(g)h.

1.7. Doi-Hopf data in Tk. First, let H = (G, (Hg)g∈G) be a semi-Hopf
group coalgebra, that is a bialgebra in Tk. This means that we have the
following data and properties:

• G is a monoid;
• Hg is a k-algebra, for every g ∈ H;
• we have k-algebra maps ε : He → k and ∆g,g′ : Hgg′ → Hg ⊗Hg′ ,
for all g, g′ ∈ G.

The Sweedler notation for the comultiplication maps is the following:

∆g,g′(h) = h(1,g) ⊗ h(2,g′).

The following coassociativity and counit property have to be satisfied:

(Hg ⊗∆g′,g′′) ◦∆g,g′g′′ = (∆g,g′ ⊗Hg′′) ◦∆gg′,g′′ ;

(Hg ⊗ ε) ◦∆g,e = (ε⊗Hg) ◦∆e,g = Hg.

Now let A = (X, (Ax)x∈X) be a right H-comodule algebra. This means that
we have the following data and properties:

• X is a right G-set;
• Ax is a k-algebra, for all x ∈ X;
• we have k-algebra maps ρx,g : Axg → Ax ⊗Hg;

The following coassociativity and counit properties have to hold:

(Ax ⊗∆g,h) ◦ ρx,gh = (ρx,g ⊗Hh) ◦ ρxg,h;

(Ax ⊗ ε) ◦ ρx,e = Ax.

We use the following Sweedler-type notation for the coaction maps:

ρx,g(a) = a[0,x] ⊗ a[1,g].

Finally, let C = (Λ, (Cλ)λ∈Λ) be a right H-module coalgebra. This means
that we have the following:

• Λ is a monoid, and we have a monoid morphism γ : Λ → G;
• Cλ is a right Hγ(λ)-module, for every λ ∈ Λ;
• C is a group-coalgebra, that is, we have k-linear maps ∆λ,λ′ : Cλλ′ →
Cλ ⊗ Cλ′ and ε : Ce → k satisfying the appropriate coassociativity
and counit properties;

• the following compatibility conditions have to be fulfilled: for all
c ∈ Cλλ′ and h ∈ Hγ(λλ′), we have

∆λ,λ′(ch) = c(1,λ)h(1,γ(λ)) ⊗ c(2,λ′)h(2,γ(λ′)),

and ε(ch) = ε(c)ε(h), for all c ∈ Ce, h ∈ He.

Observe that (G,Λ,X) is a discrete Doi-Hopf datum; we call it the discrete
Doi-Hopf datum underlying (H,A,C).

1.8. Doi-Hopf modules in Tk. Now we describe the objects of M =

(Y, (My)y∈Y ) ∈ Tk(H)
C
A. These consist of the following data

• a (G,Λ,X)-set Y (see 1.2);
• for every y ∈ Y , a right Aβ(y)-module My;
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• k-linear maps ρy,λ : Myλ → My ⊗ Cλ, satisfying the appropriate
coassociativity and counit conditions;

• the following compatibility conditions have to be satisfied, for all
m ∈Myλ and a ∈ Aβ(yλ):

(2) ρy,λ(ma) = m[0,y]a[0,β(y)] ⊗m[1,λ]a[1,γ(λ)].

Here we use the following Sweedler-type notation for the coaction on M :
ρy,λ(m) = m[0,y] ⊗m[1,λ], for m ∈Myλ.

A morphism M = (Y, (My)y∈Y ) → M ′ = (Y ′, (M ′
y′)y′∈Y ′) in Tk(H)

C
A is a

couple (η, (ϕy′ )y′∈Y ′), where

• η : Y ′ → Y is a morphism of (G,Λ,X)-sets;
• for every y′ ∈ Y ′, ϕy′ : Mη(y′) →M ′

y′ is a right Aβ′(y′)-linear map;

• for all y′ ∈ Y ′ and λ ∈ Λ, diagram (3) commutes.

(3) Mη(y′)λ

ρη(y′),λ

��

ϕy′λ
// M ′

y′λ

ρ′
y′,λ

��

Mη(y′) ⊗ Cλ
ϕy′⊗Cλ

// M ′
y′ ⊗ Cλ

Example 1.9. Let G be a monoid; then (G,G,G) is a discrete Doi-Hopf
datum. G is a right G-module by right multiplication, and the identity on
G is a morphism of monoids. A (G,G,G)-set is a right G-set Y together
with a map β : Y → G satisfying β(yg) = β(y)g, for all y ∈ Y and g ∈ G.
Let H = (G, (Hg)g∈G) be a semi-Hopf group coalgebra. (H,H,H) is a Doi-

Hopf datum in Tk. A Doi-Hopf module (Y, (My)y∈Y ) ∈ Tk(H)
H
H consists of

the following data: Y is (G,G,G)-set as above; every My is a right Hβ(y)-
module, and ρyg : Myg → My ⊗Hg is a coassociative coaction. For every
m ∈Myg and h ∈ Hβ(yg), we have the compatibility relation

ρy,g(mh) = m[0,y]h(1,β(y)) ⊗m[1,g]h(2,g).

These Doi-Hopf modules are simply called Hopf modules, and have been con-
sidered in [2, Sec. 3.1], where the Structure Theorem for Doi-Hopf modules
was discussed.

1.10. Let Zk(H)
C
A be the category with the same objects as Tk(H)

C
A, but

with morphisms defined in a different way. A morphismM = (Y, (My)y∈Y ) →

M ′ = (Y ′, (M ′
y′)y′∈Y ′) in Zk(H)

C
A is a couple (η, (ϕy)y∈Y ), where

• η : Y → Y ′ is a morphism of (G,Λ,X)-sets;
• for every y ∈ Y , ϕy : My →M ′

η(y) is a morphism ofAβ(y) = Aβ′(η(y))-

modules;
• for all y ∈ Y and λ ∈ Λ, diagram (4) commutes.

(4) Myλ

ρy,λ

��

ϕyλ
// M ′

η(y)λ

ρ′
η(y),λ

��

My ⊗ Cλ
ϕy⊗Cλ

// M ′
η(y) ⊗ Cλ
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2. Algebras graded by a discrete Doi-Hopf datum

Definition 2.1. Let (G,Λ,X) be a discrete Doi-Hopf datum. A (G,Λ,X)-
graded algebra is an associative algebra A (not necessarily with unit) to-
gether with a direct sum decomposition

A = ⊕λ∈Λ ⊕x∈X Aλ,x,

such that

(5) Aλ,xAλ′,x′ ⊂ δx′,xγ(λ′)Aλλ′,x′ ,

where δ is the Kronecker symbol. Moreover, for every x ∈ X, there exists a
1x ∈ Ae,x such that

a1x = a, for all λ ∈ Λ and a ∈ Aλ,x;(6)

1xb = b, for all λ ∈ Λ and b ∈ Aλ,xγ(λ).(7)

Proposition 2.2. Let A be a (G,Λ,X)-graded algebra, with either G or Λ
a group, and put

Aλ = ⊕x∈XAλ,x,

for all λ ∈ Λ. Then A = ⊕λ∈ΛAλ is a Λ-graded algebra with idempotent local
units. If X is finite, then A is a Λ-graded algebra with unit 1 =

∑

x∈X 1x.

Proof. It follows from (5) that AλAλ′ ⊂ Aλλ′ . If G or Λ is a group, then
γ(λ) is invertible in G, for all λ ∈ Λ.
Take a ∈ Aλ,x. From (5-7), it follows that

a1y = δx,ya and 1ya = δy,xγ(λ)−1a.

In particular, 1x1y = δx,y1x, so {1x | x ∈ X} is a set of orthgonal idempo-
tents. This implies the following: for any finite subset I ⊂ X, we have the
following implications:

x ∈ I =⇒ a(
∑

y∈I

1y) = a;

xγ(λ)−1 ∈ I =⇒ (
∑

y∈I

1y)a = a.

Now take a finite subsetB ⊂ A. There exist λ1, · · · , λn ∈ Λ and x1, · · · , xm ∈
X such that

B ⊂
n

⊕

i=1

m
⊕

j=1

Aλi,xj .

We can always add e to {λ1, · · · , λn}, so it is no restriction to assume that
λ1 = e. Let a be a homogeneous component of one of the elements of
B. Then we find i ∈ {1, · · · n} and j ∈ {1, · · · ,m} such that a ∈ Aλi,xj .

Consider I = {xjγ(λi)
−1 | i ∈ {1, · · · n}, j ∈ {1, · · · ,m}}. Since xj =

xjγ(λ1)
−1, xjγ(λi)

−1 ∈ I, we have

a(
∑

y∈I

1y) = (
∑

y∈I

1y)a = a,

and then it follows that

b(
∑

y∈I

1y) = (
∑

y∈I

1y)b = b,
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for all b ∈ B. If X is finite, then the above arguments show that 1 =
∑

x∈X 1x is a unit for A, and then A is a unital Λ-graded algebra. �

From (5) and (6), we deduce that Ae,xAe,x′ = δx,x′Ae,x′. Therefore every
Ae,x is a k-algebra, with unit 1x, and (X, (Ae,x)x∈X) is an algebra in Tk.
Assume thatX is finite, so that A is a unital Λ-graded algebra. Then 1 ∈ Ae,
see for example [8, Prop. I.1.1], and we can write 1 =

∑

x∈X 1x ∈ ⊕x∈XAe,x.

Proposition 2.3. Take a discrete Doi-Hopf datum (G,Λ,X), with G or Λ a
group, and assume that X is finite. The following assertions are equivalent:

(a) A = ⊕λ∈Λ ⊕x∈X Aλ,x is a (G,Λ,X)-graded algebra;
(b) A = ⊕λ∈Λ

(

⊕x∈XAλ,x
)

is a unital Λ-graded algebra, and, with 1x ∈
Ae,x defined as above,

Aλ,x1x′ = δx,x′Aλ,x;(8)

1xAλ′,x′ = δx′,xγ(λ′)Aλ′,x′ .(9)

Proof. (a) ⇒ (b). We have already seen above that A is a unital Λ-graded

algebra; (8-9) follow immediately from (5-7).
(b) ⇒ (a). Take a ∈ Aλ,x. It follows from (8) that a1x′ = 0 if x 6= x′.

Therefore a = a1 =
∑

x′∈X a1x′ = a1x, proving (6). (7) is proved in a
similar way: let b ∈ Aλ,xγ(λ). It follows from (9) that 1x′b = 0 if x′ 6= x, so
b = 1b =

∑

x′∈X 1x′b = 1xb.
Let a = 1x ∈ Ae,x. It follows that 1x1x′ = δx,x′1x.
In order to show that (5) holds, take a ∈ Aλ,x and b ∈ Aλ′,x′ . Then ab ∈
Aλλ′ , since A is a Λ-graded algebra. Now we have that

ab = (a1x)(1x′γ(λ′)−1b) = a(1x1x′γ(λ′)−1)b = 0,

if x 6= x′γ(λ′)−1, or, equivalently, x′ 6= xγ(λ′). Now let x′ = xγ(λ′). Since
A is a Λ-graded algebra, a ∈ Aλ and b ∈ Aλ′ , we have that

ab ∈ Aλλ′ =
⊕

y∈X

Aλλ′,y =
⊕

y∈X

Aλλ′,y1y,

hence we have that ab =
∑

y∈X cy1y, with cy ∈ Aλλ′,y. Now b1x′ = b, hence

ab = ab1x′ =
∑

y∈X

cy1y1x′ = cx′1x′ ∈ Aλλ′,x′1x′ = Aλλ′,x′ ,

and this shows that (5) holds. �

2.4. 2-categorical interpretation. The definition of algebra graded by
a discrete Doi-Hopf datum can be rephrased in terms of 2-categories. For
more detail on 2-categories, we refer the reader to [1, Ch. 7].
To a discrete Doi-Hopf datum (G,Λ,X), we associate a 2-category G, under
the assumption that G or Λ is a group. The objects of G are the elements
of X, and the morphisms are the elements of Λ × X. (λ, x) ∈ Λ × X

is a morphism with target x and source xγ(λ)−1: s(λ, x) = xγ(λ)−1 and
t(λ, x) = x. Then the composition (λ′, z) ◦ (λ, y) is defined if and only
y = t(λ, y) = s(λ′, z) = zγ(λ′)−1, and, in this case (λ′, z) ◦ (λ, y) = (λλ′, z).
It is easy to verify that the identity morphism on x is (e, x).
Like every category, G can be viewed as a 2-category: the 0-cells are the
objects of G, and, for all x, y ∈ X, Hom(x, y) is the discrete category with
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objects the morphisms x → y in G. The only 2-cells are then the identity
2-cells. For every x ∈ X, we have the unit functor ux : 1 → Hom(x, x),
sending the object 0 of 1 to (e, x), and the morphism 1 of 1 to the identity
of (e, x). 1 is the category with one object 0 and one morphism 1.
The category of k-modules Mk is monoidal, so it can be viewed as a bi-
category with one object ∗. To simplify notation, we will treat Mk as if it
were a strict monoidal category, or a 2-category with one object. The unit
functor u∗ : 1 → Mk sends 0 to k and 1 to the identity of k.

Proposition 2.5. Assume that X is finite, and that Λ or G is a group.
Then we have a bijective correspondence between (G,Λ,X)-graded algebras
and lax functors F : G → Mk.

Proof. According to [1, Def. 7.5.1], a lax functor F : G → Mk consists of
the following data:
(a) for every x ∈ X, a 0-cell F (x) of Mk. Since Mk has only one 0-cell, so
there is only one way to define F at the level of 0-cells;
(b) for every x, y ∈ X, a functor Fx,y : Hom(x, y) → Hom(F (x), F (y)) =
Mk. Since Hom(x, y) is discrete, it suffices to give Fxγ(λ)−1,x(λ, x), for every
morphism (λ, x) in G. Write Fxγ(λ)−1,x(λ, x) = A(λ,x).
(c) for x, y, z ∈ X, we have to give a natural transformation µ : Fx,y ⇒
Fy,z → Fx,z. This means that for every (λ, y) ∈ Hom(x, y) and (λ′, z) ∈
Hom(y, z), we have to give a k-linear map

µ(λ,y),(λ′,z) : A(λ,y) ⊗A(λ′,z) → A(λλ′,z).

Since y = zγ(λ′)−1, we find k-linear maps A(λ,y) ⊗ A(λ′,yγ(λ′)) → A(λλ′,z),
which is precisely what is needed to define on A = ⊕(λ,x)∈Λ×XA(λ,x) a mul-
tiplication that satisfies (5). The naturality of µ is automatically fulfilled
since Hom(x, y) is discrete. The associativity of the multiplication on A

follows from the functorial properties of F .
(d) For all x ∈ X, we need a natural transformation

δx : u∗ ⇒ Fx,x ◦ ux.

This natural transformation is determined by a linear map

δx(0) : u∗(0) = k → Fx,x(ux(0)) = Ae,x.

The diagrams (7.12) in [1] have to commute. In our particular situation,
this means that the diagrams

k ⊗Aλ,xγ(λ)
δx(0)⊗Aλ,xγ(λ)

//

=
**TTTTTTTTTTTTTTTTT

Ae,x ⊗Aλ,xγ(λ)

µ(e,x),(λ,xγ(λ))

��

Aλ,xγ(λ)

Aλ,x ⊗ k
Aλ,x⊗δx(0)

//

=
))SSSSSSSSSSSSSSSS

Aλ,x ⊗Ae,x

µ(λ,x),(e,x)

��

Aλ,x
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commute. Now write 1x = δx(0)(1k). The commutativity of the above
diagrams is equivalent to (6-7). �

2.6. The smash product. We propose a first method to construct algebras
graded by a discrete Doi-Hopf datum (G,Λ,X), in the situation where G or
Λ is a group. Let A be a right H-comodule algebra, as in 1.7. Let B be a
Λ-graded algebra, and assume that every Bλ is a left Hγ(λ)−1-module; the
action of h ∈ Hγ(λ)−1 on b ∈ Bλ is denoted by h⇀b. Moreover, assume that

(10) h⇀(bb′) = (h(2,γ(λ)−1)⇀b)(h(1,γ(λ′)−1)⇀b′),

for all b ∈ Bλ, b
′ ∈ Bλ′ , h ∈ Hγ(λλ′)−1 , and h⇀1 = ε(h)1, for all h ∈ He.

Now define
B#A =

⊕

λ∈Λ

⊕

x∈X

Bλ#Ax.

Here Bλ#Ax = Bλ ⊗Ax as a k-module. We define a multiplication map on
B#A, making it a (G,Λ,X)-graded algebra. We need to define multiplica-
tion maps

(Bλ#Ax)⊗ (Bλ′#Ax′) → B#A.

If x′ 6= xγ(λ′), then we let this multiplication map be zero. For x′ = xγ(λ′),

µ : (Bλ#Ax)⊗ (Bλ′#Ax′) → Bλλ′#Ax′

is given by the formula

(b#a)(b′#a′) = b(a[1,γ(λ′)−1]⇀b′)#a[0,xγ(λ′)]a
′.

Proposition 2.7. With notation as above, B#A is an algebra graded by
(G,Λ,X).

Proof. We have to show that the mulitplication is associative. Take a ∈ Ax,
a′ ∈ Ax′ , a

′′ ∈ Ax′′ , b ∈ Bλ, b
′ ∈ Bλ′ and b′′ ∈ Bλ′′ . Also assume that

x′ = xγ(λ′) and x′′ = x′γ(λ′′).
(

(b#a)(b′#a′)
)

(b′′#a′′) =
(

b(a[1,γ(λ′)−1]⇀b′)#a[0,x′]a
′
)

(b′′#a′′)

= b(a[2,γ(λ′)−1]⇀b′)
(

(a[1,γ(λ′′)−1]a
′
[1,γ(λ′′)−1])⇀b′′

)

#a[0,x′′]a
′
[0,x′′]a

′′;

(b#a)
(

(b′#a′)(b′′#a′′)
)

= (b#a)
(

b′(a′[1,γ(λ′′)−1]⇀b′′)#a′[0,x′′]a
′′
)

= b
(

a[1,γ(λ′λ′′)−1]⇀
(

b′(a′[1,γ(λ′′)−1]⇀b′′)
)

)

#a[0,x′′]a
′
[0,x′′]a

′′

= b(a[2,γ(λ′)−1]⇀b′)
(

(a[1,γ(λ′′)−1]a
′
[1,γ(λ′′)−1])⇀b′′

)

#a[0,x′′]a
′
[0,x′′]a

′′.

With the same notation, we easily compute that

(1#1x)(b
′#a′) = 1(1γ(λ′)−1)⇀b′)#1x′a

′ = b′#a′;

(b#a)(1#1x) = b(a[1,γ(λ′)−1]⇀1)#a[0,x′]1x′

= b#ε(a[1,γ(λ′)−1])a[0,x′] = b#a.

�

2.8. The Koppinen smash product. Now we introduce a second method
to construct algebras graded by a discrete Doi-Hopf datum. Let (H,A,C)
be a Doi-Hopf datum in Tk, with Λ a group, and let

A =
⊕

λ∈G

⊕

x∈X

Hom(Cλ−1 , Ax) =
⊕

λ∈G

⊕

x∈X

Aλ,x.
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We define multiplication maps

Aλ,x ⊗Aλ′,x′ → A;

for x′ 6= xγ(λ′), this multiplication map is 0. For x′ = xγ(λ′), then we
describe

µ : Aλ,x ⊗Aλ′,x′ → Aλλ′,x′ .

For f ∈ Aλ,x and g ∈ Aλ′,x′, µ(f ⊗ g) = f#g ∈ Aλλ′,x′ , is given by the
following formula, for c ∈ C(λλ′)−1 :

(f#g)(c) = f(c(2,λ−1))[0,x′]g
(

c(1,(λ′)−1)f(c(2,λ−1))[1,γ(λ′)−1]

)

∈ Ax′ .

Proposition 2.9. A, as defined in 2.8 is an algebra graded by (G,Λ,X).

Proof. Take f ∈ Aλ,x, g ∈ Aλ′,x′ and h ∈ Aλ′′,x′′ . Assume also that x′ =
xγ(λ′) and x′′ = x′γ(λ′′). We have to show that (f#g)#h = f#(g#h). For
c ∈ C(λλ′λ′′)−1 , we have

((f#g)#h)(c)

=
(

(f#g)(c(2,(λλ′)−1)

)

[0,x′′]
h
(

c(1,(λ′′)−1)

(

(f#g)(c(2,(λλ′)−1)

)

[1,γ(λ′′)−1]

)

= f(c(3,λ−1))[0,x′′]g
(

c(2,(λ′)−1)f(c(3,λ−1))[2,γ(λ′)−1]

)

[0,x′′]
h
(

c(1,(λ′′)−1)

f(c(3,λ−1))[1,γ(λ′′)−1]g
(

c(2,(λ′)−1)f(c(3,λ−1))[2,γ(λ′)−1]

)

[1,γ(λ′′)−1]

)

= f(c(2,λ−1))[0,x′′](g#h)
(

c(1,(λ′λ′′)−1)f(c(2,λ−1))[1,γ(λ′λ′′)−1]

)

= (f#(g#h))(c).

Define ex : Ce → Ax by ex(c) = ε(c)1x. Then it is easy to compute that
ex#g = g and f#ex′ = f . �

2.10. Let (H,A,C) be a Doi-Hopf datum in Tk, with Λ a group, and put

B =
⊕

λ∈Λ

Bλ,

with Bλ = C∗
λ−1 . In 1.6, we showed that B is a Λ-graded algebra. Bλ is a

left Hγ(λ)−1 -module: for ξ ∈ Bλ, h ∈ Hγ(λ)−1and c ∈ Cλ−1 , let

(h⇀ξ)(c) = ξ(ch).

It is easy to verify that (10) is satisfied: for ξ′ ∈ Bλ′ , h ∈ Hγ(λλ′)−1 and
c ∈ C(λλ′)−1 , we have

(h⇀(ξξ′))(c) = (ξξ′)(ch) = ξ
(

(ch)(2,λ−1)

)

ξ′
(

(ch)(1,(λ′)−1)

)

= ξ
(

c(2,λ−1)h(2,γ(λ)−1)

)

ξ′
(

c(1,(λ′)−1)h(1,γ(λ′)−1)

)

=
(

(h(2,γ(λ)−1)⇀ξ)(h(1,γ(λ′)−1)⇀ξ′)
)

(c).

Now we can consider the smash product B#A, as in 2.6. Consider the maps

αλ,x : C∗
λ−1#Ax → Aλ,x = Hom(Cλ−1 , Ax), αλ,x(ξ#a)(c) = ξ(c)a,

for ξ ∈ C∗
λ−1 , a ∈ Ax, c ∈ Cλ−1 . It is well-known that αλ,x is an isomorphism

of k-modules if Cλ is finitely generated and projective as a k-module. For
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later use, we describe α−1
λ,x, using the notation introduced in 1.6 for the dual

basis of Cλ:

(11) α−1
λ,x(f) = ξ(λ

−1)#f(c(λ
−1)).

Proposition 2.11. With notation as in 2.10,

α =
⊕

λ∈Λ

⊕

x∈X

αΛ,x : B#A→ A

is a morphism of algebras graded by (G,Λ,X). If every Cλ is finitely gen-
erated and projective as a k-module, then it is an isomorphism.

Proof. Take ξ ∈ Bλ, ξ
′ ∈ Bλ′ , a ∈ Ax, a

′ ∈ Ax′ , and assume that x′ = xγ(λ′).
For all c ∈ C(λλ′)−1 , we have

αλλ′,x′
(

(ξ#a)(ξ′#a′)
)

(c) = αλλ′,x′
(

ξ(a[1,γ(λ′)−1]⇀ξ′)#(a[0,x′]a
′)
)

(c)

= ξ(c(2,λ−1))ξ
′(c(1,(λ′)−1)a[1,γ(λ′)−1])a[0,x′]a

′

=
(

αλ,x(ξ#a)αλ′,x′(ξ
′#a′)

)

(c).

It is also obvious that αe,x(ε#1x) = ex. �

3. Modules graded by (G,Λ,X)-sets

Definition 3.1. Let (G,Λ,X) be a discrete Doi-Hopf datum, and A a
(G,Λ,X)-graded algebra. Let Y be a (G,Λ,X)-set, see 1.2. A right A-
module M is graded by the (G,Λ,X)-set Y if

M =
⊕

y∈Y

My

with

(12) MyAλ,x ⊂ δx,β(yλ)Myλ

and

(13) m1β(y) = m,

for all m ∈My.

Example 3.2. Let Y be a (G,Λ,X)-set. Z ⊂ Y is a (G,Λ,X)-subset of Y
if zλ ∈ Z, for all λ ∈ Λ and z ∈ Z.
Now suppose thatM = ⊕y∈YMy is a right A-module graded by the (G,Λ,X)-
set Y . Then N = ⊕z∈ZMz is a right A-module graded by the (G,Λ,X)-set
Z. Indeed, for all z ∈ Z, λ ∈ Λ and x ∈ X, we have

NzAλ,x =MzAλ,x ⊂ δx,β(zλ)Mzλ = δx,β(zλ)Nzλ.

Example 3.3. Recall from 1.2 that Y = Λ ×X is a (G,Λ,X)-set. Let A
be a (G,Λ,X)-graded algebra; then A viewed as a right A-module is graded
by the (G,Λ,X)-set Λ×X. We need to verify that

(14) Aλ,xAλ′,x′ ⊂ δx′,β((λ,x)λ′)A(λ,x)λ′ .

We have seen in 1.2 that (λ, x)λ′ = (λλ′, xγ(λ′)) and β((λ, x)λ′) = xγ(λ′),
and then (14) reduces to (5). It is also easy to check the unit condition: for
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a ∈ Aλ,x, we have that a1β(λ,x) = a1x = a.
Now fix x ∈ X. Then

Zx = {(λ, xγ(λ)) | λ ∈ Λ}

is a (G,Λ,X)-subset of Λ × X. Indeed, for all λ′ ∈ Λ, (λ, xγ(λ))λ′ =

(λλ′, xγ(λλ′)) ∈ Zx. It follows from Example 3.2 that A(x) = ⊕λ∈ΛAλ,xγ(λ)
is a right A-module graded by the G-set Zx.

Assume now that X is finite; then we know that A is an algebra with unit
1 =

∑

x∈X 1x. IfM is a right A-module graded by a (G,Λ,X)-set Y , then we
have for all m ∈ My that m1x = 0 if x 6= β(y), hence m1 =

∑

x∈X m1x =
m1β(y) = m, so M is a unital A-module. It also follows from (12) that
MyAλ ⊂ Myλ, hence M is a right A-module graded by the Λ-set Y . We
refer to [9] for a discussion of modules graded by G-sets.
Conversely, let M be a right A-module graded by a Λ-set Y (which is not
necessarily a (G,Λ,X)-set). Since 1 =

∑

x∈X 1x, we have, for all y ∈ Y ,
My = My1 =

∑

x∈XMy1x. Let x 6= x′ ∈ X, and assume that m ∈ My1x ∩
My1x′ . Then m = n1x′ for some n ∈M , and m = m1x = n1x′1x = 0. Hence
My1x ∩My1x′ = {0} and

(15) My = ⊕x∈XMy1x.

If M is graded by a (G,Λ,X)-set Y , then it follows from (12) that My1x =
{0} if x 6= β(y), and then we find that My1β(y) = My. Hence at most one
direct summand in (15) is nontrivial.

Proposition 3.4. Let A be a (G,Λ,X)-graded algebra, with X finite, and Y
a (G,Λ,X)-set. For a (unital) right A-module M = ⊕y∈YMy, the following
assertions are equivalent

• M is graded by the (G,Λ,X)-set Y ;
• M is graded by the Λ-set Y and My1x = δx,β(y)My.

Proof. 1) ⇒ 2): see the arguments preceding Proposition 3.4.

2) ⇒ 1). Take m ∈ My. If x 6= β(y), then m1x = 0, hence m = m1 =
∑

x∈X m1x = m1β(y).
Take m ∈My and a ∈ Aλ,x. Then

ma = (m1β(y))a = m(1β(y)a) = m(δx,β(y)γ(λ)a).

If x 6= β(y)γ(λ), then ma = 0. In any case ma ∈ Myλ, so we conclude that
(12) holds, since β(y)γ(λ) = β(yλ). �

Now we introduce the category Z
(G,Λ,X)
A of right A-modules graded by

(G,Λ,X)-sets. The objects are couples (Y,M), where Y is a (G,Λ,X)-
set, and M is a right A-module graded by the (G,Λ,X)-set Y . A morphism

(Y,M) → (Y ′,M ′) in Z
(G,Λ,X)
A is a couple (η, ϕ), where η : Y → Y ′ is a

morphism of (G,Λ,X)-sets, and ϕ : M →M ′ is a right A-linear map such
that ϕ(My) ⊂ M ′

η(y). If the condition ϕ(My) ⊂ M ′
η(y) is satisfied, then the

condition that ϕ is right A-linear is equivalent to the commutativity of the
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diagrams

(16) My ⊗Aλ,β(yλ)

ϕy⊗id
��

// Myλ

ϕyλ .

��

M ′
η(y) ⊗Aλ,β′(η(y)λ) // M ′

η(yλ) =M ′
η(y)λ

T
(G,Λ,X)
A has the same objects as Z

(G,Λ,X)
A . A morphism (Y,M) → (Y ′,M ′)

in T
(G,Λ,X)
A is a couple (η, (ϕy′ )y′∈Y ′), where η : Y ′ → Y is a morphism

of (G,Λ,X)-sets, and ϕy′ : Mη(y′) → M ′
y′ are k-linear maps such that the

diagram

(17) Mη(y′) ⊗Aλ,β(η(y′)λ)

ϕy′⊗id

��

// Mη(y′)λ =Mη(y′λ)

ϕy′λ

��

My′ ⊗Aλ,β′(y′λ) // M ′
y′λ

commutes, for all y′ ∈ Y ′ and λ ∈ Λ.
Observe that these definitions are designed in such a way that we have
forgetful functors

Z
(G,Λ,X)
A → Zk and T

(G,Λ,X)
A → Tk.

Proposition 3.5. Let (H,A,C) be a Doi-Hopf datum in Tk. Then we have
fully faithful functors

T : Tk(H)
C
A → T

(G,Λ,X)
A

and Z : Zk(H)
C
A → Z

(G,Λ,X)
A

.

At the level of objects, the functors are defined in the same way: T (M) =
Z(M) = (Y,⊕y∈YMy), with multiplication maps My⊗Aλ,β(yλ) →Myλ given
by the formula

(18) mf = m[0,yλ]f(m[1,λ−1]).

At the level of morphisms, T and Z are defined by

T (η, (ϕy′ )y′∈Y ′) = (η, (ϕy′ )y′∈Y ′) and Z(η, (ϕy)y∈Y ) = (η,
⊕

y∈Y

ϕy).

Proof. We will show that the action (18) is associative and satisfies the unit
property. Take f ∈ Aλ,x, f

′ ∈ Aλ′,x′ , with x′ = xγ(λ′), so that f#f ′ ∈
Aλλ′,x′ . Let m ∈My, and take x = β(y). Now

(mf)f ′ = (m[0,yλ]f(m[1,λ−1]))f
′

= m[0,x′]f(m[2,λ−1])[0,x′]f
′
(

m[1,(λ′)−1]f(m[2,λ−1])[1,γ(λ′)−1]

)

= m(f#f ′).

The unit property is handled as follows. For m ∈My, we have

meβ(y) = m[0,y]eβ(y)(m[1,e]) = m[0,y]ε(m[1,e])1β(y) = m.

Now we look at the morphisms. Let (η, (ϕy′ )y′∈Y ′) be a morphism M →M ′

in Tk(H)
C
A. We then have to show that it is also a morphism (Y,⊕y∈YMy) →
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(Y ′,⊕y′∈Y ′M ′
y′) in Z

(G,Λ,X)
A

. To this end, it suffices to show that the dia-

grams (17) commute. Take m ∈Mη(y′) and f ∈ Aλ,β(η(y′)λ). Then

ϕy′(m)f = ϕy′(m)[0,y′λ]f(ϕy′(m)[1,λ−1])
(3)
=ϕy′λ(m[0,η(y′)λ])f(m[1,λ−1])

= ϕy′λ
(

m[0,η(y′)λ]f(m[1,λ−1])
)

= ϕy′λ(mf).

Finally, take a morphism (η, (ϕy)y∈Y ) : M → M ′ in Zk(H)
C
A. We have to

show that (η,⊕y∈Y is a morphism in Z
(G,Λ,X)
A

. To this end, we have to show
that (16) commutes. For m ∈My and f ∈ Aλ,β(yλ), we have

ϕy(m)f = ϕy(m)[0,η(yλ)]f(ϕy(m)[1,λ−1])
(4)
=ϕyλ(m[0,yλ])f(m[1,λ−1])

= ϕyλ
(

m[0,yλ]f(m[1,λ−1])
)

= ϕyλ(mf).

�

Theorem 3.6. Let (H,A,C) be a Doi-Hopf datum in Tk, and assume that
every Cλ is finitely generated and projective as a k-module. Then the func-
tors T and Z from Proposition 3.5 are isomorphisms of categories.

Proof. We will construct a functor G : T
(G,Λ,X)
A

→ Tk(H)
C
A and show that

it is the inverse of T . Take (Y,M) ∈ M
(G,Λ,X)
A

. Let G(M) = (Y, (My)y∈Y ),
with structure described as below.
a)My is a right Aβ(y)-module: ma = mαe,β(y)(ε#a), for m ∈My, a ∈ Aβ(y).
Let x = β(y). It is straightforward to see that this action is associative.
b) Coaction maps ρy,λ : Myλ →My ⊗ Cλ are defined as follows:

ρy,λ(m) = mαλ−1,β(y)(ξ
(λ)#1β(y))⊗ c(λ),

where we use the notation introduced in 1.6. We have to show that this
coaction is coassociative. For m ∈Myλλ′ , we have that

(ρy,λ ⊗ Cλ′)(ρyλ,λ′(m))

= (ρy,λ ⊗Cλ′)
(

mα(λ′)−1,β(yλ)(ξ
(λ′)#1β(yλ))

)

⊗ c(λ
′)

= mα(λ′)−1,β(yλ)(ξ
(λ′)#1β(yλ))αλ−1,β(y)(ξ

(λ)#1β(y))⊗ c(λ) ⊗ c(λ
′)

= mα(λλ′)−1,β(y)(ξ
(λ′)ξ(λ)#1β(y))⊗ c(λ) ⊗ c(λ

′);

(My ⊗ Cλ,λ′)(ρy,λλ′(m))

= mα(λλ′)−1,β(y)(ξ
(λλ′)#1β(y))⊗∆λ,λ′(c

(λλ′)).

These expressions are equal since

ξ(λ
′)ξ(λ) ⊗ c(λ) ⊗ c(λ

′) = (ξ(λ
′)ξ(λ))(c(λλ

′))ξ(λλ
′) ⊗ c(λ) ⊗ c(λ

′)

= ξ(λ
′)(c

(λλ′)
(2,λ′))ξ

(λ)(c
(λλ′)
(1,λ) )ξ

(λλ′) ⊗ c(λ) ⊗ c(λ
′)

= ξ(λλ
′) ⊗ ξ(λ)(c

(λλ′)
(1,λ) )c

(λ) ⊗ ξ(λ
′)(c

(λλ′)
(2,λ′))c

(λ′)

= ξ(λλ
′) ⊗ c

(λλ′)
(1,λ) ⊗ c

(λλ′)
(2,λ′) = ξ(λλ

′) ⊗∆λ,λ′(c
(λλ′)).

Let us prove that the counit property holds. For m ∈My, we have

(My ⊗ ε)ρy,e(m) = mαe,β(y)(ξ
(e)#1β(y))ε(c

(e)) = mαe,β(y)(ε#1β(y)) = m.



YETTER-DRINFELD MODULES VERSUS DOI-HOPF MODULES 17

Finally, we need to prove that the action and coaction onM are compatible,
that is,

ρy,λ(ma) = m[0,y]a[0,β(y)] ⊗m[1,λ]a[1,γ(λ)],

for m ∈Myλ and a ∈ Aβ(yλ).

ρy,λ(ma) = maαλ−1,β(y)(ξ
(λ)#1β(y))⊗ c(λ)

= mαe,β(yλ)(ε#a)αλ−1,β(y)(ξ
(λ)#1β(y))⊗ c(λ)

= mαλ−1,β(y)

(

(ε#a)(ξ(λ)#1β(y))
)

⊗ c(λ)

= mαλ−1,β(y)

(

(a[1,γ(λ)]⇀ξ(λ))#a[0,β(y)]
)

⊗ c(λ)

(1)
= mαλ−1,β(y)

(

ξ(λ)#a[0,β(y)]
)

⊗ c(λ)a[1,γ(λ)]

= mαλ−1,β(y)(ξ
(λ)#1β(y))αe,β(y)(ε#a[0,β(y)])⊗ c(λ)a[1,γ(λ)]

= m[0,y]a[0,β(y)] ⊗m[1,λ]a[1,γ(λ)].

Let us now show that T and G are inverses. Take (Y, (My)y∈Y ) ∈ Tk(H)
C
A.

Then GT (Y, (My)y∈Y ) = (Y, (My)y∈Y ), where every My is a right Aβ(y)-
module; this new action is denoted ·, and we prove that it coincides with
the original one: for m ∈My and a ∈ Aβ(y), we have

m·a = mαe,β(y)(ε#a) = m[0,y](αe,β(y)(ε#a))(m[1,e]) = m[0,y]ε(m[1,e])a = ma.

We also have to show that the coaction maps ρ̃y,λ on GT (Y, (My)y∈Y ) coin-
cide with the original ρy,λ on (Y, (My)y∈Y ). For all m ∈Myλ, we have

ρ̃y,λ(m) = mαλ−1,β(y)(ξ
(λ)#1β(y))⊗ c(λ)

= m[0,y]αλ−1,β(y)(ξ
(λ)#1β(y))(m[1,λ])⊗ c(λ)

= m[0,y]ξ
(λ)(m[1,λ])1β(y) ⊗ c(λ) = m[0,y] ⊗m[1,λ] = ρy,λ(m).

Now let (Y,M) ∈ T
(G,Λ,X)
A

. Then TG(Y,M) = (Y,M), with new right
A-action denoted ·. In order to show that this new action coincides with
the original one, it suffices to show that m · f = mf , for all m ∈ My and
f ∈ Aλ,β(yλ) of the form

f = αλ,β(yλ)(ξ#a),

where ξ ∈ C∗
λ−1 and a ∈ Aβ(yλ).

m · f = m[0,yλ]f(m[1,λ−1]) = mαλ,β(yλ)(ξ
(λ−1)#1β(y))f(c

(λ−1))

= mαλ,β(yλ)(ξ
(λ−1)#1β(y))ξ(c

(λ−1))a = mαλ,β(yλ)(ξ#1β(y))αe,β(yλ)(ε#a)

= mαλ,β(yλ)(ξ#a) = mf.

It is left to the reader to show the result at the level of morphisms. The
inverse H of Z is constructed in a similar way. �

4. Yetter-Drinfeld modules and the Drinfeld double

4.1. Crossed G-sets. Let G be a group. Recall that a right crossed G-set
is a G-set V together with a map ν : V → G such that

ν(vg) = g−1ν(v)g = ν(v)g,
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for all v ∈ V and g ∈ G. This notion goes back to Whitehead, and it can
be reformulated as follows. Observe first that G is a right G ×G-set, with
action

l · (g, g′) = g−1lg′.

The diagonal map γ : G→ G×G is clearly a morphism of monoids. Hence
G = (G × G,G,G) is a discrete Doi-Hopf datum. Then it is easy to see
that a right crossed G-set is the same thing as a G-set. The category XG

G

of right crossed G-modules is a braided monoidal category: for two crossed
G-modules (V, ν) and (V, ν ′), (V × V ′, ω), with ω(v, v′) = ν(v)ν ′(v′), and
(v, v′)g = (vg, v′g) is again a crossed G-set. The unit object is the singleton
{∗}, as a trivial right G-set, together with the map sending ∗ to the unit
element e ∈ G.
The braiding cV,V ′ : V × V ′ → V ′ × V and its inverse are given by the
following formulas:

cV,V ′(v, v′) = (v′, vν ′(v′)) ; c−1
V,V ′(v

′, v) = (vν ′(v′)−1, v′).

This can be verified directly, see [5] or [7, XIII.1.4]. It is also a consequence
of the (folklore) fact that the category of crossed G-sets can be obtained
from the category of G-sets using the centre construction, see [2, Sec. 4] for
a detailed explanation.

4.2. Hopf group coalgebras. Recall that a Hopf group coalgebra is a
semi-Hopf group coalgebra H (as in 1.7), such that the underlying monoid
G is a group, together with maps Sg, Sg : Hg−1 → Hg (g ∈ G) such that

Sg(h(1,g−1))h(2,g) = h(1,g)Sg(h(2,g−1)) = ε(h)1g ,

h(2,g)Sg(h(1,g−1)) = Sg(h(2,g−1))h(1,g) = ε(h)1g ,

for all g ∈ G and h ∈ He. The Sg are called the antipode maps, while the

Sg are called the twisted antipode maps. The Sg are then the antipode
maps of the opposite Hopf group coalgebra Hop, which is defined as follows:
H

op
g = Hg, with opposite multiplication, and ∆op

g,g′ = ∆g,g′ . For all g ∈ G,

Sg is the inverse of Sg−1 and, according to [13], they always exist in the case
when each Hg is finite dimensional (G is arbitrary).

4.3. Yetter-Drinfeld modules. Let H be a semi-Hopf group coalgebra.
Right-right H-Yetter-Drinfeld modules were introduced in [2, Def. 4.4]. We
recall this definition in the special case where H is a Hopf group coalgebra.
We need an object M = (V, (Mv)v∈V ) ∈ Tk, with V a crossed right G-set
(G a group), together with the following structure:

• every Mv is a right Hν(v)-module;
• M is a rightH-comodule, with coaction maps ρv,g : Mvg →Mv⊗Hg.

The following compatibility condition has to be satisfied

(19) ρv,g(mh) = m[0,v]h(2,ν(v)) ⊗ Sg(h(1,g−1))m[1,g]h(3,g),

for all m ∈ Mvg and h ∈ Hν(vg) = Hg−1ν(v)g . YDT
H
H is the category of

right-right H-Yetter-Drinfeld modules and morphisms that are morphisms
in T H and TH .
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The category YDZ
H
H is introduced in a similar way; the objects coincide

with the objects of YDT
H
H , and the morphisms have to be morphisms ZH

and ZH .

4.4. A Doi-Hopf datum. LetH be a Hopf group coalgebra. ThenHop⊗H
is also a Hopf group coalgebra. ThenH is a right Hop⊗H-comodule algebra,
with structure maps

ρl,(g,g′) : Hg−1lg′ → Hl ⊗ (Hg ⊗Hg′)

given by
ρl,(g,g′)(h) = h(2,l) ⊗ Sg(h(1,g−1))⊗ h(3,g′).

A technical but straightforward computation shows that the coassociativity
and counit properties hold.
H is a right Hop ⊗ H-module coalgebra. Indeed, for g ∈ G, γ(g) = g ⊗ g

and Hg is a right Hop
g ⊗Hg-module, with action k(h⊗ h′) = hkh′.

We conclude that (Hop ⊗H,H,H) is a Doi-Hopf datum in Tk.

Proposition 4.5. For a Hopf group coalgebra H, the categories YDT
H
H

(resp. YDZ
H
H) and Tk(H

op ⊗H)
H
H (resp. Zk(H

op ⊗H)
H
H) are isomorphic.

Proof. Objects in Tk(H
op⊗H)

H
H and YDT

H
H are objectsM ∈ Tk with a right

H-action and a right H-coaction. We have to show that the compatibility
relations in both categories are the same.
Let M = (V, (Mv)v∈V ) ∈ Tk, and assume that V is a right crossed G-set,
Mv is a right Hν(v)-module, for all v ∈ V , and ρ : M → M ⊗H is a right
H-coaction. Then we have maps ρv,g : Mvg →Mv ⊗Hg. The compatibility
relation (2) now takes the following form: for all m ∈ Mvg and h ∈ Hν(vg),
we have

(20) ρv,g(mh) = m[0,v]h[0,ν(v)] ⊗m[1,g]h[1,γ(g)].

Now
ρν(v),γ(g)(h) = h(2,ν(v)) ⊗ (Sg(h(1,g−1))⊗ h(3,g)),

so (20) is equivalent to (19), as needed. The statement at the level of
morphisms is left to the reader. �

4.6. Now assume that Hλ is finitely generated and projective as a k-module,
for every λ ∈ G. Combining Proposition 4.5 and Theorem 3.6, we find a

G-graded algebra D(H) such that the categories YDT
H
H and T G

D(H), resp.

YDZ
H
H and ZG

D(H), are isomorphic. D(H) is called the Drinfeld double of

H, and can be described in two isomorphic ways: as a smash product or as
a Koppinen smash product. A straightforward computation based on our
previous results leads to these constructions.

Smash product.

D(H) =
⊕

λ∈G

⊕

g∈G

H∗
λ−1#Hg.

We describe the multiplication on D(H). Let ξ ∈ H∗
λ−1 , ξ

′ ∈ H∗
λ′−1 , h ∈ Hg

and h′ ∈ Hg′ . Also assume that g′ = gγ(λ′) = λ′−1gλ′ = gλ
′

.
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First recall the following notation. For k, k′, l ∈ Hλ−1 , k⇀ξ↼k′ ∈ H∗
λ−1 is

defined by
(k⇀ξ↼k′)(l) = ξ(k′lk).

Then

(ξ#h)(ξ′#h′) = ξ(h(3,λ′−1)⇀ξ′↼Sλ′−1(h(1,λ′)))#h(2,g′)h
′.

Koppinen smash product.

D(H) =
⊕

λ∈G

⊕

g∈G

Hom(Hλ−1 ,Hg).

Take f : Hλ−1 → Hg, f
′ : Hλ′−1 → Hg′ , with g′ = gλ

′

. Then f#f ′ :
H(λλ′)−1 → Hg′ is defined by

(f#f ′)(h) = f(h(2,λ−1))(2,g′)

f ′
(

Sλ′−1

(

f(h(2,λ−1))(1,λ′)
)

h(1,λ′−1)f(h(2,λ−1))(3,(λ′)−1)

)

.

5. G-graded bialgebras

Definition 5.1. Let A = ⊕λ,g∈GAλ,g be a G-graded algebra. We call A a
G-graded bialgebra if we have the following additional structure on A: for
every λ ∈ G, (G, (Aλ,g)g∈G) is a semi-Hopf group coalgebra, with structure
maps

∆λ,g,g1 : Aλ,gg1 → Aλ,g ⊗Aλ,g1 ; ελ : Aλ,e → k,

such that the following compatibility conditions hold:

(21) ∆
λλ′,gλ

′
,gλ

′

1
(aa′) = a(1,g)a

′

(1,gλ′)
⊗ a(2,g1)a

′

(2,gλ
′

1 )
,

for all a ∈ Aλ,gg1 , a
′ ∈ A

λ′,gλ
′
gλ

′

1
;

(22) ελλ′(aa
′) = ελ(a)ελ′(a

′),

for all a ∈ Aλ,e, a
′ ∈ Aλ′,e;

(23) ∆e,gg1(1gg1) = 1g ⊗ 1g1 ;

(24) εe(1e) = 1.

Definition 5.1 has a monoidal justification, similar to the monoidal justifi-
cation of the definition of a bialgebra. Let C be the category with objects
of the form (V,M = ⊕v∈VMv), with V a crossed G-set, and every Mv a
k-module. A morphism (V,M) → (V ′,M ′) in C is a couple (η, f), where
η : V → V ′ is a morphism of crossed G-sets and f : M → M ′ is a k-linear
map such that f(Mv) ⊂ M ′

η(v). Now C is a monoidal category. The tensor

product is defined as follows

(V,M) ⊗ (V ′,M ′) = (V × V ′,M ⊗M ′),

with M ⊗M ′ = ⊕(v,v′)∈V ×V ′Mv ⊗Mv′ . The unit object is ({∗}, k).
Now let A be a G-graded algebra, and consider the forgetful functor

U : ZG
A → C.

Theorem 5.2. Let G be a group, and A a G-graded algebra. We have a
bijective correspondence between
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• monoidal structures on ZG
A such that the forgetful functor U is strictly

monoidal;
• G-graded bialgebra structures on A.

Proof. Assume that we have a monoidal structure on ZG
A such that U is

strictly monoidal. We first describe the structure maps ελ and ∆λ,g,g1. Then
the unit object is k, with a certain right A-module structure. From Defini-
tion 3.1, we know that this action is determined by maps

ελ : k ⊗Aλ,e = Aλ,e → k,

otherwise stated

(25) ελ(a) = 1k · a,

for a ∈ Aλ,e. From Example 3.3, we know that

(G×G,
⊕

λ,g∈G

Aλ,g) ∈ ZG
A .

As an object in C,

(G×G,A) ⊗ (G×G,A) = (G×G×G×G,
⊕

λ,λ′,g,g′∈G

Aλ,g ⊗Aλ′,g′).

The crossed G-set structure on G×G×G×G is the following:

ω(λ, g, λ′, g′) = gg′ ; (λ, g, λ′, g′)λ′′ = (λλ′′, gλ
′′

, λ′λ′′, g′λ
′′

).

Now we have a right A-module structure on A ⊗ A. According to Defini-
tion 3.1, this is given by multiplication maps

(Aλ,g ⊗Aλ′,g′)⊗Aλ′′,gλ′′g′λ′′ → Aλλ′′,gλ′′ ⊗Aλ′λ′′,g′λ′′ .

Take λ = λ′ = e, and replace λ′′ by λ; this gives multiplication maps

ψλ,g,g′ : (Ae,g ⊗Ae,g′)⊗Aλ,gλg′λ → Aλ,gλ ⊗Aλ,g′λ .

Now we define ∆λ,g,g′ : Aλ,gg′ → Aλ,g ⊗Aλ,g′ as follows:

(26) ∆λ,g,g′(a) = ψ
λ,gλ

−1
,g′λ

−1

(

(1
gλ

−1 ⊗ 1
g′λ

−1 )⊗ a
)

= (1
gλ

−1 ⊗ 1
g′λ

−1 )a.

For later use, observe that, for a ∈ Aλ,gλ,g′λ ,

(27) ∆λ,gλ,g′λ(a) = (1g ⊗ 1g′)a.

We now have to show that the maps ελ and ∆λ,g,g′ satisfy the conditions
of Definition 5.1. Before we do this, we show that the right A-action on
M ⊗ N is completely determined by the maps ∆λ,g,g′, for all M,N ∈ ZG

A .
We proceed as follows.
Let (V,M) ∈ ZG

A , and fix elements v ∈ V and m ∈Mv. Recall from 1.2 that
G×G is a crossed G-set, with structure maps

(λ, g)λ′ = (λλ′, gλ
′

) ; β(λ, g) = g.

In Example 3.3, we have seen that

Zν(v) = {(λ, ν(v)λ) | λ ∈ G}

is a crossed G-subset of G×G and that
(

Zν(v), A
(ν(v)) =

⊕

λ∈G

Aλ,ν(v)λ
)

∈ ZG
A .
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Now η : Zν(v) → V , η(λ, ν(v)λ) = vλ is a morphism of crossed G-sets.
Indeed,

η((λ, ν(v)λ)λ′) = η(λλ′, ν(v)λλ
′

) = vλλ′ = η(λ, ν(v)λ)λ′,

and

(ν ◦ η)(λ, ν(v)λ) = ν(vλ) = ν(v)λ = β(λ, ν(v)λ).

Now we define

fm : A(ν(v)) →M, fm(a) = ma.

It follows from (12) that MvAλ,ν(v)λ ⊂Mvλ, so

fm(Aλ,ν(v)λ) ⊂Mvλ,

and (η, fm) : (Zν(v), A
(ν(v))) → (V,M) is a morphism in MG

A.

Now take (V ′, N) ∈ MG
A, fix v

′ ∈ V ′ and n ∈ Nv′ , and repeat the above

construction. We obtain a morphism (η′, gn) : (Zν′(v′), A
(ν′(v′))) → (V ′, N)

in MG
A.

From the functoriality of the tensor product, it follows that (ηη′, fm ⊗ gn)
is a morphism in ZG

A , in particular, fm ⊗ gn is right A-linear. Now take
a ∈ Aλ,ν(v)λν′(v′)λ . Since fm(1ν(v)) = m and gn(1ν′(v′)) = n, we find

(m⊗ n)a =
(

(fm ⊗ gn)(1ν(v) ⊗ 1ν′(v′))
)

a

= (fm ⊗ gn)
(

(1ν(v) ⊗ 1ν′(v′))a
)

(27)
= (fm ⊗ gn)(∆λ,ν(v)λ ,ν′(v′)λ(a))

= ma(1,ν(v)λ) ⊗ na(2,ν′(v′)λ).(28)

We are now ready to show that each Aλ is a semi-Hopf group coalgebra.
The (trivial) associativity constraint aA,A,A
(

(G×G,A)⊗(G×G,A)
)

⊗(G×G,A) → (G×G,A)⊗
(

(G×G,A)⊗(G×G,A)
)

is a morphism in ZG
A ; in particular aA,A,A is right A-linear. For all a ∈

Aλ,gg′g′′ , we have that
(

1
gλ

−1 ⊗ (1
g′λ

−1 ⊗ 1
g′′λ

−1 )
)

a
(28)
= a(1,g) ⊗ (1

g′λ
−1 ⊗ 1

g′′λ
−1 )a(2,g′g′′)

= a(1,g) ⊗∆λ,g′g′′(a(2,g′g′′))

equals

aA,A,A
(

(1
gλ

−1 ⊗ 1
g′λ

−1 )⊗ 1
g′′λ

−1

)

a

= aA,A,A

(

(

(1
gλ

−1 ⊗ 1
g′λ

−1 )⊗ 1
g′′λ

−1

)

a
)

(28)
= aA,A,A

(

(1
gλ

−1 ⊗ 1
g′λ

−1 )a(1,gg′) ⊗ a(2,g′′)
)

= aA,A,A(∆λ,g,g′(a(1,gg′))⊗ a(2,g′′)),

which is precisely the required coassociativity condition. Now we prove the
counit conditions. The (trivial) left counit constraint lA : ({∗}, k) ⊗ (G ×
G,A) → (G × G,A) is a morphism in ZG

A , hence lA is right A-linear. For
a ∈ Aλ,g, we have

a = lA(1k ⊗ 1gλ)a = lA((1k ⊗ 1gλ)a)
(28)
= lA(1k.a(1,e) ⊗ 1gλa(2,g))

= lA(ελ(a(1,e))⊗ a(2,g)) = ελ(a(1,e))a(2,g),



YETTER-DRINFELD MODULES VERSUS DOI-HOPF MODULES 23

The right counit property is handled in a similar way. Now let a ∈ Aλ,gg1
and a′ ∈ A

λ′,gλ
′
gλ

′

1
. Then aa′ ∈ A

λλ′,gλ
′
gλ

′

1
and

∆
λλ′,gλ

′
,gλ

′

1
(aa′) = (1

gλ
−1 ⊗ 1

gλ
−1

1
)aa′

= (a(1,g) ⊗ a(2,g1))a
′(28)= a(1,g)a

′

(1,gλ′)
⊗ a(2,g1)a

′

(2,gλ
′

1 )
.

This proves that (21) holds. Now take a ∈ Aλ,e and a
′ ∈ Aλ′,e. Then

ελλ′(aa
′) = 1k · (aa

′) = (1k · a) · a
′ = ελ(a) · a

′ = ελ(a)ελ′(a
′),

proving (22). Finally

∆e,gg′(1gg′) = (1g ⊗ 1g′)1gg′
(13)
= 1g ⊗ 1g′ ,

and

εe(1e) = 1k · 1e
(13)
= 1k.

Conversely, assume that A is a G-graded bialgebra. Let (V,M), (V ′,M ′) ∈
ZG
A . We have already seen that V × V ′ is again a crossed G-set. Now we

define a right A-module structure on M⊗M ′ = ⊕(v,v′)∈V×V ′Mv⊗M
′
v′ using

(28), which is designed in such a way that (V × V ′,M ⊗M ′) ∈ ZG
A . Also

({∗}, k) ∈ ZG
A , using (25). Then straightforward computations show that

this makes ZG
A into a monoidal category such that the forgetful functor to

C is strictly monoidal.
Let us show that the tensor on ZG

A is functorial. Consider morphisms

(η, ϕ) : (V,M) → (W,N) ; (η′, ϕ′) : (V ′,M ′) → (W ′, N ′)

in ZG
A . The diagram (16) takes the form

Mv ⊗M ′
v′ ⊗Aλ,ν(v)λν′(v′)λ

ϕv⊗ϕ
′

v′
⊗id

��

// Mvλ ⊗M ′
v′λ

ϕvλ⊗ϕ
′

v′λ

��

Nη(v) ⊗N ′
η′(v′) ⊗Aλ,ν(v)λν′(v′)λ // Nη(vλ) ⊗N ′

η′(v′λ)

and we have to show that it commutes. Since (η, ϕ) and (η′, ϕ′) are mor-
phisms in ZG

A , we have, for m ∈ Mv , a1 ∈ Aλ,ν(vλ), m
′ ∈ M ′

v′ and a2 ∈
Aλ,ν′(v′λ) that

ϕvλ(ma1) = ϕv(m)a1 and ϕ′
v′λ(m

′a2) = ϕ′
v′(m)a2.

Now take a ∈ Aλ,ν(v)λν′(v′)λ . Then we have

ϕvλ
(

ma(1,ν(v)λ)
)

⊗ ϕ′
v′λ

(

m′a(2,ν′(v′)λ)
)

= ϕv(m)a(1,ν(v)λ) ⊗ ϕ′
v′(m

′)a(2,ν′(v′)λ) =
(

(ϕv ⊗ ϕ′
v′)(m⊗m′)

)

a,

as needed. �

It would be nice to have a result similar to Theorem 5.2, with the category
ZG
A replaced by T G

A . Unfortunately, we were only able to prove it in one
direction. First, we need to introduce the category D, which can be viewed
as the T -version of C: it has the same objects as C, and a morphism (V,M) →
(W,N) is a couple (η, (ϕw)w∈W ), with η : W → V a morphism of crossed
G-sets, and ϕw : Mη(w) → Nw k-linear, for all w ∈W .
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Proposition 5.3. Let G be a group, and A a G-graded bialgebra. Then we
have a monoidal structure on T G

A such that the forgetful functor T G
A → D is

monoidal.

Proof. As in the proof of Theorem 5.2, we define a right A-module structure
on (V × V ′,M ⊗M ′) using (28), and on ({∗}, k) using (25). Let us show
that the tensor product on T G

A is functorial. Take morphisms (η, (ϕw)w∈W ) :

(V,M) → (W,N) and (η′, (ϕ′
w′)w′∈W ′) : (V ′,M ′) → (W ′, N ′) in T G

A . The
diagram (17) takes the form

Mη(w) ⊗M ′
η′(w′) ⊗Aλ,ν(η(w))λν′(η′(w′))λ

ϕw⊗ϕ′

w′
⊗id

��

// Mη(wλ) ⊗M ′
η′(w′λ)

ϕwλ⊗ϕ
′

w′λ′

��

Nw ⊗N ′
w′ ⊗Aλ,ω(w)λω′(w′)λ

// Nwλ ⊗N ′
w′λ

and we have to show that it commutes. (η, (ϕw)w∈W ) and (η′, (ϕ′
w′)w′∈W ′)

are morphisms in T G
A , so, for all m ∈ Mη(w), a1 ∈ Aλ,ν(η(w))λ , m

′ ∈ M ′
η′(w′)

and a2 ∈ Aλ,ν′(η′(w′))λ , we have that

ϕwλ(ma1) = ϕw(m)a1 and ϕ′
w′λ(m

′a2) = ϕw′(m′)a2.

For a ∈ Aλ,ν(η(w))λν′(η′(w′))λ , we now compute

(ϕwλ ⊗ ϕ′
ω′λ)((m⊗m′)a)

= ϕwλ(ma(1,ν(η(w))λ))⊗ ϕ′
w′λ(m

′a(2,ν′(η′(w′))λ))

= ϕw(m)a(1,ω(w)λ) ⊗ ϕ′
w′(m′)a(2,ω′(w′)λ) = (ϕw(m)⊗ ϕ′

w′(m′))a,

as needed. �

Let H be a Hopf group coalgebra. The category of Yetter-Drinfeld modules

YDT
H
H is obtained from the category TH using the center construction, see

[2, Sec. 4], and therefore YDT
H
H is a braided monoidal category. For detail

on the centre construction, we refer to [7, XIII.4]. We first describe the

monoidal structure. Take (V,M), (V ′, N) ∈ YDT
H
H .

(V,M)⊗ (V ′, N) = (V × V ′, (Mv ⊗Nv′)(v,v′)∈V×V ′),

with the following structure. We have already seen that V × V ′ is a right
crossed G-set, with ω : V × V ′ → G, ω(v, v′) = ν(v)ν ′(v′) and (v, v′)g =
(vg, v′g).
Mv ⊗Nv′ is a right Hν(v)ν′(v′)-module, with

(29) (m⊗ n)h = mh(1,ν(v)) ⊗ nh(2,ν′(v′));

The coaction maps ρ(v,v′),g : Mvg ⊗Nv′g →Mv ⊗Nv′ ⊗Hg are given by

(30) ρ(v,v′),g(m⊗ n) = m[0,v] ⊗ n[0,v′] ⊗m[1,g]n[1,g].

({∗}, k) ∈ YDT
H
H ; we already know that the singleton {∗} is a right crossed

G-set; furthermore k is an He-module via ε, and the coaction maps ρ∗,g :
k → k ⊗Hg are given by ρ∗,g(1k) = 1k ⊗ 1g.
Now we describe the braiding. The braiding isomorphism

(V × V ′, (Mv ⊗Nv′)(v,v′)∈V ×V ′) → (V ′ × V, (Nv′ ⊗Mv)(v′,v)∈V ′×V )
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is given by the following data:

cV ′,V : V ′ × V → V × V ′, cV ′,V (v
′, v) = (v, v′ν(v)).

tM,N,v′,v : Mv ⊗Nv′ν(v) → Nv′ ⊗Mv, tM,N,v′,v(m⊗ n) = n[0,v′] ⊗mn[1,ν(v)].

As we have mentioned, this monoidal structure can be deduced from the
center construction, but it can also be verified directly that this defines a

monoidal structure on YDT
H
H .

YDZ
H
H is also a braided monoidal category. The tensor product is defined

using (29-30). The braiding isomorphism

(V × V ′, (Mv ⊗Nv′)(v,v′)∈V ×V ′) → (V ′ × V, (Nv′ ⊗Mv)(v′,v)∈V ′×V )

is given by the following data:

c−1
V ′,V : V × V ′ → V ′ × V, cV ′,V (v, v

′) = (v′ν(v)−1, v);

t̃M,N,v,v′ : Mv ⊗Nv′ → Nv′ν(v)−1 ⊗Mv is given by

(31) t̃M,N,v,v′(m⊗ n) = n[0,v′ν(v)−1] ⊗mn[1,ν(v)].

We will also need the inverse of the braiding of (c−1, t̃)

(V ′ × V, (Nv′ ⊗Mv)(v′,v)∈V ′×V ) → (V × V ′, (Mv ⊗Nv′)(v,v′)∈V×V ′).

This is described by the data

cV ′,V : V ′ × V → V × V, cV ′,V (v
′, v) = (v, v′ν(v));

q̃N,M,v′,v : Nv′ ⊗Mv →Mv ⊗Nv′ν(v) is given by the formula

(32) q̃N,M,v′,v(n⊗m) = mSν(v)(n[1,ν(v)−1])⊗ n[0,v′ν(v)].

If (V, (Mv)v∈V ) ∈ YDZ
H
H , then it is easy to see that (V,M = ⊕v∈VMv) ∈ C:

every Mv is a k-module. Thus we have a forgetful functor U ′ : YDZ
H
H → C,

and it is clear that U ′ is strictly monoidal.
Now assume that everyHg is finitely generated and projective as a k-module.
Then we have an isomorphism of categories Z (Theorem 3.6) and a forgetful
functor U as in Theorem 5.2 such that the diagram of functors

YDZ
H
H

Z
//

U ′

��

ZG

D(H)

U

vvnnnnnnnnnnnnnnnn

C

commutes. It follows from all these observations that ZG

D(H) is a monoidal

category and that U is strictly monoidal. Then it follows from Theorem 5.2
that D(H) is a G-graded bialgebra.
Our aim is now to construct the comultiplication and counit maps on D(H).
We know that (G × G,D(H)) ∈ ZG

D(H), see Example 3.3. From The-

orem 3.6 and Proposition 4.5, we know that H(G × G,D(H)) = (G ×

G,D(H)(λ,g)∈G×G) ∈ YDZ
H
H . We compute the structure maps, using the

proof of Theorem 5.2.
First, every D(H)(λ,g) = H∗

λ−1#Hg is a right Hg-module in the obvious way:
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(ξ#h)h′ = ξ#hh′.
The coaction maps

ρ(λ,g),λ′ : H
∗
(λλ′)−1#Hgλ

′ → (H∗
λ−1#Hg)⊗Hλ′

are given by

(33) ρ(λ,g),λ′(ξ#h) = (ξ#h)(ξ(λ
′)#1g)⊗ h(λ

′),

where we use the notation introduced in 2.10: ξ(λ) ⊗ h(λ) is a finite dual
basis of Hλ. Hλ is a finitely projective algebra, hence H∗

λ is a coalgebra,
with comultiplication

(34) ∆(ξ) = ξ(1) ⊗ ξ(2) = 〈ξ, h(λ)h
(λ)

〉ξ(λ) ⊗ ξ
(λ)
,

where ξ
(λ)

⊗h
(λ)

= ξ(λ)⊗h(λ) is a second copy of the dual basis of Hλ. Since

YDZ
H
H is monoidal, we have that

(G×G×G×G, (D(H)λ,g ⊗D(H)λ′,g′) ∈ YDZ
H
H ,

and we compute

ρ(λ,g,λ,g′),λ−1

(

(ε#1
gλ

−1 )⊗ (ε#1
g′λ

−1 )
)

(30)
= (ξ(λ

−1)#1g)⊗ (ξ
(λ−1)

#1g′)⊗ h(λ
−1)h

(λ−1)
.

Now we apply (26) to compute ∆λ,g,g′ : D(H)λ,gg′ → D(H)λ,g ⊗D(H)λ,g′ :
for ξ ∈ H∗

λ−1 and h ∈ Hgg′ , we have

∆λ,g,g′(ξ#h)
(26)
=

(

(ε#1
gλ

−1 )⊗ (ε#1
g′λ

−1 )
)

(ξ#h)

= (ξ(λ
−1)#1g)⊗ (ξ

(λ−1)
#1g′)〈ξ, h

(λ−1)h
(λ−1)

〉h
(29,34)

= (ξ(1)#h(1,g))⊗ (ξ(2)#h(2,g′)).

Now we compute the counit maps ελ : H∗
λ−1#He → k. k is a right

H∗
λ−1#He-module, and

ελ(ξ#h)
(25)
= 1k · (ξ#h) = ξ(1λ−1)ε(h),

since ρ∗,λ−1(1k) = 1k ⊗ 1λ−1 . We conclude our computations as follows.

Proposition 5.4. Let H be a Hopf group coalgebra, and assume that every
Hg is finitely generated and projective as a k-module. Then D(H) is a G-
graded bialgebra, with structure maps

∆λ,g,g′ : D(H)λ,gg′ → D(H)λ,g ⊗D(H)λ,g′ ,

∆λ,g,g′(ξ#h) = (ξ(1)#h(1,g))⊗ (ξ(2)#h(2,g′));

ελ : H∗
λ−1#He → k, ελ(ξ#h) = ξ(1λ−1)ε(h).

Recall from 4.6 that D(H) can also be written as a Koppinen smash product.
Then the comultiplication maps

∆λ,g,g′ : Hom(Hλ−1 ,Hgg′) → Hom(Hλ−1 ,Hg)⊗Hom(Hλ−1 ,Hg′)

can be characterized as follows: ∆λ,g,g′(f) = f(1) ⊗ f(2) if and only if

∆g,g′(f(h1h2)) = f(h1)(1,g) ⊗ f(h2)(2,g′),

for all h1, h2 ∈ H∗
λ−1 . The counit maps are the following:

ελ : Hom(Hλ−1 ,He) → k, ελ(f) = (ε ◦ f)(1λ−1).
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Let A be G-graded bialgebra. From Theorem 5.2 and Proposition 5.3, it
follows that a monoidal structure on ZG

A such that U is strictly monoidal in-

duces a monoidal structure on T G
A . The tensor product of objects coincides

in both categories.
On ZG

D(H), we have the monoidal structure transported using the category

isomorphism with YDZ
H
H . We have also a monoidal structure arising from

the G-graded bialgebra structure on D(H), using Theorem 5.2. These two
monoidal structures coincide, actually this is the way the G-graded bialge-
bra structure on D(H) is constructed in the proof of Proposition 5.4.

The monoidal structure on YDT
H
H can be transported to a monoidal struc-

ture on T G

D(H . It follows easily from our previous constructions that this

monoidal structure is induced from the monoidal structure on ZG

D(H . Hence

this monoidal structure coincide with the monoidal structures arising from
the G-graded bialgebra structure on D(H), using Proposition 5.3. We sum-
marize these observations as follows.

Theorem 5.5. The G-graded bialgebra structure on D(H) from Proposi-
tion 5.4 defines a monoidal algebra structure on ZG

D(H) and T G

D(H) (Theo-

rem 5.2 and Proposition 5.3) that are such that the category isomorphisms

ZG

D(H)
∼= YDZ

H
H and T G

D(H)
∼= YDT

H
H are isomorphisms of monoidal cate-

gories.

6. G-graded Hopf algebras

Definition 6.1. Let A = ⊕λ,g∈GAλ,g be a G-graded bialgebra. We call A a
G-graded Hopf algebra if there exist maps

Sλ,g, Sλ,g : Aλ,g−1 → A
λ−1,gλ

−1

such that

a(1,g)Sλ,g(a(2,g−1)) = a(2,g)Sλ,g(a(1,g−1)) = ελ(a)1gλ−1 ;(35)

Sλ,g(a(1,g−1))a(2,g) = Sλ,g(a(2,g−1))a(1,g) = ελ(a)1g,(36)

for all a ∈ Aλ,e. The Sλ,g (Sλ,g) are called the (twisted) antipode maps.

Proposition 6.2. Let H be a Hopf group coalgebra, and assume that every
Hg is finitely generated and projective as a k-module. Then D(H) is a G-
graded Hopf algebra, with (twisted) antipode maps

Sλ,g, Sλ,g : H
∗
λ−1#Hg−1 → H∗

λ#Hgλ
−1 ,

Sλ,g(ξ#h) = (ε#Sg(h))(ξ ◦ Sλ−1#1
gλ

−1 );

Sλ,g(ξ#h) = (ε#Sg(h))(ξ ◦ Sλ−1#1
gλ

−1 ).

Proof. For ξ ∈ H∗
λ−1 and h ∈ He, we have

(ξ(1)#h(1,g))Sλ,g(ξ(2)#h(2,g−1))

= (ξ(1)#h(1,g))(ε#Sg(h(2,g−1)))(ξ(2) ◦ Sλ−1#1
gλ

−1 )

= (ξ(1)#h(1,g)Sg(h(2,g−1)))(ξ(2) ◦ Sλ−1#1
gλ

−1 )
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= ε(h)(ξ(1)#1g)(ξ(2) ◦ Sλ−1#1
gλ

−1 )

= ε(h)ξ(1λ−1)(ε#1
gλ

−1 ) = ελ(ξ#h)(ε#1
gλ

−1 ),

where we used the following property, for all h ∈ He:

(ξ(1)(ξ(2) ◦ S
−1
λ ))(h) = ξ(1)(h(2,λ−1))ξ(2)(S

−1
λ (h(1,λ)))

= ξ(h(2,λ−1)S
−1
λ (h(1,λ))) = ξ(1λ−1)ε(h).

This proves one equality of (35); the proof of three other equalities is similar
and is left to the reader. �

7. Braidings and quasitriangular G-graded Hopf algebras

Definition 7.1. Let A be a G-graded bialgebra. A is called quasitriangular
if it comes equipped with the following additional structure: for all g, g′ ∈ G,
we have

Rg,g′ = R1
g,g′ ⊗R2

g,g′ ∈ Ag−1,gg′g−1 ⊗Ae,g;

Qg,g′ = Q1
g,g′ ⊗Q2

g,g′ ∈ Ag,g−1g′g ⊗Ae,g,

such that the following conditions are fulfilled:

(37) Rg,g′Qgg′g−1,g = Qg′,gRg,g−1g′g = 1g′ ⊗ 1g;

(38) ∆g,g′g,g′′g (R
1
g,g′g′′)⊗R2

g,g′g′′ = R1
g,g′ ⊗ R̃1

g,g′′ ⊗R2
g,g′R̃

2
g,g′′

in Ag,g′g ⊗Ag,g′′g ⊗Ae,g;

(39) R1
gg′,g′′ ⊗∆e,g,g′(R

2
gg′,g′′) = R1

g′,g′′R̃
1
g,g′g′′g′−1 ⊗ R̃2

g,g′g′′g′−1 ⊗R2
g′,g′′

in A
(gg′)−1,g′′(gg

′)−1 ⊗Ae,g ⊗Ae,g′ .

In addition, we have for all a ∈ Aλ,gλg′λ that

(40) τ(∆λ,gλ,g′λ)Rgλ,g′λ = Rg,g′∆λ,g′g
−1λ,gλ

(a).

Here τ is the switch map.

Definition 7.1 has a monoidal categorical justification. Let G be a group,
and A a G-graded bialgebra. We know that ZG

A is a monoidal category, and

that the forgetful functor U : ZG
A → XG

G is monoidal. Let XGinv
G be XG

G

with the inverse braiding c−1. Then we can look at braidings on ZG
A such

that U preserves the braiding. Such a braiding is of the form (c−1, t̃), where
c is the braiding on XG

G as described in 4.1. In Proposition 5.3, we have

seen that we have a monoidal structure on T G
A such that V : T G

A → XG
G is

monoidal, and we can consider braidings on T G
A of the form (c, t), i.e. they

are such that V preserves the braiding.

Theorem 7.2. Let G be a group, and A a G-graded bialgebra. There is a
bijective correspondence between the following data:

• braidings on ZG
A of the form (c−1, t̃);

• braidings on T G
A of the form (c, t);

• quasitriangular structures on A as defined in Definition 7.1.
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Proof. Given a braiding (c, t) on T G
A , a braiding (c−1, t̃) on ZG

A is given by
the formula

(41) t̃M,N,v,v′ = tM,N,v,v′ν(v)−1 ,

and vice versa.
Next assume that we have a braiding (c−1, t̃) on ZG

A . For M = (V,M), N =

(V ′, N) ∈ ZG
A , we have the braiding morphism

(c−1
V ′,V , t̃M,N,v,v′) : (V × V ′,M ⊗N) → (V ′ × V,N ⊗M).

Then we have

(42) t̃M,N (Mv ⊗Nv′) ⊂ Nv′ν(v)−1 ⊗Mv.

Let V = V ′ = G2, M = N = A. Then

c−1
G2,G2(λ, g, λ

′, g′) = (λ′g−1, gg′g−1, λ, g),

and t̃A,A : A⊗A→ A⊗A satisfies

t̃A,A(Aλ,g ⊗Aλ′,g′) ⊂ Aλ′g−1,gg′g−1 ⊗Aλ,g.

Now let

(43) Rg,g′ = R1
g,g′ ⊗R2

g,g′ = t̃A,A(1g ⊗ 1g′) ∈ Ag−1,gg′g−1 ⊗Ae,g.

We will show that the braiding t̃ is completely determined by the Rg,g′ . Take
m ∈ Mv, n ∈ Nv′ . We have seen in the proof of Theorem 5.2 that we have
morphisms

(η, fm) : (Zν(v), A
(ν(v))) → (V,M), (η′, gn) : (Zν′(v′), A

(ν′(v′))) → (V ′, N)

in ZG
A . From the naturality of (c−1, t̃), we have the following commutative

diagram

(Zν(v) × Zν′(v′), A
(ν(v)) ⊗A(ν′(v′)))

(η,η′,fm⊗gn)

��

(c−1,t̃)
// (Zν′(v′) × Zν(v), A

(ν′(v′)) ⊗A(ν(v)))

(η′,η,gn⊗fm)

��

(V × V ′,M ⊗M ′)
(c−1

V ′,V
,t̃M,N )

// (V ′ ⊗ V,N ⊗M)

Observe that (e, ν(v)) ∈ Zν(v), (e, ν
′(v′)) ∈ Zν′(v′), 1ν(v) ∈ A(ν(v)), 1ν′(v′) ∈

A(ν′(v′)). From the commutativity of the diagram, it then follows that

t̃M,N (m⊗ n) = (t̃M,N ◦ (fm ⊗ gn))(1ν(v) ⊗ 1ν′(v′))

= ((gn ⊗ fm) ◦ t̃A(ν(v)),A(ν′(v′)))(1ν(v) ⊗ 1ν′(v′))

= (gn ⊗ fm)(Rν(v),ν′(v′))

= nR1
ν(v),ν′(v′) ⊗mR2

ν(v),ν′(v′).(44)

The inverse braiding can be described in a similar way: by assumption, t̃M,N

is invertible, and

(45) t̃−1
M,N (Nν′ ⊗Mν) ⊂Mv ⊗Nv′ν(v).

In fact the inclusions in (42) and (45) are equalities, since t̃M,N is bijective.
In particular, we find that

t̃−1
A,A(Aλ′,g′ ⊗Aλ,g) = Aλ,g ⊗Aλ′g,g′g .
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Now let

(46) t̃−1
A,A(1g′ ⊗ 1g) = Qg,g′ = Q2

g′,g ⊗Q1
g′,g ∈ Ae,g ⊗Ag,g′g .

The Qg′,g describe the inverse braiding completely. Arguments similar to
the ones above show that, for m ∈Mv and n ∈ Nv′ :

(47) t̃−1
M,N (n⊗m) = mQ2

ν′(v′),ν(v) ⊗ nQ1
ν′(v′),ν(v).

Then we compute that

1g ⊗ 1g′ = (t̃−1
A,A ◦ t̃A,A)(1g ⊗ 1g′)

(43)
= t̃−1

A,A(R
1
g,g′ ⊗R2

g,g′)
(47)
= R2

g,g′Q
2
gg′g−1,g ⊗R1

g,g′Q
2
gg′g−1,g;

1g′ ⊗ 1g = (t̃A,A ◦ t̃−1
A,A)(1g′ ⊗ 1g)

(46)
= t̃A,A(Q

2
g′,g ⊗Q1

g′,g)
(44)
= Q1

g′,gR
1
g,g−1g′g ⊗Q2

g′,gR
2
g,g−1g′g.

This shows that (37) holds.
From the fact that (c−1, t̃) is a braiding, it follows that

t̃A,A⊗A = (A⊗ t̃A,A) ◦ (t̃A,A ⊗A);(48)

t̃A⊗A,A = (t̃A,A ⊗A) ◦ (A⊗ t̃A,A).(49)

Now we compute that

t̃A,A⊗A(1g ⊗ 1g′ ⊗ 1g′′)
(44)
= (1g′ ⊗ 1g′′)R

1
g,g′g′′ ⊗ 1gR

2
g,g′g′′

(27)
= ∆g,g′g,g′′g(R

1
g,g′g′′)⊗R2

g,g′g′′ ;
(

(A⊗ t̃A,A) ◦ (t̃A,A ⊗A)
)

(1g ⊗ 1g′ ⊗ 1g′′)
(28)
= (A⊗ t̃A,A)(R

1
g,g′ ⊗R2

g,g′ ⊗ 1g′′)
(44)
= R1

g,g′ ⊗ 1g′′R̃
1
g,g′′ ⊗R2

g,g′R̃
2
g,g′′

= R1
g,g′ ⊗ R̃1

g,g′′ ⊗R2
g,g′R̃

2
g,g′′ .

This shows that (38) holds. (39) can be proved in a similar way:

t̃A⊗A,A(1g ⊗ 1g′ ⊗ 1g′′)
(44)
= 1g′′R

1
gg′,g′′ ⊗ (1g ⊗ 1g′)R

2
gg′,g′′

(27)
= R1

gg′,g′′ ⊗∆e,g,g′(R
2
gg′,g′′);

(

(t̃A,A ⊗A) ◦ (A⊗ t̃A,A)
)

(1g ⊗ 1g′ ⊗ 1g′′)
(27)
= (t̃A,A ⊗A)(1g ⊗R1

g′,g′′ ⊗R2
g′,g′′)

(44)
= R1

g′,g′′R̃
1
g,g′g′′g′−1 ⊗ 1gR̃

2
g,g′g′′g′−1 ⊗R2

g′,g′′

= R1
g′,g′′R̃

1
g,g′g′′g′−1 ⊗ R̃2

g,g′g′′g′−1 ⊗R2
g′,g′′ .

Now take a ∈ Aλ,gλg′λ . Since t̃A,A is right A-linear, we have

t̃A,A((1g ⊗ 1g′)a) = t̃A,A(1g ⊗ 1g′)a.

Now

t̃A,A((1g ⊗ 1g′)a)
(27)
= t̃A,A(∆λ,gλ,g′λ(a))

= t̃A,A(a(1,gλ) ⊗ a(2,g′λ))
(44)
= a(2,g′λ)R

1
gλ,g′λ

⊗ a(1,gλ)R
2
gλ,g′λ

;

t̃A,A(1g ⊗ 1g′)a
(43)
= (R1

g,g′ ⊗R2
g,g′)a

(28)
= R1

g,g′a(1,g′g−1λ)
⊗R2

g,g′a(2,gλ).
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(40) follows, and we have shown that the Rg,g′ define a quasitriangular
structure on A.
Conversely, if A is quasitriangular. Then we define t̃M,N using (44). A
lengthy but straightforward computation shows that (c−1, t̃) is a braiding
on ZG

A . �

Now let H be a Hopf group coalgebra, and assume that every Hg is finitely

generated and projective as a k-module. Then the category YDZ
H
H is

braided monoidal, and is isomorphic to ZG

D(H). We know from Proposi-

tion 6.2 that D(H) is a G-graded Hopf algebra, and it follows from Theo-
rem 7.2 that we have a quasitriangular structure on D(H). The correspond-
ing R-matrices can be computed easily. The coaction map

ρ(g−1,gg′g−1),g : H
∗
e#Hg′ → (H∗

g#Hgg′g−1)⊗Hg

can be computed using (33). In particular

(50) ρ(g−1,gg′g−1),g(ε#1g′) = (ξ(g)#1gg′g−1)⊗ h(g).

Then

Rg,g′
(43)
= t̃D(H),D(H)

(

(ε#1g)⊗ (ε#1g′)
)

(31,50)
= (ξ(g)#1gg′g−1)⊗ (ε#1g)h

(g) = (ξ(g)#1gg′g−1)⊗ (ε#h(g)).

In a similar way, we can compute the Q-matrices. Using (33), we compute
ρ(g,g−1g′g),g−1 : H∗

e#Hg′ → (H∗
g−1#Hg−1g′g)⊗Hg−1 :

ρ(g,g−1g′g),g−1(ε#1g′) = (ξ(g
−1)#1g−1g′g)⊗ h(g

−1).

Then we find

Qg,g′
(45)
= q̃D(H,H

(

(ε#1g′)⊗ (ε#1g)
)(32)
= (ε#1g)Sg(h

(g−1))⊗ (ξ(g
−1)#1g−1g′g)

= (ε#Sg(h
(g−1)))⊗ (ξ(g

−1)#1g−1g′g).

We summarize our results.

Theorem 7.3. Let H be a Hopf group coalgebra, and assume that every
Hg is finitely generated and projective as a k-module. Then D(H) is a
quasitriangular G-graded Hopf algebra, with R- and S-matrices

Rg,g′ = (ξ(g)#1gg′g−1)⊗(ε#h(g)) ; Qg,g′ = (ε#Sg(h
(g−1)))⊗(ξ(g

−1)#1g−1g′g).

The isomorphisms between the categories YDZ
H
H and ZG

D(H) and between

YDT
H
H and T G

D(H) (see 4.6) are isomorphisms of braided monoidal cate-

gories.

8. Appendix: generalized Yetter-Drinfeld modules

A generalization of Yetter-Drinfeld modules was proposed in [3], see also
[4]. First one has to introduce Yetter-Drinfeld data. There is a functor
from Yetter-Drinfeld data to Doi-Hopf data, and the corresponding cate-
gories of Yetter-Drinfeld modules and Doi-Hopf modules are isomorphic.
This construction was carried out in the category of vector spaces, but can
be generalized to symmetric monoidal categories. Let us give the definition
of Yetter-Drinfeld data in Tk.
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First we discuss discrete Yetter-Drinfeld data, these are Yetter-Drinfeld data
in Sets. This is a four-tuple (L,G,Λ,X), where L and G are groups, Λ is a
monoid, ψ : Λ → L and γ : Λ → G are monoid maps, and X is a set with
compatible left L-action and right G-action.
A crossed (L,G,Λ,X)-set is a right Λ-set V together with a map ν : V → X

such that ν(yλ) = ψ(λ)−1ν(y)γ(λ).
If (L,G,Λ,X) is a discrete Yetter-Drinfeld datum, then we have a discrete
Doi-Hopf datum (L×G,Λ,X), with (ψ, γ) : Λ → L×G, and x(l, g) = l−1xg.
An (L×G,Λ,X)-set is the same as a crossed (L,G,Λ,X)-set.
An example of a discrete Yetter-Drinfeld datum is G = (G,G,G), as dis-
cussed in the previous Sections.
A Yetter-Drinfeld datum in Tk is a fourtuple (K,H,A,C), where

• K = (L, (Kl)l∈L) and H = (G, (Hg)g∈G) are Hopf group-coalgebras;
• A = (X, (Ax)x∈X) is a (K,H)-bicomodule algebra;
• C = (Λ, (Cλ)λ∈Λ) is a (K,H)-bimodule coalgebra.

Then (L,G,Λ,X) is a discrete Yetter-Drinfeld datum; we have coaction
maps

ρl,x,g : Alxg → Kl ⊗Ax ⊗Hg, ρl,x,g(a) = a[−1,l] ⊗ a[0,x] ⊗ a[1,g],

(Sweedler notation). Cλ is a (Kψ(λ),Hγ(λ))-bimodule, for every λ ∈ Λ.
A Yetter-Drinfeld module is a couple (V, (Mv)v∈V ), where V is a crossed
(L,G,Λ,X)-set, every Mv is a right Aν(v)-module, and M is a right C-
comodule, with structure maps ρv,λ : Mvλ → Mv ⊗ Cλ such that the
compatibility relation

ρv,λ(ma) = m[0,v]a[0,ν(v)] ⊗ Sψ(λ)(a[−1,ψ(λ)−1])m[1,λ]a[2,γ(λ)]

holds for all m ∈Mvλ and a ∈ Aν(vλ) = Aψ(λ)−1ν(v)γ(λ).
If (K,H,A,C) is a Yetter-Drinfeld datum in Tk, then (Kop ⊗H,A,C) is a
Doi-Hopf datum in Tk: A is a right Kop⊗H-comodule algebra with coaction
maps

ρx,(l,g) : Al−1xg → Ax ⊗Kl ⊗Hg, ρx,(l,g)(a) = a[0,x] ⊗ Sl(a[−1,l−1])⊗ a[1,g].

C is a right Kop ⊗H-module coalgebra, since every Cλ is a right Kop
ψ(λ)

⊗

Hγ(λ)-module. Yetter-Drinfeld modules over (K,H,A,C) then coincide
with Doi-Hopf modules over (Kop ⊗ H,A,C). We can then consider the

categories YDT (K,H)
C
A and YDZ(K,H)

C
A which are respectively isomor-

phic to the categories Tk(K
op ⊗H)

C
A and Zk(K

op ⊗H)
C
A. Now the duality

results from Section 3 can be applied.

Example 8.1. (H,H,H,H) is a Yetter-Drinfeld datum in Tk, and the cor-
responding Yetter-Drinfeld modules are the Yetter-Drinfeld modules that
we considered in Section 4.

Example 8.2. Let (L,G,Λ,X) be a discrete Yetter-Drinfeld datum. The
crossed (L,G,Λ,X)-structures on a singleton {∗} are in bijective corre-
spondence with X0 = {x0 ∈ X | x0γ(λ) = ψ(λ)x0, for all λ ∈ Λ}. The
right Λ-action on {∗} is the trivial one, and ν(∗) = x0. In the case where
L = G = Λ = X, X0 is just the center of G.
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Let (K,H,A,C) a Yetter-Drinfeld datum in Tk, and fix x0 ∈ X0. An x0-
Yetter-Drinfeld module is an (K,H,A,C)-Yetter-Drinfeld module of the

form ({∗},M), with ν(∗) = x0. The full subcategory of YDT (K,H)
C
A con-

sisting of x0-Yetter-Drinfeld modules will be denoted by YDT x0(K,H)
C
A.

Example 8.3. We consider a particular instance of Example 8.2. At the
discrete level, take L = G = Λ = X. The left and right G-action on X = G

are given by multiplication. We fix x0 ∈ X = G, and define ψ, γ : Λ → G

by ψ(g) = x0gx
−1
0 and γ(g) = g. It is then easy to see that x0 ∈ X.

We thus have a discrete Yetter-Drinfeld datum, which we will denote by
(G,G,G, x0G).
Let H be a Hopf group coalgebra, with underlying group G; we construct
a Yetter-Drinfeld datum in Tk with underlying discrete Yetter-Drinfeld da-
tum (G,G,G, x0G). Let K = H and A = H, with H-bicomodule algebra
structure induced by the comultiplication maps. Now we make C = H into
an H-module coalgebra. Every Hλ is a right Hλ-module, by multiplication.
Consider a family of algebra maps ϕ = (ϕλ : Hx0λx

−1
0

→ Hλ)λ∈G. ϕλ de-

fines a left Hx0λx
−1
0
-module structure on Hλ by restriction of scalars, and

this makes Hλ a (H
x0λx

−1
0
,Hλ)-bimodule. This defines a left H-bimodule

coalgebra structure on H if and only if

(51) εHϕe = εH and ∆λ,λ′ ◦ ϕλλ′ = (ϕλ ⊗ ϕλ′) ◦∆x0λx
−1
0 ,x0λ′x

−1
0
,

for all λ, λ′ ∈ G. The resulting H-bimodule coalgebra will be denoted x0,ϕH,

and YDT x0,ϕ
H
H will be a shorter notation for the category YDx0(H,H)

x0,ϕH

H .

This definition of an x0-(H,H,H, x0,ϕH)-Yetter-Drinfeld module agrees with
the right version of x0-Yetter-Drinfeld module over a T -coalgebra H as in-
troduced by Zunino in [16]. Recall that a T -coalgebra is a Hopf group-
coalgebra H = (G, (Hg)g∈G) together with a family of k-algebra isomor-
phisms ϕ = (ϕστ : Hσ → Hτστ−1)σ,τ∈G satisfying, among other, the condi-
tions

εHϕ
e
τ = εH and ∆θσθ−1,θτθ−1 ◦ ϕστθ = (ϕσθ ⊗ ϕτθ) ◦∆σ,τ .

for all σ, τ, θ ∈ G. Fix x0 ∈ G, and define ϕλ = ϕ
x0λx

−1
0

x−1
0

, for any λ ∈

G. Then εHϕe = εHϕ
e
x−1
0

= εH and the family ϕ := (ϕλ = ϕ
x0λx

−1
0

x0 :

H
x0λx

−1
0

→ Hλ)λ∈G satisfies (51). To see this take θ = x−1
0 , σ = x0λx

−1
0

and τ = x0λ
′x−1

0 , where λ, λ′ ∈ G in the above equality. In this situation

YDT x0,ϕ
H
H is precisely the category of right x0-Yetter-Drinfeld modules over

a T -coalgebra, in the spirit of [16].

Example 8.4. We present a variation of Example 8.3. At the discrete
level, let ψ be the identity on G, and let γ be conjugation by a fixed x0 ∈ G:
γ(g) = x−1

0 gx0. An H-bimodule structure on H can be obtained using a
family of algebra maps ϕ′ = (ϕ′

λ : H
x−1
0 λx0

→ Hλ)λ∈G. The (Hλ,Hx−1
0 λx0

)-

bimodule structure on Hλ is obtained via restriction of scalars, using the
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identity on the left and ϕλ on the right hand side. This defines an H-
bimodule coalgebra structure on H if and only if

(52) εHϕ
′
e = εH and ∆λ,λ′ ◦ ϕ

′
λλ′ = (ϕ′

λ ⊗ ϕ′
λ′) ◦∆x−1

0 λx0,x
−1
0 λ′x0

,

for all λ, λ′ ∈ G. The resulting H-bimodule coalgebra is denoted by Hx0,ϕ′ ,

and we use the shorter notation YDT
H
Hx0,ϕ

for the category YDx0(H,H)
Hx0,ϕ

H .

Particular examples can be deduced from T -coalgebras. More precisely, let
H be a T -coalgebra and ϕ = (ϕστ : Hσ → Hτστ−1)σ,τ∈G the conjugation of

H. We have a family of algebra morphisms ϕ′ = (ϕ′
λ = ϕ

x−1
0 λx0
x0 : H

x−1
0 λx0

→

Hλ)λ∈G. A simple inspection shows that ϕ′ satisfies (52). Thus it is possible
to define the notion of x0-Yetter-Drinfeld module in a way that is different
from the one in [16].
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