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ON THE AUTOMORPHISMS OF CLUSTER ALGEBRAS

IBRAHIM SALEH

Abstract. Let An(S) be a coefficient free cluster algebra over a field K. A
cluster automorphism is an element of Aut.KK(t1, t2 · · · , tn) which leaves the
set of all cluster variables, χS , invariant. The group of all such automorphisms
is studied in terms of the orbits of the symmetric group action on the set of
all seeds S and the cluster pattern.

Introduction

Cluster algebras are introduced by S. Fomin, and A. Zelevinsky in [7 ,8, 2, 9].
The original motivation for this theory is to create an algebraic framework to study
total positivity and canonical basis in semisimple algebraic groups. It is inspired
by the discovery of connection between total positivity and canonical basis, due to
G Lusztig, [11]

Great progress has been made in the theory, however we deviate from the original
motivations.

A cluster algebra of rank n, An(S), is a commutative subalgebra of an ambient
field, generated by a distinguished set of generators called cluster variables. The
cluster variables are grouped in overlapping sets (clusters) of transcendence basis
of the ambient field. Any two clusters can be obtained from each other by applying
some sequence of mutations. We call the pair (χS , SC), where χS is the set of
all cluster variables and SC denotes the class of all clusters, is called the cluster
structure of An(S).

In this work, we introduce the cluster automorphisms of An(S), which are the
field automorphisms which leave χS invariant. It turned out to be, under certain
conditions, leaving χS invariant is equivalent to leaving the cluster structure in-
variant, (theorem 3.3). The group of all such automorphisms is called the cluster
group of An(S) and is denoted by Cn(S).

Also, we study the action of the symmetric group on the set S, of all seeds of
the field F = K(t1, t2, . . . , tn) . We show that in the simply-laced cluster algebras,
the orbits of such actions are subsets of the orbits of the mutations group action on
S, theorem 2.4. However, the simply-laced hypothesis is necessary (example 2.5).

Every two seeds and a permutation group element define a field automorphism,
we call such automorphism an exchange automorphism. The subgroup of Aut.KF ,
generated by the set of all exchange automorphisms, is called the exchange group
of An(S), and is denoted by m̃n(S).

The main result of this article is providing a description for the intersection of the
cluster group Cn(S) and the exchange group m̃n(S) for any coefficient free cluster
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algebra satisfying the Fomin-Zelevinsky positivity conjecture, in terms of the orbits
of the symmetric group action on S and the cluster pattern data (theorem 3.3).

Through out the paper,K is a field and F = K(t1, t2 . . . tn) is the field of rational
functions in n independent (commutative) variables over k. We always denote (bij)
for the square matrix B, (cij) for C, etc., and [1, n] = {1, 2, . . . , n}.

1. Preliminaries

Most of the material of this section is quoted from [2] [7] [8] [9] [10] and [16].

Definitions 1.1.
(1)A pre-seed of rank n in F over K is a pair (X,B) where X = (x1, x2, . . . , xn) ∈
Fn, such that the {x1, x2, . . . , xn} is a transcendence basis of F over K and B =
(bij) is an n×n, sign-skew-symmetric integral matrix. Sign-skew-symmetric means,
bij = bji = 0 or bijbji < 0, ∀i, j ∈ [1, n].
(2)The diagram of a sign-skew-symmetric matrix B = (bij) is the weighted directed
graph, Γ(B), with set of vertices [1, n], such that there is an edge from i to j if and
only if bij > 0, and this edge is assigned the weight |bijbji|.
(3)A pre-seed (X,B) is called connected if Γ(B) consists of exactly one connected
component.

Definition 1.2 (Seed mutation). For each fixed k ∈ {1, . . . , n}, and each given
pre-seed (X,B) we define a new pair µk(X,B) = (X∗, B∗) by setting X∗ =
(x∗1, . . . , x

∗
n) with

(1.1) x∗i =




xi if i 6= k,
∏

bji>0 x
bji

j
+
∏

bji<0 x
−bji

j

xi
if i = k.

and B∗
k = (b∗ij) with

(1.2) b∗ij =

{
−bij , if k ∈ {i, j},

bij +
|bik|bkj+bik|bkj |

2 , otherwise.

The operation µk is called a mutation in k−direction.

Remark 1.3. If the pre-seed (X,B) is connected, then the mutation of (X,B) in any
direction is still connected. Furthermore, one can see that µ2

k = 1 for all k ∈ [1, n],
and {x1, . . . , xi−1, x

∗
i , xi+1, · · · , xn} is always a transcendence basis of F over K

for all i ∈ [1, n]. However, B∗ need not be sign-skew-symmetric in general. So
(µk(X), µk(B)) is not a pre-seed in general.

Definition 1.4. A connected pre-seed (X,B) is called a seed if we always ob-
tain a pre-seed after applying seed mutations to (X,B) in all possible directions
and all possible sequences, i.e., the matrix µi1µi2 . . . µiq (B) is again a sign skew
symmetric matrix for all possible choices of i1, i2 . . . iq ∈ {1, 2, . . . n}. In this
case µi1µi2 . . . µiq ((X,B)) is called mutation-equivalent to (X,B). It is clear that
mutation-equivalence is an equivalence relation and pre-seed (X,B) is a seed if and
only if any one (that all) pre-seed that is mutation-equivalent to (X,B) is a seed.

Definition 1.5. (Distinguished seeds) A seed p = (X,B) is called a distin-
guished seed if it satisfies the following two conditions
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(1.3) bijbik ≥ 0, ∀ i, j, k ∈ [1, n],

and the second condition is Cartan counterpart A(B) = (aij) of B, is of finite type
as a Cartan matrix.
The type of p is the same as the Cartan-Killing type of A(B). Where A(B) = (aij)
is defined by

(1.4) aij =

{
2, if i = k,

−|bij|, if i 6= k.

Remark 1.6. A connected pre-seed (X,B), with B skew-symmetrizable matrix, is
always a seed. skew-symmetrizable means there exist a diagonal positive integral
matrix D = (di), i ∈ [1, n], such that DB is skew-symmetric.

Let S be the set of all seeds in F . Fix p = (X,B) ∈ S. Let S denote the
mutation equivalence class of p, and SC = {Y ; (Y,A) ∈ S}. Elements of SC are
called clusters and components of any cluster are called cluster variables. We call
the pair, (XS , SC) the cluster structure, where XS is the set of all cluster variables
in S.

Definition 1.7. (Cluster algebra) Let XS be the set of all cluster variables in S
i.e. the union of all clusters in SC . The cluster algebra An(S) of rank n, associated
to the initial seed p = (X,B) (of rank n), is defined to be the Z−subalgebra of F
generated by XS i.e.

(1.5) An(S) := Z[XS ] ⊂ F

Definition 1.8. (Cluster pattern of An(S) [8]). The cluster pattern Tn(S) of
the cluster algebra An(S) is an regular n−ary tree whose edges are labeled by
the numbers 1, 2, . . . , n such that the n edges emanating from each vertex receive
different labels. The vertices are assigned to be the elements of S (the seeds) such
that the endpoints of any edge are obtained from each other by seed mutation in
the direction of the edge label.

One can see, the cluster pattern of An(S) can be completely determined by any
seed in S.

Definition 1.9. A cluster algebra, An(S), is called of finite type, if S is a finite
set. Equivalently if XS is finite.

The details for the following two theorems are available in [8], [16] and [7].

Theorem 1.10. (Finite type classification) For a cluster algebra An(S), the
following are equivalent:

• An(S) is of finite type;
• for every seed (X,B) in S, the entries of the matrix B = (bij) satisfy the
inequalities |bijbji| ≤ 3, for all i, j ∈ [1, n];
• S contains a distinguished seed.

Theorem 1.11. Every finite type Cartan matrix corresponds to one and only one,
up to field automorphism, finite type cluster algebra. Furthermore, a cluster algebra
An(S) is of finite type if and only if S contains a distinguished seed and cluster
type of An(S) is the same as the Cartan-Killing type of the Cartan counter part
the distinguished seed.
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Remark 1.12. If there is a seed (X,B) in S such that, there is a linear ordering of
{1, 2, · · ·n} , where bij ≥ 0 for all i < j, then the seed (X,B) is called acyclic seed,
and An(S) is called acyclic cluster algebra, and in this case we have;

(1.6) An(S) = Z[xk, x
′
k; k ∈ [1, n]],

and An(S) is finitely generated as an algebra.

Theorem 1.13. (Laurent Phenomenon and Fomin-Zelevinsky Positivity
Conjecture). The cluster algebra An(S) is contained in the integral ring of Laurent
polynomials Z[X±], for any cluster X ∈ SC , i.e.

(1.7) An(S) ⊂ Z[X±] = Z[x±1 , x
±
2 , . . . , x

±
n ]

for any cluster X = (x1, x2, . . . , xn) ∈ SC .
More precisely, every non zero element y ∈ An(S), can be uniquely written as

(1.8) y =
P (x1, x2, . . . , xn)

xα1

1 . . . xαn
n

,

where (α1, α2, . . . , αn) ∈ Z
n, and P (x1, x2, . . . , xn) is an element of the ring of

polynomials Z[x1, x2, . . . , xn], is not divisible by any cluster variable xi.
It is further conjectured that in the case of y is a cluster variable, the polynomials
P (x1, x2, . . . , xn) have nonnegative integer coefficients(known as Fomin-Zelevinsky
positivity conjecture).
The conjecture has been proved in many cases including classical type cluster al-
gebras [8], rank two affine cluster algebras as in [15], acyclic cluster algebra [3],
cluster algebras arising from spaces [14], and more.

2. Cluster groups

Definition 2.1. Let AutK(F ) denote the automorphism group of F over K. An
automorphism φ ∈ AutK(F ) is called a cluster isomorphism from a cluster algebra
An(S) onto a cluster algebra Bn(S

′) over F , if φ sends every cluster variable in
An(S) onto a cluster variable in An(S

′).
In particular, φ is called cluster automorphism ofAn(S), if it leaves XS invariant.

(Where XS is the set of all cluster variables of An(S)).
The subgroup of AutK(F ) of all cluster automorphisms of a cluster algebra

An(S) is called the cluster group of An(S) and is denoted by Cn(S).

Remarks 2.2.
(1) One can see that any cluster automorphism of a cluster algebra An(S) is an
algebra automorphism of An(S) over K, i.e. Cn(S) is a subgroup of AutKAn(S),
where AutKAn(S) denotes the automorphism group of the algebra An(S) over K.
(2) If ψ : An(S) → Bn(S

′) is a cluster isomorphism, then ψ induces a group
isomorphism between Cn(S), and Cn(S

′). To see this last fact, we define the
group isomorphism by π : Cn(S) → Cn(S

′), given by φ 7→ ϕ, where ϕ(y) =
ψ(φ(ψ−1(y))) for y a cluster variable in Bn(S

′). A routine check shows that π is a
group isomorphism.

Let Σn be the symmetric group on n letters. One can see that Σn ⊂ AutK(F )
as follows: let T = (t1, t2, . . . , tn), where {t1, t2, . . . , tn} is a transcendence basis of
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F over K, σ ∈ Σn, and f = f(t1, t2, . . . tn) ∈ F . We have;

(2.1) σT (f) := f(tσ(1), tσ(2), . . . tσ(n)).

In the following we introduce an action of the symmetric group Σn on S .

Definition 2.3. Let X = (x1, x2, . . . xn) be a fixed cluster, and let σ ∈ Σn. For any
seed p = (Y,B) ∈ S, where Y = (y1, y2 . . . yn), and B = (bij). The Laurent Phe-

nomenon (Theorem 1.13) guarantees that yi = yi(x1, x2, . . . xn) ∈ Z[x±1 , x
±
2 , . . . x

±
n ]

(i.e yi is a Laurent polynomial in {x1, x2, . . . xn}, for each i ∈ [1, n]). We define
σX(p), as follows;

(2.2) σX(p) := (σX(Y ), σ(B)),

where σX(Y ) = (σX(y1), σX(y2), . . . , σX(yn)), σ(B) := (bσ(i)σ(j)) and σX(yi), for
i ∈ [1, n], is as defined in (2.1). We write σ(p) instead of σX(p) if there is no chance
of confusion.

Before stating the next theorem, we need to develop some notations.
For a seed p = (Y,B), the neighborhood of a cluster variable yi is defined to be
the subset of {y1, y2, · · · , yn} of all cluster variables yj , where bij 6= 0. We denote
this Np(yi). For every connected integral skew-symmetric matrix, B = (bij), it is
convenient to assign a quiver. We define QB as QB = (Q1B, Q2B), where Q1B

denotes the vertices and Q2B denotes the arrows. The vertices Q1B = {1, . . . , n}
and there is bij arrows from i to j if and only if bij > 0.
The mutation operation of the matrix B can be translated to the associated quiver.
Let µk(QB) denote the mutation at k of QB. First, all the arrows incident to k in
QB are reversed in µk(QB). Second, for each pair of sets of arrows, one set is of the
incoming arrows say from j to k, and the other is of the outgoing arrows from k

say to i, we add number of arrows from j to i equals to the number of the product
of the cardinal numbers of both sets. Last step, is canceling all two-cycles between
j and i.

Theorem 2.4. Let p = (X,B) be a simply-laced seed in F , i.e. bij ∈ {0,−1, 1}.
Then for any σ ∈ Σn, σX(p) is mutation-equivalent to p.

Proof. Let i, j ∈ {1, 2, . . . , n}, such that xj ∈ Np(xi). Then σij(X,B) is mutation-
equivalent to (X,B), where σij stands for a transposition element of Σn, that sends
every k ∈ {1, 2, . . . , n} to itself except i and j. We have

(2.3) σij(X,B) = µjµiµjµiµj((X,B)) = µiµjµiµjµi((X,B)).

Now, since the symmetric group is generated by transpositions, and remarking that
all seeds are connected, we are left to show the identity (2.3).
Sketch of proof of identities (2.3): Note that, each simply-laced sign skew
symmetric matrix must be skew symmetric. So, if it is connected it associates to a
(connected) quiver, which reduces to proving (2.3) on (X,QB) instead.
In the following we provide a proof for the identity (2.3) in some cases as examples.
The proof of all other cases follow similarly:
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(i) Seeds of An type
We provide a proof for A3-type, a general An-type case is quite similar,

((x1, x2, x3), ·1 → ·2 → ·3)
µ1
⇒ ((

x2 + 1

x1
, x2, x3), ·1 ← ·2 → ·3)

µ2
⇒ ((

x2 + 1

x1
,
x2x3 + x3 + x1

x1x2
, x3), ·1 → ·2 ← ·3)

µ1
⇒ ((

x3 + x1

x2
,
x2x3 + x3 + x1

x1x2
, x3), ·1 ← ·2 ← ·3)

µ2
⇒ ((

x3 + x1

x2
, x1, x3), ·1

��

·3oo

·2

>>~~~~~~~

)

µ1
⇒ ((x2, x1, x3), ·2 → ·1 → ·3)

(ii) For the exchange inside the n-cycles
We prove it for A3−type, a general n-cycle is quite similar:

((x1, x2, x3), ·1

��

// ·3

·2

>>~~~~~~~

)
µ1
⇒ ((

x2x3 + 1

x1
, x2, x3), ·1 ·3oo

·2

OO >>~~~~~~~

)

µ2
⇒ ((

x2x3 + 1

x1
,
x3(x2x3 + 1) + x1

x1x2
, x3), ·2 ·1oo

·3

OO >>~~~~~~~

)

µ1
⇒ ((

x3 + x1

x2
,
x3(x2x3 + 1) + x1

x1x2
, x3), ·2

��

·3
2oo

·1

>>~~~~~~~

)

µ2
⇒ ((

x3 + x1

x2
, x1, x3), ·2

2 // ·3

~~~~
~~

~~
~

·1

OO )

µ1
⇒ ((x2, x1, x3), ·2

��

// ·3

·1

>>~~~~~~~

).

(remark that; the number 2 written over the arrows from 3 to 2 and from 2 to 3 in
third and fourth steps respectively, refers to double arrows).
(iii) Exchange of external vertex with adjacent one which is a vertex in
an n-cycle
We provide calculations for n = 4 case.



ON THE AUTOMORPHISMS OF CLUSTER ALGEBRAS 7

((x1, x2, x3, x4), ·1 // ·2

~~}}
}}

}}
}}

��
·3 ·4oo

)
µ1
⇒ ((

x2 + 1

x1
, x2, x3, x4), ·1 ·2oo

~~}}
}}

}}
}}

��
·3 ·4oo

)

µ2
⇒ ((

x2 + 1

x1
,
(x2 + 1)x3x4 + x1

x1x2
, x3, x4), ·1 // ·2

·3

>>}}}}}}}}
·4oo

OO )

µ1
⇒ ((

x2x4 + x1

x2
,
(x2 + 1)x3x4 + x1

x1x2
, x3, x4), ·1 ·2oo

·3

>>}}}}}}}}
·4oo

OO )

µ2
⇒ ((

x2x4 + x1

x2
, x1, x3, x4), ·1 // ·2

~~}}
}}

}}
}}

��
·3

OO

·4

``AAAAAAAA
oo

)

µ1
⇒ ((x2, x1, x3, x4), ·2 // ·1

~~}}
}}

}}
}}

��
·3 ·4oo

).

Connected cycles and different quivers shapes are similar. �

For non simply-laced type seeds, the above result is not necessarily true, we
provide the following counter example.

Example 2.5. Consider the seed (X,B), where

B = (bij) =




0 +2 0
−2 0 +1
0 −1 0


.

In the following, we show that there is no sequence of mutations µi1µi2 . . . µik ,
such that σ12(B) = µi1µi2 . . . µik(B), where

σ12(B) =




0 −2 +1
+2 0 0
−1 0 0


.

If we could show that, there is no sequence of mutations that sends the entry b23
to zero, we will be done. We do this by showing that every sequence of mutations
sends b23 to an odd number. First we show by induction on the length of the
sequence of mutations that, any sequence of mutations sends b13 and b12 to even
numbers.
For single element sequences: one can see that, only µ2 and µ3 may change b13 and
b12 respectively: that is µ2 and µ3 send b13 and b12 to 2 respectively.
Now, assume that every sequence of mutations of length k sends b13 and b12 to an
even number, and let µik+1

µik . . . µi1 be a sequence of length k + 1. So if

(2.4) µik . . . µi1((bij)) = (b′ij).
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Then b′23 = 2d for some integer number d. Now we have

µik+1
(b′13) = b′13 +

b′12|b
′
23|+ b′23|b

′
12|

2
= b′13 + d|b′23|+ |d|b

′
23

= b′13 + d

{
±2b23, if b23d > 0,

0, if b23d < 0.

Since b′13 is an even number then µik+1
(b′13) must be an even too. This shows that

any sequence of mutations will send b13 to an even number. In a similar way one
can show that any sequence of mutation sends b12 to an even number.
Secondly, we show that every sequence of mutations sends |b23| to an odd number.
We show this by induction on the number of occurrences of µ1 in the sequence.
Note that any sequence not containing µ1 will not change |b23|.
Sequences contains only one copy of µ1: Without loss of generality, let
µi1µi2 . . . µik be a sequence of mutations such that µik = µ1, and µij 6= µ1, ∀j ∈
[1, k]. This becomes clear by considering that the possible change in |b23| appears
only after applying µ1, and there is no change in |b23| due to µ2 or µ3. Then using
same notation as in (2.4), we have

(2.5) b′23 = ±1 +
b′21|b

′
13|+ |b

′
21|b

′
13

2
.

However b′21 and b′13 are both even numbers, so
b′21|b

′
13|+|b′21|b

′
13

2 must be even, and
b′23 is an odd number.
Sequences contains more than one copy of µ1: Assume that any sequence of
mutations, with µ1 repeated k− times sends b23 to an odd number.
Let µitµi2 . . . µi1 be a sequence of mutations containing µ1, k + 1−times, then we
can assume that µit = µ1. Let

(2.6) µit . . . µi1 ((bij)) = (b′′ij), and µit−1 . . . µi1((bij)) = (b′ij),

then one can see that b′23 is an odd number and b′12 and b′13 are both even numbers.
Then,

(2.7) b′′23 = b′23 +
b′21|b

′
13|+ b′13|b

′
21|

2
,

a sum of an odd and even numbers, b′′23 is an odd number. �

Definition (2.3) gives rise to an equivalence relation on S, as we will see in the
following definition.

Definition 2.6. Let B = (bij) and B′ = (b′ij) be any two sign skew symmetric
integral matrices, and σ be an element of

∑
n. Then we say that B and B′ are

σ-similar if B′ = ǫσ(B), where ǫ ∈ {−1,+1}.

Now we define an equivalence relation ∼ on S. Let p = (X,B) and p′ = (Y,B′)
be two seeds. Then

(2.8) p ∼ p′ if and only if B and B′ are σ− similar for some permutation σ.

This yields an equivalence relation on S with the equivalence class of p denoted
by [p] and the equivalence class of B is denoted by 〈B〉. (Note, ∼ defines an
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equivalence relation on the set of all sign skew-symmetric integral n× n matrices,
for all non-negative integer n)

Lemma 2.7. Let p = (X,B) and p′ = (Y,B′) be any two seeds, and σ ∈
∑

n. So,
if Tpp′,σ ∈ Aut.K(F ), given by; xi 7→ yσ(i). Then, we have;

(2.9)
B and B′ are σ−similar if and only if Tpp′,σ(µi(xi)) = µσ(i)(yσ(i)), ∀i ∈ [1, n].

In particular, p ∼ p′ if and only if for some permutation σ, Tpp′,σ sends µi(X) to
µσ(i)(Y ).

Proof. ⇒) Assume that B and B′ are two σ- similar seeds. Then B′ = ǫ(σ(B)).
So, if B = (bij) and B

′ = (b′ij), then b
′
ij = ǫbσ(i)σ(j), where ǫ ∈ {+1,−1}. Then we

have;

Tpp′,σ(µi(xi)) = Tpp′,σ

(∏
bji>0

x
bji
j +

∏
bji<0 x

−bji
j

xi

)

=

∏
bji>0 y

bji
σ(j) +

∏
bji<0 y

−bji
σ(j)

yσ(i)

=

∏
bji>0 y

ǫb′σ(j)σ(i)

σ(j) +
∏

bji<0 y
−ǫb′σ(j)σ(i)

σ(j)

yσ(i)

=






∏
b′
σ(j)σ(i)

>0 y
b′
σ(j)σ(i)

σ(j)
+
∏

b′
σ(j)σ(i)

<0 y
−b′

σ(j)σ(i)

σ(j)

yσ(i)
, if ǫ = 1,

∏
b′
ji

<0 y
−b′

σ(j)σ(i)

σ(j)
+
∏

b′
σ(j)σ(i)

>0 y
b′
σ(j)σ(i)

σ(i)

yσ(i)
, if ǫ = −1.

= µσ(i)(yσ(i))

⇐) Suppose that p and p′ are not σ-similar, then B′ 6= ±σ(B), i.e. (b′ij) 6=
±(bσ(i)σ(j)). Then b

′
ij0
6= ±bσ(i)σ(j0), for some j0 ∈ [1, n]. Now, we have;

Tpp′,σ(µi(xi)) = Tpp′,σ

(∏
bij>0

x
bij
j +

∏
bik<0 x

−bik
k

xi

)

= Tpp′,σ



∏

bij>0,j 6=j0
x
bij
j · x

bij0
j0

+
∏

bik<0 x
−bik
k

xi




=

∏
bij>0,j 6=j0

y
bij
σ(j) · y

bij0
σ(j0)

+
∏

bik<0 y
−bik
σ(k)

yσ(i)

=





∏
bij>0,j 6=j0

y
bij

σ(j)
·y

bij0
σ(j0)

+
∏

bik<0 y
−bik
σ(k)

yσ(i)
, if bij0 > 0,

∏
bij>0,

y
bij

σ(j)
+
∏

bik<0,j 6=j0
y
−bik
σ(k)

·y
bij0
σ(j0)

yσ(i)
, if bij0 < 0

6= µσ(i)(yσ(i)).
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Last line is due to the fact that, y
bij0
σ(j0)

appears in µσ(i)(yσ(i)) with a different

exponent. The last part of the statement is straightforward. �

Theorem 2.8. Let p = (X,B) and p′ = (Y,B′) be any two σ-similar seeds. Then
for any sequence of mutations µik , µik−1

, . . . , µi1 , the following are true:
(1) µikµik−1

. . . µi1(X,B) and µσ(ik)µσ(ik−1) . . . µσ(i1)(Y,B
′) are σ- similar,

(2) Tpp′,σ(µikµik−1
. . . µi1(X)) = µσ(ik)µσ(ik−1) . . . µσ(i1)(Y ), where Tpp′,σ is as de-

fined in lemma 2.7.

Proof.
(1) This part follows as a simple corollary of the identity

(2.10) σ(µk(B)) = µσ(k)(σ(B)), ∀k ∈ [1, n].

To prove that; let µk(B) = (b∗ij), and µσ(k)(σ(B)) = (b
′∗
σ(i)σ(j)). One can see

that; we obtain the matrix σ(B) from B, by relocating the entries of B using
σ, i.e. the (i, j) entry bij of B moves to the position σ(i) − σ(j) in σ(B) . So,
we have bσ(i)σ(j) = bij , ∀i, j ∈ [1, n]. Therefore, if σ(µk(B)) = (b∗

σ(i)σ(j)), then,

b∗
σ(i)σ(j) = b∗ij , ∀i, j ∈ [1, n]. Now, let’s look at the matrix µσ(k)(σ(B)) = (b

′∗
σ(i)σ(j)).

We have ∀i, j ∈ [1, n];

b′∗σ(i)σ(j) =

{
−bσ(i)σ(j), if σ(k) ∈ {i, j},

bσ(i)σ(j) +
bσ(i)σ(k) |bσ(k)σ(j) |+|bσ(i)σ(k) |bσ(k)σ(j)

2 , otherwise

=

{
−bij, if k ∈ {i, j},

bij +
bik|bkj |+|bik|bkj

2 , otherwise

= b∗ij .

Remark that; k ∈ {i, j} if and only if σ(k) ∈ {σ(i), σ(j)}. Therefore, b′∗
σ(i)σ(j) =

b∗σ(i)σ(j), ∀i, j ∈ [1, n], and this finishes the proof of (2.10). Changing the sign in

(2.10) is immaterial to the identity, so we may rewrite it as

(2.11) ǫσ(µk(B)) = µσ(k)(ǫσ(B)), ∀ k ∈ [1, n],where ǫ ∈ {−1,+1}.

Which is equivalent to saying, if B and B′ are σ-similar, then for any k ∈ [1, n],
µk(B), and µσ(k)(B

′) are also σ-similar. An induction process generalizes this fact
to an arbitrary sequence of mutations, µik , µik−1

, . . . , µi1 , that is µikµik−1
. . . µi1(X,B)

and µσ(ik)µσ(ik−1) . . . µσ(i1)(Y,B
′) are also σ-similar. Hence (1) is proved.

(2) Let µikµik−1
. . . µi1 be a sequence of mutations, pi1ik = µikµik−1

. . . µi1(p), and
p′
σ(i1)σ(ik)

= µσ(ik)µσ(ik−1) . . . µσ(i1)(p
′), for j ∈ [1, k]. Part (1) tells us that pi1ik−1

and p′
σ(i1)σ(ik−1)

are σ-similar. Then lemma 2.7 implies that

(2.12) Tpi1ik
p′
σ(i1)σ(ik)

,σ(µik(µik−1
. . . µi1(X))) = µiσ(k)

(µiσ(k−1)
. . . µσ(i1)(Y )).

So, it remains to show that

(2.13) Tpi1ik
p′
σ(i1)σ(ik)

,σ(µik(µik−1
. . . µi1(X))) = Tpp′,σ(µik(µik−1

. . . µi1(X)).
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To get to this, let q = (Z,D), and q′ = (T,C) be any two σ-similar seeds, and let
q1 = µi(Z,D) = (Z ′, D′), q′1 = µσ(i)(T,C) = (T ′, C′). Where Z = (z1, z2, . . . , zn),
and T = (t1, t2, . . . , tn). Next we show that

(2.14) Tq1q′1,σ(µkµi(Z)) = Tqq′,σ(µkµi(Z)).

Let zj be a cluster variable in Z, then for j 6= i, both of Tq1q′1,σ, and Tqq′,σ leave zj
unchanged. Now, let j = i, and we have

Tq1q′1,σ(µi(zi)) = Tq1q′1,σ

(∏
dij>0

z
dij

j +
∏

dik<0 z
−dik

k

zi

)

=

∏
dij>0

t
dij

σ(j) +
∏

dik<0 t
−dik

σ(k)

Tp1p
′
1,σ

(zi)
.

However,

Tq1q′1,σ(µi(zi)) = µσ(i)(tσ(i))

=

∏
cij>0

t
cij
σ(j) +

∏
cik<0 t

−cik
σ(k)

tσ(i)

=

∏
dij>0

t
ǫdij

σ(j) +
∏

dik<0 t
−ǫdik

σ(k)

tσ(i)
.

Hence, Tp1p
′
1,σ

(zi) = tσ(i). This shows that Tq1q′1,σ, and Tqq′,σ have the same action
on every cluster variable in Z, and since cluster variables from the µkµi(Z) are
integral laurent polynomials of cluster variables from Z, this gives (2.14).
For equation (2.13) we use induction on the length of the mutation sequence. As-
sume that equation (2.13) is true for any sequence of mutation of length less than
or equal k − 1. Now we have;

Tpi1ik
p′
i1ik

,σ(µikµik−1
. . . µi1(X)) = Tpi1ik−2

p′
i1ik−2

,σ(µikµik−1
. . . µi1(X))

= Tpp′,σ(µikµik−1
. . . µi1(X)),

where the first equality is by identity (2.14), and the second, by the induction
hypotheses.

�

Theorem 2.9. Let An(S) be a cluster algebra, and (X,B) be a self σ-similar seed
in S for some σ ∈ Σn. Then, σX is a cluster automorphism.

Proof. Let y ∈ XS . Then there exists a seed (X,B) such that for a cluster vari-
able xi in X , we have y = µi1µi2 . . . µik(xi). So for some sequence of mutations
µi1µi2 . . . µik , we apply this sequence of mutation to X .
We are left to show,

(2.15) σX(y) = µσ(i1)µσ(i2) · · ·µσ(ik)(xσ(i)).
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From part (1) Theorem 2.8, µi2µi3 . . . µit((X,B)) and µσ(i2)µσ(i3) · · ·µσ(it)((X,B)),
are σ-similar ∀t ∈ [1, q]. Part (2) of the same theorem implies that equation (2.15)
is correct.

�

Example 2.10. Let An(S) be a cluster algebra of An−type. Then, Cn(S) is not
trivial.

To see that, fix an initial seed (X,B) such that B = (bij) where either bij ≥
0, ∀i > j or bij ≤ 0, ∀i > j, such seed is always exist in any cluster algebra of An−
type . The following permutation is a cluster automorphism with symmetric group
action defined, with respect to the initial cluster X ;

(2.16) τX =

{
(1 2k + 1)X(2 2k)X . . . (k k + 2)X , if n = 2k + 1,

(1 2k)X(2 2k − 1)X . . . (k k + 1)X , if n = 2k.

Now one can see that (X,B) is self σ-similar.

3. Exchange groups

Every path in the cluster pattern defines a field automorphism, which we codify
in the following definition. In this section, we study the intersection of the group
generated by all such automorphisms and the cluster group.

Definitions 3.1. Let p = (X,B), and p′ = (Y,B′) be any two vertices in the
exchange graph gn(S) of the cluster algebra An(S). For any σ ∈

∑
n, The field

automorphism Tpp′,σ : F → F induced by xi 7→ yσ(i) is called an exchange auto-
morphism.

The subgroup of Aut.K(F ) generated by set of all exchange automorphisms is
called the exchange group of An(S), and is denoted by m̃n(S).

Remark 3.2. let An(S) be a simply laced cluster algebra, and fix an initial seed p =
(X,B). Then, every symmetric group element can be seen as a field automorphism,
(as in the paragraph proceeding definition (2.3)), taking T = X . From Theorem
2.4, every symmetric group element (in the above sense) corresponds to a path in
the exchange graph of An(S). So, the symmetric group elements can be seen as
exchange automorphisms.

Before we state the main results we sharpen the notations of the neighbors
and monomials of the cluster variables. Let xi0 be a cluster variable in p =
(X,B), i.e.X = (x1, . . . , xi0−1, xi0 , xi0+1, . . . , xn). The set of neighbors of xi0 at
the seed p, denoted by Np(xi0) and defined as, Np(xi0 ) := Np,+(xi0)

⋃
Np,−(xi0 ),

where Np,+(xi0 ) = {xi; bi0i > 0} and Np,−(xi0 ) = {xi; bi0i < 0}. The positive
and negative monomials of the cluster variable xi0 at the seed p are denoted by

mp,+(xi0), and mp,−(xi0 ) respectively. Where, mp,+(xi0 ) =
∏

xi∈Np,+(xi0 )
x
bii0
i ,

and mp,−(xi0 ) =
∏

xi∈Np,−(xi0)
x
−bii0
i . We denote fp,xi0

= mp,+(xi0) +mp,−(xi0 ),

one can see that fp,xi0
is not divisible by xi, ∀i ∈ [1, n].

The following theorem provides a description for Cn(S), through m̃n(S) and the
equivalent classes of ∼. In the proof of the theorem, we assume that the posi-
tivity conjecture is true, Theorem 1.13. However, a proof without the positivity
conjecture can be written in rank two and finite type cluster algebras.
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Theorem 3.3. Let An(S) be a cluster algebra satisfies the positivity conjecture,
(theorem 1.13). Let p = (X,B) and p′ = (Y,B′) be any two vertices in the ex-
change graph of An(S). Then, for the field automorphism Tpp′,σ (Definition 3.1.),
the following are equivalent

(1) Tpp′,σ is a cluster automorphism,

(2) p and p′ are σ- similar,

(3) Tpp′,σ permutes the clusters.
Furthermore for any seed q = (Z,D), we have;

(3.1) Tpp′,σ(Z) ∈ {Y ; (Y,M) ∈ [q]}.

Proof.
(1)⇒(2)
Let Tpp′,σ be a cluster automorphism. From Lemma 2.7, to show p and p′ are
σ-similar, it is enough to show that, Tpp′,σ(µi(xi)) = µσ(i)(yσ(i)), ∀i ∈ [1, n].
Let z = Tpp′,σ(µi(xi)), and ξ = µσ(i)(yσ(i)) where X = (x1, x2, . . . , xn), and Y =
(y1, y2, . . . , yn). Then, we have;

(3.2) z =
Tpp′,σ(fp,x)

yσ(i)
, and ξ =

fp′,yσ(i)

yσ(i)
.

Both Tpp′,σ(fp,x) and fp′,yσ(i)
are polynomials in the integer ring of polynomials

Z[yσ(1), · · · , yσ(i−1), yσ(i+1), . . . , yσ(n)], and are not divisible by yσ(j), for all j in
[1, n].
Now, suppose that z is a cluster variable. Then, by Laurent phenomenon (theorem
1.13), z can be written uniquely as;

(3.3) z =
P (yσ(1), yσ(2), . . . , yσ(i−1), ξ, yσ(i+1), . . . , yσ(n))

yα1

σ(1) . . . y
αi−1

σ(i−1)ξ
αiy

αi+1

σ(i+1) . . . y
αn

σ(n)

,

where P (yσ(1), yσ(2), . . . , yσ(i−1), ξ, yσ(i+1), . . . , yσ(n)) is a polynomial with integers
coefficients, which is not divisible by any of the following cluster variables yσ(1),yσ(2),
. . ., yσ(i−1), ξ,yσ(i+1), . . . , yσ(n−1) and yσ(n), and (α1, α2, . . . , αn) ∈ Z

n.
Comparing z from (3.2) and (3.3), we have;

(3.4) Tpp′,σ(fp,x) . . . y
α1

σ(1) . . . y
αi−1

σ(i−1) . . . ξ
αi . . . y

αi+1

σ(i+1) . . . y
αn

σ(n) = P · yσ(i).

Since, fp,x is not divisible by any cluster variable xi, for any i ∈ [1, n]. Then
Tpp′,σ(fp,x) is not divisible by yi, ∀i ∈ [1, n]. More precisely Tpp′,σ(fp,x) is a sum of
two monomials in variables from the cluster Y , with positive exponents. Therefore,
αj = 0 for all j ∈ [1, n]− {i}, and i = −1. Hence, (3.4) can be simplified as

(3.5) Tpp′,σ(fp,x) = P · fp′,yσ(i)
.

Now we have that fp′,yσ(i)
is also a sum of two monomials in variables from the

cluster Y , with positive exponents. However, P is a polynomial with positive
integers coefficients, and not divisible by any cluster variable from Y ′ = µσ(i)(Y ).
Then it must be either a sum of at least two monomials in variables from Y ′, or it
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is a positive integer. Equation (3.5) says that, the first option for P is impossible
because Tpp′,σ(fp,x) and fp′,yσ(i)

sums of exactly two monomials, so P must be an

integer. Because the coefficients of Tpp′,σ(fp,x) and fp′,yσ(i)
are all ones, which must

be exactly 1.
Hence,

(3.6) Tpp′,σ(fp,x) = fp′,yσ(i)
.

Therefore,

(3.7) Tpp′,σ(µi(xi)) = µσ(i)(yσ(i)), ∀i ∈ [1, n].

Now, lemma 2.7 implies p and p′ are σ-similar.
(2)⇒ (3)

Let Z = (z1, z2, . . . , zn) be the cluster of the seed (Z,D). Then there is a
sequence of mutations µi1µi2 . . . µik such that

(Z,D) = µi1µi2 . . . µik(X,B)

Since (X,B), and (Y,B′) are σ-similar then, Theorem 2.8 part 1 implies that
µi2 . . . µik(X,B) and µσ(i2) . . . µσ(ik)(Y,B

′) are σ-similar too.
But, from Theorem 2.8 part 2, we have,

Tpp′,σ(µi1(µi2 . . . µik(X))) = µσ(i1)µσ(i2) . . . µσ(ik)(Y ),

and since the right hand side is a cluster and the left hand side is only Tpp′,σ(Z),
then Tpp′,σ sends Z to a cluster. So, Tpp′,σ(Z) permutes the clusters. For the be-
longing (3.1), is immediate from the above argument.

(3)⇒(1) Permuting the clusters implies leaving χS invariant, because every cluster
variable is contained in some cluster. �

The following is a corollary of the proof of Theorem 3.3, and is actually the
generalization of the statement of the same theorem, to the level of cluster isomor-
phism.

Corollary 3.4. Let An(S), and An(S
′) be any two cluster algebras over F . If

p = (X,B) ∈ S, p′ = (Y,B′) ∈ S′, and σ ∈
∑

n. Then the following are equivalent

(1) the field automorphism φpp′,σ : F → F , given by xi 7→ yσ(i) is a cluster isomor-
phism from An(S) onto An(S

′),

(2) p and p′ are σ-similar,

(3)φpp′,σ sends every cluster in SC onto a cluster in S′
C.

In particular, two cluster algebras are cluster isomorphic if and only if they contain
two σ-similar seeds for some permutation σ.

Proof. Follow the proof of Theorem 3.3, mutatis mutandis. �

Corollary 3.5. If An(S) is a cluster algebra of simply-laced type then Cn(S) 6= 1.
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Proof. This follow from Theorem 2.4 and theorem 3.3.
However, the converse is not necessarily true. Consider the the cluster algebra given
in example 2.5, and the cluster automorphism is the transposition σ23. A routine
check shows that, σ23 corresponds to the sequence of mutations µ2µ3µ2µ3µ2. Then
Theorem 2.4 implies the transposition σ23 is a cluster automorphism, while the
cluster algebra is not simply-laced. �

Conjecture 3.6. The set of all cluster variables χS can be complectly determined
by [p] as follows;

(3.8) χS =
⋃
{Y ; (Y,M) ∈ [p]},

In the following we calculate the cluster and exchange groups for some cluster
algebras of low ranks.

Example 3.7. Cluster and exchange groups of rank 1 In this case, F =
K(t), and AutKF is isomorphic to the projective linear group PGL2(K), and
S = {(x, (0)), ( 1

x
, (0))}, hence A1(S) = Z[x±1]. So the cluster group and the

exchange groups associated to A1(S) are the subgroup of Aut.K(F ) generated by
the automorphism T1 : K(x)→ K(x) induced by x 7→ 1

x
, and then;

m̃(S) = C1
1 ((x, (0))) = C1

1 ((
1

x
, (0))) = C1(S) ∼= 〈

(
0 1
1 0

)
〉 < PGL2(K).

Example 3.8. Cluster groups of rank 2, C2(S)
In this case F = K(x1, x2), and applying the mutations on the initial seed θ =

{(x1, x2),

(
0 m

−n 0

)
}, leads to the following recursive relation for the cluster

variables of A(S)

(3.9) xt−1xt+1 =

{
xmt + 1, if t is odd
xnt + 1, otherwise.

Thus, the cluster algebra A(S)(m.n) corresponding to θ is the subalgebra of F =
K(x1, x2) generated by {xt; t ∈ Z} , however, since θ is acyclic seed thenA(S)(m.n) =
Z[x0, x1, x2, x3] ⊂ K(x1, x2).

Theorem 3.9. [11] The sequence (3.9) of the cluster variables {xt}t∈Z in A(S)(m.n)
is periodic if and only if mn ≤ 3, and is of period 5 (resp., 6, 8) if mn = 1 (resp.,
2, 3).

In the following, let C2(m,n) denote the cluster group associated to A(S)(m,n).

Lemma 3.10. There is a cluster isomorphism between the cluster algebra A2(S)(m,n)
and A2(S)(n,m).

Proof. Fix (x1, x2) and (y1, y2) as initial clusters for A2(S)(m,n) and A2(S)(n,m)
respectively. Consider the following cluster isomorphism

σ12 : A2(S)(m,n)→ A2(S)(n,m)

given by:
x1 7→ y2 and x2 7→ y1,

one can see that this automorphism induces a one to one correspondence between
the sets of all clusters of A2(S)(m,n) and A2(S)(n,m).

�



16 IBRAHIM SALEH

Corollary 3.11. C2(m,n) ∼= C2(n,m).

Proof. From the previous lemma, and part (2) in remarks 3.2. �

Example 3.12. The Cluster and exchange groups of A(S)(1, 1). In this case,
we have exactly 5 cluster variables which, in terms of the initial cluster variables
(x1, x2) are

{x1, x2,
x1 + 1

x2
,
x2 + 1

x1
,
1 + x1 + x2

x1x2
},

and the following unordered pairs as clusters

(x1, x2), (x1,
x1 + 1

x2
), (

x2 + 1

x1
, x2), (

x2 + 1

x1
,
1 + x1 + x2

x1x2
), (

1 + x1 + x2

x1x2
,
x1 + 1

x2
).

So, C2(1, 1) is the subgroup of Aut.KK(x1, x2) generated by the following involuting
automorphisms T1, and T2 where, T1 is induced by;

(3.10) x1 7→
x2 + 1

x1
, and x2 7→ x2,

and T2

(3.11) x1 7→ x1 and x2 7→
x1 + 1

x2
,

To show, these are the only generators. Let’s try one different choice, consider the
automorphism η induced by, x1 7→

x1+1
x2

then we have;

η((x1,
x1 + 1

x2
)) = (η(x1), η(

x1 + 1

x2
)) = (

x1 + 1

x2
,
x1 + x2 + 1

x22
)

but (x1+1
x2

, x1+x2+1
x2
2

) is not a cluster, so the automorphism η can not be a cluster

automorphism. In a complete similar way we can argue all other possible choices.
Therefore,

C2(1, 1) = 〈T1, T2〉 < Aut.KK(x1, x2).

Also, we can see that

C2(1, 1) = Σ2 = m̃2(S) = Cd
2 (p), ∀ seed p ∈ S, and ∀ d ∈ [1, 5].

Remark 3.13. C2(1, 1) is a Coexter group with the following presentation

C2(1, 1) = {T1, T2|T
2
1 = T 2

2 = 1, (T1T2)
10 = 1}.

Example 3.14. The cluster group C2(2, 1).
We have exactly 6 different cluster variables, which are

(3.12) {x1, x2,
x2 + 1

x1
,
(x2 + 1)2 + x21

x21x2
,
x21 + x2 + 1

x1x2
,
x21 + 1

x1
}

and the following unordered pairs as the set of clusters

(x1, x2), (
x2+1
x1

, x2), (
x2+1
x1

,
(x2+1)2+x2

1

x2
1x2

), (
x2
1+x2+1
x1x2

,
(x2+1)2+x2

1

x2
1x2

), (
x2
1+x2+1
x1x2

,
x2
1+1
x1

). No-

tice that, the cluster variables x1 and x2 are not symmetrical as in A(S)(1, 1), which
implies that the symmetric group element σ12 is not a cluster automorphism i.e. is
not an element of C2(2, 1), and hence the generators are only T1 as defined in (3.5),
together with automorphism T2 ∈ AutKK(x1, x2) which is induced by

(3.13) x1 7→ x1 and x2 7→
x21 + 1

x2
.
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Then we have

(3.14)

C2(2, 1) = m̃2(S) = Cd
2 (p) = 〈T1, T2〉 < AutKK(x1, x2), ∀ seed p ∈ S, and ∀ d.

Remark 3.15. C2(2, 1) is a Coexter group with the following presentation

C2(2, 1) = {T1, T2| T
2
1 = T 2

2 = 1, (T1T2)
3 = 1}.

Example 3.16. The cluster group C2(3, 1).
We have exactly 8 different cluster variables, and in a similar way of C2(2, 1), we
have; C2(3, 1) is generated by T1 as defined in (3.5) and T2, induced by

(3.15) x1 7→ x1 and x2 7→
x31 + 1

x2
,

and we have
(3.16)

C2(3, 1) = m̃2(S) = Cd
2 (p) = 〈T1, T2〉 < AutKK(x1, x2), ∀ seed p ∈ S, and ∀ d.

Remark 3.17. C2(3, 1) is a Coexter group with the following presentation

C2(2, 1) = {T1, T2| T
2
1 = T 2

2 = 1, (T1T2)
4 = 1}.
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