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Rescaled Perturbation Theory

Tomoya HAYATA
∗)

Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

A non-perturbative method which can go beyond the weak coupling perturbation theory
is introduced. Essential idea is to formulate a set of exact differential equations as a function
of the coupling strength g. Unlike other resummation in which information of the higher
order terms is necessary, we only need a leading order perturbative formula in every step to
reach the large value of g. The method is applied to the quantum anharmonic oscillator and
quantum double well potential in one dimension. Both are known to have divergent series in
the weak coupling perturbation and the latter is not Borel summable. Our method is shown
to work well from the weak coupling to the strong coupling for the energy eigenvalues and the
wave functions. The method is also applied successfully to the system with time-dependent
external field.

In quantum many-body problems and in quantum field theories, there are many
systems where one needs to study phenomena over broad range of the coupling
strength.1) Typical examples are the BEC-BCS crossover in ultracold atoms where
the coupling strength is changed by utilizing the Feschbach resonance,2), 3) hadron-
quark transitions in dense QCD (quantum choromodynamics) where the coupling
runs with the baryon density,4) and the quark-gluon plasma near the critical tem-
perature where the coupling runs with temperature.5) So far a number of techniques
have been developed to resum naive perturbative series or to produce better be-
haved series under the names of resummed perturbation, optimized perturbation,
variational perturbation and so on. (For reviews, see e.g. Refs.6), 7).)

In this Letter, we introduce a novel method which can go beyond the weak cou-
pling perturbation theory: we test its applicability to quantum mechanical examples
such as the anharmonic oscillator and double well potential. Instead of resumming
the perturbation series, we iterate the lowest order perturbation through the rescal-
ing of the coupling strength, so that the method gives a global coupling dependence
of eigenvalues and eigenvectors simultaneously. The basic formula has formal re-
semblance to the exact renormalization group method (ERG, see e.g. Ref.9) for a
review) if we replace the cutoff scale of ERG by the coupling strength in the present
approach.

Let us consider a quantum system such that the Hamiltonian is

H(g) = H0 + gHint , (1)

where g is a dimensionless coupling strength and H0 is assumed to be solved exactly.
Our goal is to obtain En(g) and |ψn(g)〉 satisfying

H(g)|ψn(g)〉 = En(g)|ψn(g)〉 . (2)

To simplify the discussion, we consider a non-degenerate H0. Generalization to the
degenerate case is straightforward. Suppose we know En(g) and |ψn(g)〉, then we can
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calculate En(g + δg) and |ψn(g + δg)〉 as long as δg ≪ 1 by using the leading order
Rayleigh-Schrödinger perturbation theory (RSPT) for H(g + δg) = H(g) + δgHint,

En(g + δg) = En(g) + δg〈ψn(g)|Hint|ψn(g)〉 , (3)

|ψn(g + δg)〉 = |ψn(g)〉 + δg
∑

n 6=i

〈ψi(g)|Hint|ψn(g)〉
En(g) − Ei(g)

|ψi(g)〉 . (4)

Then we can set up differential equations for the eigenvalues, matrix elements
Hij

int(g) = 〈ψi(g)|Hint|ψj(g)〉 and the wave functions as

d

dg
Ei(g) = Hii

int(g) , (5)

d

dg
Hij

int(g) =
∑

i 6=k

Hik
int(g)H

kj
int(g)

Ei(g) − Ek(g)
+

∑

j 6=k

Hik
int(g)H

kj
int(g)

Ej(g) − Ek(g)
, (6)

d

dg
|ψi(g)〉 =

∑

i 6=k

Hki
int(g)

Ei(g) − Ek(g)
|ψk(g)〉 . (7)

Note that we have no approximation to obtain the right hand sides of these equations,
so that they are exact equations. We take 〈ψi(0)|ψi(g)〉 = 〈ψi(0)|ψi(0)〉 = 1 as a
normalization of the state vector, so that the norm of eigenvectors are conserved i.e.
d
dg 〈ψi(g)|ψi(g)〉 = 0. Coupled differential equations (5), (6) and (7) can be solved

with the initial conditions, Ei(0), H
ij
int(0) and |ψi(0)〉, and one may go to arbitrary

large values of g in principle.
Let us now apply this method to the one-dimensional quantum anharmonic

oscillator (AHO):

HAHO(g) =
1

2
p2 +

1

2
x2 + gx4 . (8)

This is a typical example that RSPT leads to a divergent series but is Borel summable.
(See e.g. Ref.6), 8) for reviews.) Using cij(g) = 〈ψj(0)|ψi(g)〉, we can rewrite eq.(7)
as

d

dg
cij(g) =

∑

i 6=k

Hki
int(g)

Ei(g) − Ek(g)
ckj(g) . (9)

The initial conditions at g = 0 read,

Ei(0) = i+ 1/2 , (10)

Hij
int(0) =

1
√

π2i+ji!j!

∫

dx e−x2
x4Hi(x)Hj(x) , (11)

cij(0) = δij , (12)

where Hi(x) is the i-th Hermite polynomial. In actual calculation, we solve the
coupled differential equations for the states i = 0, 1, · · ·N − 1. For g up to 10,
taking N = 50 is accurate enough to have the eigenvalues of the low-lying states as
shown in Table I. Here, we compare our results with those given in Ref.10) by the
diagonalization method.
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Table I. Comparison of the lowest three eigenvalues of AHO. The upper numbers are obtained from

the present method and the lower numbers from Ref.10).

g E0 E1 E2

0.1 0.55914633 1.7695026 3.1386243

0.55914633 1.7695026 3.1386243

0.5 0.69617582 2.3244064 4.3275250

0.69617582 2.3244064 4.3275250

1.0 0.80377065 2.7378923 5.1792917

0.80377065 2.7378923 5.1792915

5.0 1.2245874 4.2995081 8.3179758

1.2245870 4.2995017 8.3179605

10 1.5049814 5.3216308 10.348359

1.5049724 5.3216080 10.347056

Fig. 1. The double well potential V (x) = −gx2+ 1
2
x4 as a function of several values of g′ = g−1/2.

Next, we study the quantum double well potential (DWP) with the Hamiltonian,

HDWP(g) =
1

2
p2 − gx2 +

1

2
x4 (g > 0), (13)

where the RSPT also breaks down and is known to be Borel non-summable. (See
e.g. Ref.6), 8) for reviews.) To make a firm connection between DWP and AHO in
our approach, we rewrite the Hamiltonian as

H′
DWP(g

′) =
(1

2
p2 +

1

2
x2 +

1

2
x4

)

− g′x2 (14)

= HAHO − g′Hint , (15)

so that the un-perturbed Hamiltonian at g′ = 0 becomes AHO. Note that the system
changes from AHO for g′ < 1/2 to DWP for g′ > 1/2. In Fig. 1, the shape of the
potential is shown for several different values of g′.

Using the results of the previous AHO for N = 50, we calculate the energy
eigenvalues of this system as a function of g′. The differential equations are the
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same as Eqs.(5), (6) and (9), where |ψi(0)〉 is the eigenvector of AHO in the present
case. The initial conditions read,

Ei(0) = EAHO
i (

1

2
) , (16)

Hij
int(0) = 〈ψi(0)| − x̂2|ψj(0)〉 (17)

=
49
∑

k,l=0

cAHO
ik (

1

2
)cAHO

jl (
1

2
)

1√
π2k+lk!l!

∫

dx e−x2
(−x2)Hk(x)Hl(x) ,

cij(0) = δij . (18)

Here i, j runs from 0 through N − 1, and N is taken to be 50 as before. This is good
enough again for low-lying eigenvalues as shown in Table II where comparison to the
high accuracy eigenvalues given in Ref.11) by the diagonalization method is shown.

Table II. Comparison of the lowest two eigenvalues for the DWP. The upper numbers are calculated

by our method, while the lower numbers are taken from Ref.11).

g′ E0 E1

0.50 0.53018104538 1.8998365150

0.53018104524 1.8998365149

1.0 0.32882650295 1.4172681012

0.32882650260 1.4172681011

5.5 -10.316788242 -10.316773352

-10.316788351 -10.316773442

8.0 -25.420689499 -25.420692377

-25.420693642 -25.420693642

In Fig. 2, we show g′ dependence of the lowest six energy eigenvalues from the
weak coupling to the strong coupling. As g′ increases, the degeneracy of the even-
n and odd-n eigenstates takes place starting from the low energy state. This can
be seen clearly by looking at the probability distributions of the lowest two states
as shown in Fig. 3. Depending on g′, the energy eigenstate changes from a single
oscillator to the superposition of double (left and right) oscillators.

The present method can be generalized to the time-dependent Schrödinger equa-
tion with non-adiabatic time-depending potential:

i∂t|ψ(t)〉 = H(t)|ψ(t)〉 , (19)

where H(t) = H0 + g(t)Hint. We expand the state vectors by the adiabatic basis:

|ψ(t)〉 =
∑

n

an(t)|n(t)〉 , (20)

H(t)|n(t)〉 = En(t)|n(t)〉 , (21)

where En(t) and |n(t)〉 are instantaneous eigenvalues and eigenvectors with their
time dependence implicitly through the coupling g(t). We perform a unitary trans-
formation:

an(t) = αn(t)e
−iΘn(t) , (22)
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Fig. 2. The lowest six energy eigenvalues for the DWP with N = 50. Filled circles are high accuracy

numerical results given in Ref.11).

Fig. 3. Probability distributions for the lowest two states for the DWP with N = 50. The solid

line is for the ground state and the dashed line is for the first excited state. The lighter gray

line is for g′ = 0.5, the gray line is for g′ = 2.5 and the black line is for g′ = 6.0.

Θn(t) =

∫ t

0
dt′ En(t

′) , (23)

and obtain

∂tαn(t) = −
∑

m

αm(t)〈n(t)|∂t|m(t)〉ei(Θn(t)−Θm(t)) . (24)

Although g(t) is an arbitrary smooth function of t, one may always introduce a set of
time intervals, so that g(t) is a monotonic function of t. Then, within each interval,
we have

∂gαn(g) = −
∑

m

αm(g)〈n(g)|∂g |m(g)〉ei(Θn(g)−Θm(g)) , (25)

Θn(g) =

∫ g

0
dḡ

1
˙̄g
En(ḡ) , (26)
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where ˙̄g implies the time derivative of coupling strength. Assuming that H0 is not
degenerate, we obtain the following equations from (5), (6) and (7):

∂gαn(g) =
∑

m6=n

Hnm
int (g)

En(g)− Em(g)
αm(g)ei(Θn(g)−Θm(g)) , (27)

∂gΘn(g) =
1

ġ
En(g) . (28)

To calculate the evolution of αn(g) and Θn(g), we need the coupling dependence
of En(g) and Hnm

int (g), which is directly obtained from our approach, so that we
can trace the flows of En(g), αn(g) and Θn(g) simultaneously through the flows of
Hnm

int (g).
Here, we solve the differential equations numerically in the case that a coupling

strength depends linearly on time (i.e. g = vt) and obtain the transition probabilities
to adiabatic states |αn(t)|2. In Fig. 4, taking the ground state of AHO as an initial
condition, we show the transition probabilities as a function of time for the DWP with
the Hamiltonian: H′

DWP(g
′(t) = vt) in eq.(14). Because of the parity conservation,

the transition probability for odd n becomes zero. If we change the potential slowly
as the dashed lines (v = 0.1) in Fig 4, instantaneous basis at n = 0 is mostly occupied
at any time. On the other hand, if we change the potential suddenly as the solid
lines (v = 3.0), higher instantaneous states are excited with mutual oscillations.

Fig. 4. The lowest three even transition probabilities |αn(t)|
2 (n = 0, 2, 4) in DWP for N = 50.

The lighter gray line is for n = 0, the gray line is for n = 2 and the black line is for n = 4. The

dashed line is for v = 0.1 and the solid line is for v = 3.

In summary, we introduced a non-perturbative method applicable to large values
of the coupling strength g. Essential idea is to formulate a set of exact differential
equations as a function of g, so that they can be solved with appropriate known
initial conditions to reach large values of g. Unlike resummation methods in which
information of the higher order terms in the naive perturbation series is necessary,
we only need a leading order perturbative formula in every step. This is similar to
the situation in the exact renormalization group method. In the present method,
all the eigenvalues and eigenstates can be calculated simultaneously and accurately
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as a function of g as long as we prepare large enough dimension N of the Hilbert
space. Note here that we do not need to diagonalize the N×N Hamiltonian; instead
we trace the flows of eigenvalues and eigenvectors starting from the solvable N ×N
Hamiltonian. We have applied our method to the quantum anharmonic oscillator
and quantum double well potential in one dimension. Both are known to have
divergent series in RSPT and the latter is not even Borel summable. We found
that our method works well from the weak coupling to the strong coupling for the
energy eigenvalues and wave functions. Furthermore, because of the flow equations
of the energy eigenvalues and the matrix elements Hij

int(g), we could solve even the
time-dependent Schrödinger equation for the potential with non-adiabatic variation
in time.

The basic idea of the present method can be also generalized to the quantum
field theory and quantum statistical mechanics. In these cases, one can derive a
differential equation for the partition function Z[J, g] as functions of the external
field J and the coupling strength g,

d

dg
Z[J, g] = Sint(

δ

δJ
)Z[J, g] , (29)

where the initial condition Z[J, 0] is assumed to be solvable. Similarly, we can also
apply the idea to the generalization of the linear response theory to derive a formula:

d

dg
〈Ô〉[t; g] = i

∫ t

t0

dt′ Tr
(

ρ(t0)[Hh
int(t

′; g), Ôh(t)]
)

. (30)

Here A is a external filed and j is a conjugate quantity, and h denotes Heisenberg
picture in terms of H[t; g] = H0+gĵA(t). Applications of these equations to physical
systems will be discussed in the forthcoming publications.

After the completion of this work, we became aware that similar differential
equations as ours are discussed in Appendix C of Ref.12) although the equations
are applied in rather different context from ours. The author would like to thank
Tetsuo Hatsuda, Kyogo Kawaguchi and Haruki Watanabe for useful discussions and
suggestions.
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