
ar
X

iv
:1

01
1.

08
96

v2
  [

m
at

h.
R

T
] 

 7
 N

ov
 2

01
0

ON SINGULAR LOCALIZATION OF g-MODULES.

ERIK BACKELIN AND KOBI KREMNIZER

Abstract. We prove a singular version of Beilinson-Bernstein localization for a complex
semi-simple Lie algebra following the ideas from the positive characteristic case done in
[BMR06].

1. Introduction

Let g be a reductive complex Lie algebra, h ⊂ g a Cartan subalgebra and let B be the
flag manifold of g. Let λ ∈ h∗ be regular and dominant and let χλ be the corresponding
central character. Let DλB be the sheaf of λ-twisted differential operators on B. The celebrated
localization theorem of Beilinson and Bernstein, [BB81], states that the global section functor
gives an equivalence between the category DλB-mod and the category of U(g)λ := U(g)/Kerχλ-
modules.

The problem of localization at a singular central character remained unsolved for a long
time. It was known that the global section functor on DλB-mod was a quotient functor whose

kernel could be described rather explicitly, see [Kas93]. Thus U(g)λ-mod is equivalent to a
quotient category of DλB-mod. The main drawback with this description, from the viewpoint
of representation theory, is that it doesn’t lead to a fully satisfactory D-module description
of the translation functors. (See [BG99] for the picture.)

A solution to the problem of singular localization was quite recently given in positive char-
acteristic by [BMR06]. We sketch their basic construction here (it works in any characteristic):

Let G be a reductive algebraic group such that LieG = g. Instead of B consider a parabolic
flag manifold P = G/P , where P ⊂ G is a parabolic subgroup whose parabolic roots coincide
with the singular roots of λ. Replace the sheaf DλB by a sheaf DλP := π∗(DG/UP

)LP modulo
a certain ideal defined by λ. Here LP is the Levi factor and UP is the unipotent radical of
P and π : G/UP → P is the projection. The LP -invariants are taken with respect to the
right LP -action on G/UP . The sheaf π∗(DG/UP

)LP is locally isomorphic to DP⊗U(lP ), where

lP = LieLP . When P = B we have DλP = DλB and when P = G we arrive at a tautological

solution: DλP = U(g)λ tensored with the sheaf of differential operators on a point = U(g)λ.
What we do in this note is essentially to use this construction to prove a singular localization

theorem in characteristic zero, see theorem 5.1 and theorem 5.2. This is probably well-known
to the experts but we couldn’t find it in the literature. Our proof is very similar to the original
proof of [BB81], although the path to get there is slightly more ragged. (Technically speaking,
in localization theory Beilinson and Bernstein introduced the method of tensoring a D-module
with a trivial vector bundle and then consider a filtration of this bundle with G-equivariant
subquotient bundles. On B these subquotients can be taken to be line bundles, but on P
one must use more general and less easily controlled vector bundles - because irreducible
representations of P are in general not one-dimensional.)
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In the context of localization theory, positive characteristic is the most difficult, but the
localization theorem can on the other hand then only hold at the level of derived categories.
The result presented here gives an equivalence on the level of abelian categories just like
Beilinson and Bernstein’s theorem.

In subsequent research we will address the issue of singular localization for quantum groups
at generic q and at roots of unity. In these cases it is essential to use the language of
equivariant sheaves on G, because one can quantize O(G) and O(P ) and hence categories of
O(P )-comodules and O(G)-modules, but a quantized flag variety does not exist as a “space”.
Regular localization for quantum groups was done in [BK06] (generic case, proof similar to
that of [BB81]) and in [BK08] (root of unit case, proof resembling that of [BMR02]). Partly
for this reason we have taken thorough care to justify our equivariant definitions and to give
equivariant proofs for the results of this paper. For the convenience of the reader we have given
parallel descriptions in the sometimes more geometrically intuitive non-equivariant language.

As an application we find that a block of the Bernstein-Gelfand-Gelfand category O will
correspond to certain bi-equivariant D-modules on G. If one reverses the reading order of
these equivariance conditions and pushes forward to B it follows that even a singular block
of category O is equivalent to a category of D-modules on B. See section 6.1. These modules
are not holonomic however, unless λ is regular. We hope that we in the future will be able
to give a topological interpretation of them as some type of constructible sheaves, e.g., to use
the equivariance to shrink the De Rham complex of such a D-module to a constructible size.

We deduce that a singular block in category O is equivalent to a certain (non-standard)
parabolic subcategory of a regular block in the category which is obtained from O by relaxing
the defining semi-simplicity requirement for the action of h to local finiteness and instead
require true central character, proposition 6.1.

We also describe the functors on the D-module side that correspond to translation functors
on representations, generalizing some results of [BG99], see section 6.2.

2. Preliminaries

Here we fix notations and collect mostly well-known results that will be used in the paper.

2.1. Notations. We work over C. Let X be an algebraic variety, let OX be the sheaf of
regular functions on X and O(X) its global sections. Denote by OX -mod the category of
quasi-coherent sheaves on X. Let Γ := ΓX : OX -mod → O(X)-mod be the global section
functor.

If Y is another variety and there exists an obvious projection map X → Y we shall denote
it by πYX .

For A a sheaf of algebras on X such that OX ⊆ A we abbreviate an A-module for a sheaf of
A-modules that is quasi-coherent over OX . We denote by A-mod the category of A-modules.
More generally, we will encounter categories such as (A, additional data)-mod that consists
of A-modules with some additional data. We will then denote by (A, additional data)-modc
its full subcategory of objects that are locally finitely generated over A.

Assume that an algebraic group L acts on X. Let M ∈ OX-mod be L-equivariant. In
particular, L acts on local sections of M over L-invariant open subsets of X. There is the

sheaf (π
X/L
X∗ M)L of L-invariant local sections in the direct image π

X/L
X∗ M . We can also think

of ML as a sheaf on the set X with the topology of L-invariant Zariski open subsets of X.
We shall refer to ML as the sheaf of L-invariant local sections in M .

Unless stated otherwise, ⊗ = ⊗C.
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2.2. Root data. Let G be a reductive complex linear algebraic group, B ⊂ G a Borel
subgroup and T ⊂ B a maximal tori. Let h ⊂ b ⊂ g be their respective Lie algebras. For
any parabolic subgroup P of G containing B, we denote by UP its unipotent radical and by
LP its Levi subgroup and by uP and lP their Lie algebras. We denote by B = G/B the flag
variety and by P = G/P the parabolic flag variety corresponding to P .

Let Λ be the lattice of integral weights and let Λr be the root lattice. Let Λ+ and Λr+ be
the positive weights and the positive linear combinations of the simple roots, respectively.

Let W be the Weyl group of g. Let ∆ be the simple roots and let ∆P = {α ∈ ∆ :
g−α ⊂ P} be the subset of P -parabolic roots. Let WP be the subgroup of W generated by
simple reflections sα, for α ∈ ∆P . Note that h is a Cartan subalgebra of the reductive Lie
algebra lP . Denote by S(h)WP the WP -invariants in S(h) with respect to the •-action (here
w • λ := w(λ + ρ) − ρ, for λ ∈ h∗, w ∈ W, ρ is the half sum of the positive roots ). We
have the Harish-Chandra homomorphism S(h)WP ∼= Z(lP ) (as special cases W = WG and
S(h)W ∼= Z(g)). Let λ ∈ h∗. Put ∆λ = {α ∈ ∆;λ(Hα) = −1} , where Hα ∈ h is the coroot
corresponding to α. Let χlP ,λ : Z(lP ) → C be the character such that KerχlP ,λ annihilates
the Verma module Mλ with highest weight λ. Thus, χlP ,λ = χlP ,µ ⇐⇒ µ ∈ WP • λ. We
write χλ = χg,λ.

Let λ ∈ h∗. We say that

• λ is P -dominant if λ(Hα) /∈ {−2,−3,−4, . . .}, for α ∈ ∆P ; λ is dominant if it is
G-dominant.
• λ is P -regular if ∆λ ⊆ ∆P . λ is regular if it is B-regular, that is if w•λ = λ =⇒ w = e,
for w ∈ W.
• λ is a P -character1 if it extends to a character of P ; thus λ is a P -character iff λ is
integral and λ|∆P

= 0.

Suppose now that λ ∈ h∗ is integral and P -dominant. Then there is an irreducible finite
dimensional P -representation VP (λ) with highest weight λ. Note that VLP

(λ) := VP (λ) is an
irreducible representation for LP . Of course, dimVP (λ) = 1 ⇐⇒ λ is a P -character.

The following is well-known:

Lemma 2.1. Let λ ∈ h∗. Then λ is dominant iff for all µ ∈ Λr+ \ {0} we have χλ+µ 6= χλ

We also have

Lemma 2.2. Let λ ∈ h∗ be P -regular and dominant. Let µ be a P -character and let V be
the finite dimensional irreducible representation of g with extremal weight µ. Then for any
weight ψ of V , ψ 6= µ, we have χλ+µ 6= χλ+ψ.

Proof. This is well-known for P = B. We reduce to that case as follows: Let g′ be the
semi-simple Lie subalgebra of g generated by Xα±, α ∈ ∆ \ ∆P . Let h′ := g′ ∩ h be the
Cartan subalgebra of g′. The inclusion h′ →֒ h gives the projection p : h∗ → h′

∗. Consider
the restriction V |g′ of V to g′ and let V ′ denote the irreducible g′-module with highest weight
p(µ); V ′ is a direct summand in V |g′ . Let Λ(V ) denote the set of weights of V . Then
p(Λ(V )) = Λ′(V |g′), the weights of V |g′ . By the assumption that µ is a P -character, it follows

that p(Λ(V )) is contained in the convex hull Λ′(V ′) of Λ′(V ′). Since p(λ) is regular and
dominant it is well known that p(λ) + p(µ) /∈ W ′(p(λ) + φ′) for φ′ ∈ Λ(V ′). But then it

follows that p(λ) + p(µ) /∈ W ′(p(λ) + φ′) for φ′ ∈ Λ(V ′). Now W ′ = p(W), so it follows that
λ+ µ /∈ W(λ+ φ), for φ ∈ Λ(V ). �

1[BMR06] use the terminology P -weights for what we call P -characters.
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2.3. Twisted Harish-Chandra modules. See [Dix77] for generalities on Harish-Chandra-
modules. Let λ ∈ h∗ and consider a parabolic subgroup P ⊂ G. Let χlP ,λ : Z(lP )→ C be the
corresponding map given by the Harish-Chandra homomorphism.

There is the category of χlP ,λ-twisted Harish-Chandra (g, P )-modules, which we shall de-
note by (U(g), P, χlP ,λ)-mod or by (g, P, χlP ,λ)-mod. An object M of this category is a (say
left) U(g)-module, denote by ǫ the action map U(g)→ End(M), equipped with an algebraic
(say right) action of P , denoted τ : P → Aut(M). We require that the actions τ and ǫ
commutes, that dτ |uP = ǫ|uP and that (ǫ(z) − χlP ,λ(z))m = 0, for m ∈ MLP , z ∈ Z(lP ).
Here, MLP denotes the subspace of P -invariants in M .

We also have the category of χ̂lP ,λ-twisted Harish-Chandra (g, P )-modules, denoted by
(U(g), P, χ̂lP ,λ)-mod. In this case the compatibility conditions read: An object M of this
category is equipped with actions ǫ and τ as before satisfying dτ |uP = ǫ|uP and ǫ(z)−χlP ,λ(z)

is locally nilpotent on MLP , for z ∈ Z(lP ).
Note that in the case P = B we have lB = h and χh,λ = λ; thus we denote the above

categories by (U(g), B, λ)-mod and (U(g), B, λ̂)-mod, respectively, in this case.
We remark that for any P -character µ we have canonical equivalences

(U(g), P, χlP ,λ)-mod ∼= (U(g), P, χlP ,λ+µ)-mod and

(U(g), P, χ̂lP ,λ)-mod ∼= (U(g), P, χ̂lP ,λ+µ)-mod

realized by twisting (tensoring) the P -actions with the one-dimensional P -representation
VP (µ).

If ν ∈ h∗ is another weight we similarly have the categories (U(g)ν , P, χlP ,λ)-mod and

(U(g), P, χlP ,λ)-modν̂ obtained by replacing left U(g)-module in the definition by left U(g)-
module with central character, respectively, generalized central character, χν . The same sorts
of equivalences as above hold also for these categories.

In this article we shall encounter various sheaf-versions of Harish-Chandra modules. It
seemed most convenient to define them as they naturally occur. Equivalences analogous to
the above will apply to the sheaf-versions as well.

2.4. Equivariant O-modules and induction. See [Jan83] for details on this material.
Let L be a linear algebraic group and K a closed algebraic subgroup. For X an algebraic

variety equipped with a right (or left) action of L we denote by (OX , L)-mod the category of
L-equivariant sheaves of (quasi-coherent) OX -modules. If the L-action is free and the quotient
is nice we have the equivalence

π
X/L
X∗ ( )L : (OX , L)-mod→ OX/L-mod : π

X/L∗
X .

Since L is affine, we have Serre’s equivalence OL-mod → O(L)-mod, M 7→ ΓL(M), for
M ∈ OL-mod.

We denote by Γ(L,K) the global section functor on (OL,K)-mod that corresponds to the
global section functor ΓL/K on OL/K -mod under the equivalence (OL,K)-mod ∼= OL/K -mod.

Then Γ(L,K)(M) = ΓL(M)K , for M ∈ (OL,K)-mod. (Note that O(L/K) = O(L)K .)

Let Rep(L) denote the category of algebraic representations of L. We have O(L) ∈ Rep(L),
via (gf)(x) = f(g−1x), for g, x ∈ L and f ∈ O(L). We shall also consider the left K-action
on O(L) given by (kf)(x) = f(xk), for k ∈ K,x ∈ L and f ∈ O(L). These actions commute.

For V ∈ Rep(K) we consider the diagonal left K-action on Ṽ := O(L) ⊗ V . The left

L-action on O(L) defines a left L-action on Ṽ that commutes with the K-action and the
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multiplication map O(L) ⊗ Ṽ → Ṽ is L- and K-linear. Thus Ṽ belongs to the category
(L,O(L),K)-mod of L-K bi-equivaraint O(L)-modules. This gives the functor

p∗ : Rep(K)→ (L,O(L),K)-mod, V 7→ Ṽ

(induced bundle of a representation, p symbolizes projection from L to pt/K.)

Let IndLKV := Ṽ K ∈ Rep(L).
We have the factorization IndLK = ( )K ◦p∗. One can show that R( )K ◦p∗ ∼= RIndLK where

R( )K and RIndLK are computed in suitable derived categories. An important formula is the
tensor identity

(2.1) RIndLK(V ⊗W ) ∼= RIndLK(V )⊗W, for V ∈ Rep(K),W ∈ Rep(L)

(In particular RIndLK(W ) ∼=W , for W ∈ Rep(L).)

3. Parabolic Springer Resolutions

In order to treat sheaves of extended differential operators on parabolic flag varieties in the
next section we will here gather information about their associated graded objects. This is
encoded in the geometry of parabolic Grothendieck-Springer resolutions.

3.1. Parabolic Flag Varieties. Let P = G/P be the variety of all parabolics of type P ; it
is equipped with a natural left G-action. There is a bijection between representations of P
and G-equivariant vector bundles on P; a representation V of P correspond to the induced
bundle G×P V on P. We denote by O(V ) := OP (V ) the corresponding locally free sheaf on
P which hence has a left G-equivariant structure.

Let λ ∈ h∗ be a P -character and write O(λ) := O(VP (λ)) for the line-bundle corresponding
to the one-dimensional P -representation VP (λ). We have Pic(P) = PicG(P) ∼= group of
P -characters, (but note that not all vector bundles on P are G-equivariant). The ample line
bundles O(−µ) are given by P -characters µ such that µ(Hα) > 0 for all α ∈ ∆ \∆P .

Next we define the parabolic Grothendieck resolution:

Definition 3.1. g̃P = {(P ′, x) : P ′ ∈ P, x ∈ g∗, x|uP ′ = 0}

Note that g̃P = G×P (g/uP )
∗. We have a commutative square:

(3.1)

g̃P l∗P /LP = h∗/WP

g∗ h∗/W

-

? ?
-

where the top map sends (P ′, x) to x|lP ′/LP ′ ∈ l∗P ′/LP ′
∼= l∗P /LP . Note that the isomorphism

l∗P ′/LP ′
∼= l∗P /LP is canonical. 2

2We can call l∗P /LP the universal coadjoint quotient of the Levi Lie subalgebra.



6 ERIK BACKELIN AND KOBI KREMNIZER

This induces a map:

(3.2) πP : g̃P → g∗ ×h∗/W h∗/WP

Lemma 3.2. RπP∗Og̃P
= Og∗×h∗/Wh∗/WP

Proof. We shall reduce to the well-known case of the ordinary Grothendieck resolution for
P = B. It states that

(3.3) RπB∗Og̃B
= Og∗×h∗/Wh∗

Translating this to the equivariant language it reads:

(3.4) RIndGB(S(g/n)) = S(g)⊗S(h)W S(h)

where n = [b, b]. The reason for this is that since g∗×h∗/W h∗ is affine the equality 3.3 is after
taking global sections equivalent to the equality RΓ(Og̃B

) = O(g∗×h∗/Wh∗) = S(g)⊗S(h)WS(h)
of G-modules. Since, the bundle projection p : g̃B → G/B with fiber (g/n)∗ is affine, p∗ is
exact and hence RΓ(Og̃B

) = RΓ(p∗(Og̃B
)).

Now, under the identification O(G/B)-mod = (OG, B)-mod we have that p∗(Og̃B
) corre-

sponds to S(g/n)⊗O(G) so its derived global sections are given by RIndGB(S(g/n)) as stated.
This proves 3.4.

By a similar argument, the statement of the lemma is equivalent to proving that

(3.5) RIndGP (S(g/bP )) = S(g)⊗S(h)W S(h)WP

We know that

(3.6) S(g)⊗S(h)W S(h) = RIndGBS(g/n) = RIndGP ◦RInd
P
B(S(g/n))

We have a decomposition g = uP ⊕ lP ⊕ uP , where uP is the image of uP under the Chevalley
involution of g; thus g/n = lP /(lP ∩ n)⊕ uP . Thus

(3.7) RIndPB(S(g/n)) = R IndPB(S(lP /lP ∩ n)⊗ S(uP )) = R IndPB(S(lP /lP ∩ n))⊗ S(uP )

where the last equality is the projection formula for induction (see 2.1) which applies since
S(uP ) is a P -module. We have

(3.8) R IndPB(S(lP /lP ∩ n)) = R IndLP
LP∩B(S(lP /lP ∩ n))

of P -modules where the right hand side becomes a P -module by transporting the UP ac-
tion from the left hand side. By 3.4 applied to G replaced by LP we get that 3.8 equals
S(lP ) ⊗S(h)WP S(h). Thus the right hand side of 3.7 equals S(g/uP ) ⊗S(h)WP S(h). Thus by

3.6 we have

S(g)⊗S(h)W S(h) = RIndGP (S(g/uP )⊗S(h)WP S(h)) = RIndGP (S(g/uP ))⊗S(h)WP S(h)

Since S(h) is faithfully flat over S(h)WP this implies 3.5. �

Let P ⊂ Q be two parabolic subgroups. The projection πQP : P → Q induces a map

π̃QP : g̃P → g̃Q that fits into the following commutative square:
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(3.9)

g̃P l∗P /LP = h∗/WP

g̃Q l∗Q/LQ = h∗/WQ

-

?

π̃Q
P

?
-

With similar arguments as in the proof of lemma 3.2 one can prove

Lemma 3.3. Rπ̃QP∗Og̃P
= Og̃Q×h∗/WQ

h∗/WP

We observe that g̃P is an LP -torsor over T
∗P. We put

Definition 3.4. g̃λP = g̃P ×h∗/WP
λ, for λ ∈ h∗.

We would like to view g̃λP as the classical Hamiltonian of T ∗(G/UP ) with respect to the
(right) LP -action. We have a moment map µ : T ∗(G/UP )→ l∗P . Recall that we can take the
Hamiltonian reduction with respect to any subset of l∗P stable under the coadjoint action. Let
Nλ ⊂ l∗P be the preimage of λ/WP ∈ h∗/WP

∼= l∗P /LP under the quotient map. Then

(3.10) T ∗(G/UP )//Nλ
LP = µ−1(Nλ)/LP = g̃λP .

Note that we could also reduce with respect to λ ∈ (l∗P )
LP in which case we would get

twisted cotangent bundles.

4. Extended differential operators on P

In this section we construct the sheaf of extended differential operators on a parabolic flag
variety and describe its global sections.

4.1. Torsors. Let X be an algebraic variety equipped with a free right action of a linear
algebraic group L and let p : X → X/L be the projection. We assume that X, locally in the
Zariski topology, is of the form Y × L, for some variety Y , and p is first projection. Such X
is called an L-torsor. We get induced right L-actions on the sheaf DX of regular differential

operators on X and on the direct image sheaf p∗(DX). Denote by D̃X/L := p∗(DX)
L the sheaf

on X/L of L-invariant local sections of p∗(DX).
Let l = LieL. The infinitesimal L-action gives an algebra map ǫ̃ : U(l) → p∗DX , which

is injective since the L-action is free. It follows from the definition of differentiating a group

action that [ǫ̃(U(l)), D̃X/L] = 0.

Notice that ǫ̃(U(l)) * D̃X/L, unless L is abelian, but ǫ̃(Z(l)) ⊆ D̃X/L. We denote by

ǫ : Z(l)→ D̃X/L the restriction of ǫ̃ to Z(l). By the discussion above it is a central embedding.

Now, using that p is locally trivial we can give a local description of D̃X/L. Let Y × L
be a Zariski open subset of X over which p is trivial. Then DX |Y×L = DY ⊗ DL and

D̃X/L|Y = DY ⊗U(l), where U(l) is identified with the algebra of right L-invariant differential

operators DLL on L.
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Note that ǫ̃(U(l))|Y ×L = 1⊗ LDL is the algebra of left L-invariant differential operators on
Y × L, with respect to the natural left L-action on Y × L, that are constant along Y . Since
Z(LDL) = Z(D

L
L) we get that ǫ is locally given by the embedding

Z(l) →֒ U(l) ∼= 1⊗U(l) →֒ DY ⊗U(l).

This implies that ǫ(Z(l)) = Z(D̃X/L).
Denote by (DX , L)-mod the category of weakly equivariant (DX , L)-modules. In order to

simplify the description of this category we assume henceforth that X is quasi-affine. Its
object M is then a left DX-module equipped with an algebraic right action ρ = {ρU}, where
ρU : L → AutCU

(M(U))op are homomorphism compatible with the restriction maps in M ,
for each Zariski-open L-invariant subset U of X. We require that DX ⊗M → M is L-linear
(over L-invariant open sets) with respect to the diagonal L-action on a tensor. (For a general
X, ρ would have to be replaced by a given isomorphism pr∗M ∼= act∗M satisfying a cocycle
condition, where pr and act : X × L→ X are projection and the action map, respectively.)

Denote by (DX , L, l)-mod the category of strongly equivariant (DL, L)-modules. Its object
(M,ρ) is a weakly equivariant (DX , L)-module such that dρ(x)m = ǫ(x)m for x ∈ l and
m ∈M .

For M ∈ (DX , L)-mod we consider the sheaf (p∗M)L of L-invariant local sections in p∗M ;

it has a natural D̃X/L-module structure. Thus we get a functor p∗ whose right adjoint is
p∗ (the pullback in the category of O-modules with its natural equivariant structure). The
following is standard (see [BB93]):

Lemma 4.1.

i) p∗( )
L : (DX , L)-mod ⇆ D̃X/L-mod : p∗ and

ii) p∗( )
L : (DX , L, l)-mod ⇆ DX/L-mod : p∗

are mutually inverse equivalences of categories.

4.2. Definition of extended differential operators. On G/UP we shall always consider
the right LP -action (g, h) 7→ gh, for g ∈ G and h ∈ LP . Thus, G/UP is an LP -torsor. We put

Definition 4.2. D̃P = πPG/UP ∗
(DG/UP

)LP .

By the results of the previous section we have that locally on P, D̃P
∼= DG/P ⊗U(lP ), and

we have the algebra homomorphisms ǫ : Z(lP )→ D̃P .
For λ ∈ h∗ we define:

Definition 4.3. DλP = D̃P ⊗ǫ(Z(lP )) Cλ.

4.3. Equivariant description. The categories D̃P -mod, DλP -mod and D̃P -modλ̂ can be de-
scribed equivariantly on G and on G/UP . It is better to work on G. We start with G/UP as
an intermediate step.

By lemma 4.1 we have mutually inverse equivalences

(4.1) πPG/UP ∗( )
LP : (DG/UP

, LP )-mod ⇆ D̃P -mod : πP∗
G/UP

Transporting conditions from the right-hand side to the left-hand side we see that DλP -mod is
equivalent to the full subcategory (DG/UP

, LP , χlP ,λ)-mod of (DG/UP
, LP )-mod whose object

M satisfy Ker ǫ(Z(lP )) ·M
LP = 0. Similarly, D̃P -modλ̂ is equivalent to the full subcategory
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(DG/UP
, LP , χ̂lP ,λ)-mod of (DG/UP

, LP )-mod whose object M satisfies that Ker ǫ(Z(lP )) is

locally nilpotent on MLP .

Now we pass to G. Let us introduce some notations:
Denote by µl and µr the actions of left and right multiplication of G on itself, respectively.

The infinitesimal actions of µl and µr give algebra embeddings ǫl and ǫr : U(g)→ DG. We have
that ǫl(U(g)) = D

G
G consists of right invariant differential operators on G and ǫr(U(g)) =

GDG
consists of left invariant differential operators on G, Z(g) = ǫl(U(g))∩ ǫr(U(g)) and ǫl|Z(g) =
ǫr|Z(g).

The actions µl and µr induce left and right actions of G on DG denoted by the same
symbols, respectively.

Let (DG, P, uP )-mod be the category whose object M satisfies

(1) M is a left DG-module
(2) M has a right algebraic P -action ρ such that DG ⊗M →M is P -linear, with respect

to the right P -action µr|P on DG and the diagonal P -action on a tensor.
(3) dρ|uP = ǫr|uP on M .

By 4.1 and lemma 4.1 ii) (applied to X = G and L = UP ) we have an equivalence

(4.2) πPG∗( )
P : (DG, P, uP )-mod ⇆ D̃P -mod : πP∗

G

Let λ ∈ h∗. Let (DG, P, uP , χlP ,λ)-mod be the full subcategory of (DG, P, uP )-mod whose
object M in addition to (1) − (3) satisfies

(4) ǫr(z) − χ
LP
λ (z) = 0 on ΓG(M)LP , for z ∈ Z(lP ),

where we remind that ΓG(M) denotes the O(G)-module corresponding to M ∈ OG-mod. In
condition (4) we could have replaced ΓG(M)LP by MLP , which we remind is a sheaf on the
set G with the topology of LP -invariant Zariski-open subsets of G. Lemma 4.4 ii) would
then tautologically hold. Normally we don’t bather to distinguish between M and ΓG(M),
but here we liked to emphasize that it is enough to consider global LP -invariants, because in
future research on singular localization of quantum groups we will want to altogether avoid
sheaves of local invariants.

Lemma 4.4. i) Let M ∈ (OG, LP )-mod. Then M = OG · ΓG(M)LP . ii) There is an
equivalence (DG, P, uP , χlP ,λ)-mod ∼= DλP-mod induced from the equivalence 4.2.

Proof. i) Since G and its closed subgroup LP are reductive G/LP is an affine variety (see
[Mat60]). Let p : G→ G/LP be the projection and M ∈ (OG, LP )-mod. Then we have, since

π
G/LP

G∗ (M)LP ∈ OG/LP
-mod and G/LP is affine, that

(4.3) π
G/LP

G∗ (M)LP = OG/LP
· ΓG/LP

(π
G/LP

G∗ (M)LP )

Note that ΓG(M)LP = ΓG/LP
(π
G/LP

G∗ (M)LP ). Thus, on G, 4.3 reads that

MLP = (OG)
LP · ΓG(M)LP

holds over any LP -invariant open subset of G. Since G locally is of the form Z × LP and M
is LP -equivariant, we trivially have M = OG ·M

LP . Thus, M = OG · ΓG(M)LP .

ii) We have the embeddings ǫ : Z(lP ) → D̃P and ǫr|Z(lp) : Z(lP ) → DG. We have D̃P =

πPG∗(DG)
LP /J where J is the ideal generated by dρ(x)− ǫr(x), for x ∈ uP . Note that the map

Z(lP )
ǫ
→ D̃P coincides with the composition Z(lP )

ǫr→ πPG∗(DG)
LP → πPG∗(DG)

LP /J = D̃P .
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Let M ∈ (DG, P, uP )-mod. Then we have

πPG∗(M)LP ∈ DλP -mod ⇐⇒ local sections of πPG∗(M)LP are annihilated by ǫ(KerχlP ,λ)

⇐⇒ local sections of MLP are annihilated by ǫr(KerχlP ,λ).

Since M has an underlying object in (OG, LP )-mod we have by i) that M = OG · ΓG(M)LP ,

so that MLP = OLP
G · ΓG(M)LP . Since, for z ∈ ǫr(Z(lP )), v ∈ M

LP and f ∈ OLP
G , we have

zfm = fzm, it follows that the last condition is equivalent to

ΓG(M)LP is annihilated by ǫr(KerχlP ,λ)

and this is exactly the condition of (4). �

Similarly, there is the category (DG, P, uP , χ̂lP ,λ)-mod that is equivalent to D̃P -modλ̂. An
object M of this category satisfies (1)− (3) above and in addition

(4̂) ǫr(z)− χ
LP
λ (z) is locally niloptent on ΓG(M)LP , for z ∈ Z(lP ).

We have omitted the proof of this fact which is essentially the same as that of lemma 4.4.

Remark 4.5. When LP = T (i.e., when P = B), condition (4) can be written as

(4.4) (ǫr(z)− χλ(z))m = dρ(z)m, for m ∈M,z ∈ h

This is so, because by (4), 4.4 holds for m ∈ MLP and z ∈ h. But then it follows from
Leibniz’s rule that 4.4 holds for all m of the form m = fm′, for f ∈ OG and m′ ∈MLP , i.e.,
it holds for all m ∈ M , z ∈ h. Traditionally, this is how such equivariance conditions are
written down (see [BB93]).

For P 6= B, (4) can not be written in the form 4.4. To understand this, note that (4)
merely gives that (ǫr(z) − χλ(z))m = dρ(z)m (= 0) for z ∈ Z(lP ) and m ∈ MLP . Since
Z(lP ) is not generated by a Lie subalgebra of g, we can not apply Leibniz’s rule to extend the
equality of the actions ǫr(z) − χλ(z) and dρ(z) to the whole of M . Actually, for P = G the
actions coincide only on MLP . There is of course a general relation between these actions on
the whole of M , but it is difficult to give an explicit formula for it. Since G/LP is affine we
might as well work with MLP (also in the quantum case).

Similar remarks apply to (4̂).

Example 4.6. For the reader’s convenience (and later use) let us analyze the simplest case
when P = G. Since uG = 0 we write (DG, G, χλ)-mod := (DG, G, uG, χλ)-mod.

Then, from the equivalence C-mod ∼= (OG, G)-mod, V 7→ OG ⊗ V , it follows “by hand”
that for any λ ∈ h∗ there is the equivalence U(g)λ-mod ∼= (DG, G, χλ)-mod given by

V 7→ OG ⊗ V

We get (OG ⊗ V )G = V and V is a left module for ǫl(U(g)) with central character χλ.
This by hand-description is the same as the conditions (1) − (4). In fact, that V as a left

module for ǫl(U(g)) has central character χλ arises from (4) as follows: V is a left module for
ǫr(Z(g)) and this Z(g)-action differs by χλ from the Z(g)-action on V that is obtained from
differentiating the (trivial) G-action on V and restrict it to the center of U(g). Moreover,
ǫr(Z(g)) = ǫl(Z(g)).

A similar description holds for χλ replaced by χ̂λ.
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4.4. Global sections. Notice that the left G-action on G/UP , (g, g′) 7→ gg′, commutes with

the right LP -action and therefor induces a homomorphism U(g) → D̃P , that commute with

the map ǫ : Z(lP )→ D̃P . We also get a homomorphism U(g)→ DλP .
Consider the sheaf of algebras OP ⊗U(g) on P with multiplication determined by those in

OP and in U(g) and by the requirement that [A, f ] = ǫ(A)(f) for A ∈ g and f ∈ OP . Then

we have a surjective algebra homomorphism η : OP ⊗ U(g) → D̃P . Its kernel is the ideal
generated by ξ ∈ OP ⊗ uP , ξ(x) ∈ px, for x ∈ P and px ⊆ g the corresponding parabolic
subalgebra.

Hence, to define a D̃P -module structure on an OP -moduleM is the same thing as defining a
U(g)-module structure onM such that Ker η vanishes onM and A(fm) = f(Am)+ǫ(A)(f)m,
for A ∈ g, f ∈ OP and m ∈M .

Let µ ∈ h∗ be integral and P -dominant. Recall that VP (µ) denotes the corresponding
irreducible representation of P with highest weight µ and O(VP (µ)) the corresponding left
G-equivariant locally free sheaf on P.

Let M ∈ D̃P -mod. We shall show that the OP -module M ⊗OP
O(VP (µ)) is naturally a

D̃P -module. We proceed as follows:
The G-action on O(VP (µ)) differentiates to a left g-action on it, which extends to a g-

action on M ⊗OP
O(VP (µ)) by Leibniz’s rule. Since VP (µ) is an irreducible P -module we

have that UP acts trivially on it (recall VP (µ) = VLP
(µ)). Hence, uP acts trivially O(VP (µ))

and from this it now follows that the compatibilities for being a D̃P -module are satisfied by
M ⊗OP

O(VP (µ)).

Assume that M ∈ D̃P -mod. In the equivariant language on G we see that M and
M ⊗OP

O(VP (µ)) correspond to πP∗
G M and MVP (µ) := πP∗

G M ⊗ VP (µ) ∈ (DG, LP , uP )-mod,
respectively. Here, the left g-action and the left OG-action onMVP (µ) are given by the actions
on the first tensor. Again, it is the fact that UP acts trivially on VP (µ) that shows that
MVP (µ) is an object of (DG, LP , uP )-mod.

Lemma 4.7. Let λ ∈ h∗, M ∈ DλP-mod and µ ∈ h∗ be integral and P -dominant. Then

M ⊗OP
O(VP (µ)) ∈ ⊕ν∈Λ(VP (µ))D̃P-modλ̂+ν, where Λ(VP (µ)) denotes the set of weights of

VP (µ).

Proof. In equivariant translation we have πP∗
G M ∈ (DG, P, uP , χlP ,λ)-mod and want to prove

that
MVP (µ) := πP∗

G M ⊗ VP (µ) ∈ ⊕ν∈Λ(VP (µ))(DG, P, uP , λ̂+ ν)-mod.

Consider the forgetful functor

for : (DG, P, uP , χlP ,λ)-mod −→ (DLP
, LP , χlP ,λ)-mod

By example 4.6 with G replaced by LP we find a a left ǫl(U(lP ))-module W with central
character χlP ,λ equipped with a trivial LP -action such that πP∗

G M = OLP
⊗W . We get

for(MVP (µ)) = for(πP∗
G M ⊗ VP (µ)) = OLP

⊗W ⊗ VP (µ)

By the Peter-Weyl theorem OLP
= ⊕φVP (φ)⊗V

∗
P (φ) as an LP -bimodule, where V ∗

P (φ) is the
dual representation of VP (φ) and φ runs over all integral P -dominant weights. Thus we have
the following equalities of ǫr(U(lP ))-modules:

(MVP (µ))
LP = (OLP

⊗W ⊗ VP (µ))
LP = (OLP

⊗ VP (µ))
LP ⊗W =

⊕φVP (φ)⊗ (V ∗
P (φ)⊗ VP (µ))

LP ⊗W = VP (µ)⊗W
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where the last equality holds since (V ∗
P (φ) ⊗ VP (µ))

LP is isomorphic to the trivial represen-
tation of LP , if µ = φ, and 0 else, by Schur’s lemma. It is known, see [BerGel81], that

VP (µ)⊗W is a direct sum of ǫr(U(lP ))-submodules with generalized central characters λ̂+ ν,
for ν ∈ Λ(VP (µ)). Such a decomposition will give the prescribed decomposition ofMVP (µ). �

Let µ be a P -character. Then O(−µ) = O(VP (µ)) is a line-bundle. We set M(−µ) :=

M ⊗O O(VP (µ)) ∈ D
λ+µ
P -mod. We have

Theorem 4.1. i) RπPB ∗
D̃B = D̃P ⊗Z(lP ) S(h), ii) Rπ

Q
P ∗
D̃P = D̃Q ⊗Z(lQ) S(h)

WP , iii)

RΓ(D̃P) = U(g)⊗Z(g) S(h)
WP and iv) RΓ(DλP) = U(g)λ .

Proof. By lemma 3.2 and lemma 3.3 the associated graded maps i) and ii) are isomorphisms;
hence i) and ii) are also isomorphisms. iii) and iv) follows. �

In both cases the global section functor Γ : DλP -mod → U(g)λ-mod and Γ : D̃P -modλ̂ →

U(g)-modλ̂, respectively, has a left adjoint denoted by L, which we call the localization functor.
In the first case it is given by

L = DλP ⊗U(g)λ ( ) : U(g)λ-mod→ DλP -mod

and in the second case it is given by

L = lim←−nDP/(Kerχλ)
n ⊗U(g) ( ) : U(g)-modλ̂ → D̃P -modλ̂.

5. Singular Localization

Here we prove the singular version of Beilinson-Bernstein localization.

Theorem 5.1. Let λ be dominant and P -regular then Γ : DλP-mod → U(g)λ-mod is an
equivalence of categories.

Proof. Essentially taken from [BB81]. Since Γ(DλP) = U(g)λ, which is a generator of the
target category, the theorem will follow from the following two claims:
a) Let λ be dominant. Then Γ : DλP -mod→ U(g)λ-mod is exact.

b) Let λ be dominant and P -regular and M ∈ DλP -mod, then if Γ(M) = 0 it follows that
M = 0.

Let V be a finite dimensional irreducible G-module and let

0 = V−1 ⊂ V0 ⊂ . . . ⊂ Vn = V

be a filtration of V by P -submodules, such that Vi/Vi−1
∼= VP (µi) is an irreducible P -module.

Assume first that the highest weight µ0 of V is a P -character. ThusM ⊗O(V0) =M(−µ0)
and we get an embedding M(−µ0) →֒ M ⊗ O(V ), which twists to the embedding M →֒
M(µ0)⊗O(V ) ∼=M(µ0)

dimV . Now, by lemmas 2.1, 4.7 and theorem 4.1 iii) we get that this
inclusion splits on derived global sections, so RΓ(M) is a direct summand of RΓ(M(µ0))

dimV .
Now, for µ0 big enough and ifM is O-coherent we have R>0Γ(M(µ0)) = 0 (since O(µ0) is very
ample). Hence, R>0Γ(M) = 0 in this case. A general M is the union of coherent submodules
and by a standard limit-argument it follows that R>0Γ(M) = 0. This proves a).

Now, for b) we assume instead that the lowest weight µn of V is a P -character. Then we have
a surjection MdimV ∼= M ⊗ O(V ) → M(−µn). Applying global sections and using lemmas
2.2, 4.7 and theorem 4.1 iv) we get that Γ(M(−µn)) is a direct summand of Γ(M)dimV . For
µn small enough we get that Γ(M(−µn)) 6= 0. Hence, Γ(M) 6= 0. This proves b). �



ON SINGULAR LOCALIZATION OF g-MODULES. 13

Theorem 5.2. Let λ be dominant and P -regular then Γ : D̃P-modλ̂ → U(g)-modλ̂ is an
equivalence of categories.

Proof. This follows from theorem 5.1 and a simple devissage. �

6. Category O

We shall relate singular category O to a certain (non-standard) parabolic category O and
discuss translation functors in the context of singular localization.

6.1. Equivariant D-modules and singular and parabolic category O. We want to de-
scribe blocks in the Bernstein-Gelfand-Gefand category O of finitely generated U(g)-modules
which are locally finite over U(n) and semi-simple over h. Let Oλ,Oλ̂ ⊂ O be the subcate-
gories of modules with central character, respectively, generalized central character, χλ. We
can assume that λ is dominant since category Oλ only depends on χλ. Pick any regular
dominant λ′ ∈ h∗ such that λ − λ′ is integral. Note that Oλ coincides with the category

(U(g)λ, B, λ′)-modc and Oλ̂ ⊂ O coincides with the category of (U(g), B, λ′)-modλ̂c .
Let P be a parabolic such that λ is P -regular. The equivalence in theorem 5.2 thus

induces an equivalence between O
λ̂
and a category that we denote by (D̃P , B, λ

′)-modλ̂c . In

the equivariant description on G we see that an object M of (D̃P , B, λ
′)-modλ̂ will satisfy

(1), (2), (3), (4̂) from section 4.2 and in addition there is a left B-action τ : B → Aut(M) such
that

(5) dτ(x)− ǫl(x)− λ
′(x) = 0 on M, for x ∈ b.

By reading the defining conditions of (D̃P , B, λ
′)-modλ̂ in a different order we see that

(D̃P , B, λ
′)-modλ̂ is equivalent to the category (D̃λ

′

B , P, χ̂lP ,λ)-mod. Since λ′ is dominant and

regular we get from Beilinson-Bernstein localization that (D̃λ
′

B , P, χ̂lP ,λ)-mod is equivalent to

the category (U(g)λ
′

, P, χ̂lP ,λ)-mod, see section 2.3. Summarizing we get

Proposition 6.1. O
λ̂
is equivalent to (U(g)λ

′

, P, χ̂lP ,λ)-modc.

In the case when λ is regular, we have that O
λ̂
is equivalent to (U(g)λ

′

, B, λ̂)-mod which
equals the category of g-representations which are locally finite over U(b) and admit central
character χλ′ . This was first proved in [Soe86]. In general it gives an equivalence between
singular category O and a (non-standard) version of a parabolic category O. It is not the
parabolic-singular Koszul duality of [BGS96].

Remark 6.2. The D-module category (D̃λ
′

B , P, χ̂lP ,λ)-mod corresponding to a singular block in
category O will not consist of holonomic modules. For instance, if χ = −ρ (totally singular
case, so we must take P = G) and λ′ = 0, we have that category O

−̂ρ will consist of direct

sums of copies of the simple Verma moduleM−ρ. Corresponding toM−ρ is the non-holonomic
D-module DB.

6.2. Translation functors. Let λ, µ ∈ h∗ satisfy λ− µ is integral. Then there is the trans-
lation functor

T µλ = T µ
g,λ : U(g) -modλ̂ → U(g) -modµ̂, M 7→ prµ(M ⊗ E)

where E is an irreducible finite dimensional representation of g with extremal weight λ − µ
and prµ = prZ(g),µ : U(g) -modZ(g)−fin → U(g) -modµ̂ is projection onto generalized central
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character. Here, U(g) -modZ(g)−fin stands for U(g)-modules that are locally finite over Z(g).
See [BerGel81] for further information about translation functors.

We shall give a D-module interpretation of these functors. Define for any parabolic sub-
group P ⊂ G a geometric translation functor

TµP,λ : D̃P -modλ̂ → D̃P -modµ̂, M 7→ prZ(lP ),µ(M ⊗OP
O(E′))

for M ∈ (D̃P -mod)λ̂, where E′ is an irreducible P -representation with highest weight in

WP (µ − λ). Here, prZ(lP ),µ : D̃P -modZ(lP )−fin → D̃P -modµ̂ denotes the projection onto
generalized lP central character µ. This description makes sense both in the equivariant and

the non-equivariant description of the category D̃P -modλ̂.
Note that if µ − λ is a P -character then OP (E

′) = OP(µ − λ) and in this case Tµλ =

( )⊗OP
O(µ−λ) is an equivalence with inverse given by Tλν = ( )⊗OP

O(λ−µ). In particular,
for P = B we have Tµλ = ( )⊗OB

O(µ− λ) for any µ and λ.
Let Q ⊂ G be another parabolic subgroup with P ⊂ Q. We have

Lemma 6.3. The diagram

D̃P-modλ̂ D̃P-modµ̂

D̃Q-modλ̂ D̃Q-modµ̂

-
Tµ
P,λ

?
πQ
P∗

?

πQ
P∗

-
Tµ
Q,λ

of exact functors commutes up to natural equivalence.

In the case of P = B and Q = G this was proved in [BG99].

Proof. Let V (resp., V ′) be an irreducible finite dimensional representation for Q (resp., for

P ) whose highest weight belongs toWQ(µ−λ) (resp.,WP (µ−λ)). LetM ∈ D̃P -modλ̂. Then,

since V is a Q-representation, we have OP(V ) = πQ∗
P (OQ(V )) and therefore it follows from

the projection formula that

πQP∗(OP (V )⊗OP
M) = OQ(V )⊗OQ

πQP∗(M).

Thus we get

TµQ,λ ◦π
Q
P∗(M) = prZ(lQ),µ(OQ(V )⊗OQ

πQP∗(M)) =

prZ(lQ),µ(π
Q
P∗(OP (V )⊗OP

M)) = πQP∗(prZ(lP ),µ(OP (V )⊗OP
M))

(∗)
=

πQP∗(prZ(lP ),µ(OP (V
′)⊗OP

M)) = πQP∗ ◦ T
µ
P,λ(M)

The equality (∗) follows from lemma 2.2 applied to the reductive Lie algebra lQ and its
parabolic subalgebra lQ ∩ p (compare with the proof of the localization theorem). �

Let us geometrically describe translation to the wall: In this case µ is more singular than λ,
i.e., we assume that ∆λ ( ∆µ and λ and µ are dominant. We choose the parabolic subgroups
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P ⊂ Q ⊂ G such that the parabolic roots of P equal ∆λ and the parabolic roots of Q equal
∆µ. It follows from lemma 6.3 that the diagram below commutes up to natural equivalence:

(6.1)

U(g) -modλ̂ D̃P -modλ̂

D̃Q-modλ̂ D̃P -modµ̂

U(g) -modµ̂ D̃Q-modµ̂
?

(4) Tµ
λ

�(1) Γ

?

(3) πQ
P∗

Q
Q
Q
Q
QQs

(2) Tµ
P,λ

?

(5) Tµ
Q,λ

�
�

�
�

��+
(7) πQ

P∗

�(6) Γ

Note that (1) and (6) are equivalences by the choices of P andQ and that (2) = ( )⊗OP
O(µ−λ)

is an equivalence, since µ− λ is a P -character.
We see that (3) is an equivalence of categories because both the source and the target

category are D-affine, since λ is P - and Q-regular, and Γ ◦ πQP∗ = Γ. On the other hand, the
functor (7) is not faithful, because µ is not P -regular. (5) is also not faithful. We remind
that all functors involved are exact.

Let us now describe translation out of the wall: This is done by taking the diagram of
adjoint functors in the diagram 6.1, so we keep assuming that λ, µ, P and Q are as in 6.1.
The left and right adjoint of T µλ is T λµ , the translation out of the wall. The equivalences
(1), (2), (3) and (6) of course have left and right adjoints that coincide. Also, the left and

right adjoint of (5) coincide; it is given by TλlQ,µ. Finally (7) has the left adjoint πQ∗
P ; thus,

πQ∗
P must also be the right adjoint of (7). Summing up we have:

(6.2)

U(g) -modλ̂ D̃P -modλ̂

D̃Q-modλ̂ D̃P -modµ̂

U(g) -modµ̂ D̃Q-modµ̂

-L

6
πQ∗
P

Q
Q

Q
Q

QQk Tλ
P,µ

6

Tλ
µ

-L

6
Tλ
Q,µ

�
�
�
�
��3

πQ∗
P

Remark 6.4. Translation functors restrict to functors between blocks in category O. Using
the description of a singular block of category O as a category of D-modules on B from
the previous section we see that translation functors can be interpreted as functors between
(twisted) D-module categories on B.
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