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Quantum information transfer with nitrogen-vacancy centers coupled to a

whispering-gallery microresonator
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We propose an efficient scheme for the realization of quantum information transfer and entan-
glement with nitrogen-vacancy (NV) centers coupled to a high-Q microspherical resonator. We
show that, based on the effective dipole-dipole interaction between the NV centers mediated by the
whispering-gallery mode (WGM), quantum information can be transferred between the NV cen-
ters through Raman transitions combined with laser fields. This protocol may open up promising
possibilities for quantum communications with the solid state cavity QED system.
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Cavity quantum electrodynamics (cavity QED) [1]
that studies the coherent interaction of matter with quan-
tized fields has been a central paradigm for quantum in-
formation and processing [2]. Most recently the solid-
state counterpart of cavity QED system has attracted
great interests, which circumvents the complexity of trap-
ping single atoms and can potentially enable scalable de-
vice fabrications. Among various solid-state cavity QED
systems, the composite system in which NV centers in
diamond nanocrystals are coupled to a WGM microres-
onator has emerged as one of the most promising candi-
dates [4–6]. This composite nanocrystal-microresonator
system takes the advantage of both sides of NV cen-
ters and WGM microresonators, i.e., the exceptional spin
properties of nitrogen vacancy centers [7, 8] and the ul-
trahigh quality factor and small mode volume of WGM
microresonators [3, 9]. The application of this solid state
cavity QED system in quantum information and process-
ing is of great interests [10, 11].
In this work, we present an experimentally feasible

scheme for the implementation of quantum information
transfer and entanglement between distant NV centers
in diamond nanocrystals coupled to a WGM microres-
onator. This proposal exploits the effective dipole-dipole
interactions between the NV centers mediated by the
WGM. The nonlocal interactions combined with lasers
are utilized to induce Raman transitions between two
centers via the exchange of virtual cavity photons. Quan-
tum information encoded in the spin states of the elec-
tronic ground triplet can be transferred from one NV
center to the other though coherent control on the evo-
lution of the system. This protocol is very efficient be-
cause the excitations of the WGM and the NV centers
are suppressed during the transfer process. Experimental
realization of this scheme may open up promising possi-
bilities for quantum information and processing with the
solid state cavity QED system.
Consider two negatively charged NV centers positioned
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near the equator of a high-Q microsphere cavity, as
shown in Fig.1. NV centers in diamond consist of a

FIG. 1. (Color online) (a) The schematic of two identical NV
centers in diamond nanocrystals attached around the equator
of a single fused-silica microsphere cavity. (b) Energy level
structure with couplings to the cavity mode and driving laser
fields. Quantum information is encoded in the spin states
|ms = 0〉 and |ms = +1〉 of the 3A2 triplet, i.e., |0〉 = |ms =
0〉, and |1〉 = |ms = +1〉.

substitutional nitrogen atom and an adjacent vacancy
having trapped an additional electron, whose electronic
ground state has a spin S = 1 and is labeled as 3A2 [7].
We encode the quantum information in the spin states
|ms = 0〉 and |ms = +1〉 of the 3A2 triplet such that
|0〉 = |ms = 0〉, and |1〉 = |ms = +1〉. The NV centers
can be excited via dipole-allowed transitions to the 3E
triplet states. Correspondingly, the spin state |ms = 0〉
of the 3E triplet is labeled as |e〉 = |ms = 0〉. The modes
of spherical resonators can be classified by mode numbers
n, l and m, which determine the characteristic radial (n)
and angular (l and m) field distribution of the modes.
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Usually the so-called fundamental WGM (n = 1, l = m)
attracts great interests, whose field is concentrated in
the vicinity of the equatorial plane of the sphere. The
fundamental WGM of frequency ν0 dispersively couples
the transition |0〉 ↔ |e〉 for each NV center with cou-
pling constant gj and detuning ∆. The same transition
is also driven by a largely detuned π-polarized laser field
(frequency ω′) with Rabi frequency Ω′

j and detuning ∆′

(∆′ ≫ Ω′
j), which is used to eliminate the Stark-shift

term of the state |0〉 induced by the vacuum WGM. Un-
der the condition ∆ ≫ gj, we can adiabatically eliminate
the photons from the above description [12]. By con-
sidering the terms up to second order and dropping the
fast oscillating terms, we can obtain the effective Hamil-
tonian describing the dipole-dipole interaction between
the two NV centers. If the WGM is initially in the vac-
uum state, the Hamiltonian then reduces to (let ~ = 1)
V = Θ|e〉1〈0| ⊗ |0〉2〈e|+H.c., with Θ = g1g2/∆.
We now consider in each NV center the transition

|1〉 ↔ |e〉 is driven resonantly by a σ−-polarized laser
with Rabi frequency Ωj . Then the entire Hamiltonian is

Ĥ =
∑

j=1,2

(Ωj |e〉j〈1|+Θ|e〉1〈0| ⊗ |0〉2〈e|+H.c.) (1)

Assume that NV1 and NV2 are initially prepared in
their stable ground states |1〉1 and |0〉2, respectively.
If we assume that Θ ≫ {Ω1,Ω2}, then under the in-
teraction of Eq. (1), this configuration corresponds to
Raman transitions between these two distant NV cen-
ters. To gain more insight into these transitions, we can
rewrite the Hamiltonian of Eq. (1) in the subspace of
the collective energy levels of the two NV centers, i.e.,
{|10〉, |+〉, |−〉, |01〉}, with |ij〉 = |i〉1|j〉2(i, j = 0, 1, e)

and |±〉 = 1/
√
2(|e0〉 ± |0e〉). In the new basis, the effec-

tive Hamiltonian has the form

Ĥ = Θ|+〉〈+| −Θ|−〉〈−|+ Λ1|+〉〈01|
+Λ1|−〉〈01|+ Λ2|+〉〈10| − Λ2|−〉〈10|+H.c. (2)

with Λi = Ωi/
√
2. The schematic diagram of this cou-

FIG. 2. (Color online) Schematic Raman transitions between
two NV centers in dressed state basis

pling configuration in this new basis is shown in Fig. 2,
from which we see that Hamiltonian (2) describes an ef-
fective Λ system. The effective dipole-dipole interaction

V induced by the WGM causes splitting of the excited
states |e0〉 and |0e〉 into symmetric and antisymmetric
superpositions |±〉. Under the condition Θ ≫ {Ω1,Ω2},
the laser fields excite Raman transitions from the initial
states |10〉 to the final state |01〉 via the intermediate
states |±〉. Through adiabatic elimination of the states
|±〉, the effective Hamiltonian describing this case is

Ĥeff = R|01〉〈01|+H.c., (3)

with R = Ω1Ω2/Θ. The Hamiltonian (3) describes a
two photon Raman transition between two distant NV
centers mediated by the WGM.
Let us now show how to utilize Hamiltonian (3) to

generate entanglement and perform quantum informa-
tion transfer between two distant NV centers. For the
generation of two-particle entangled state, we initially
prepare the NV centers in the state |10〉. Then the state
evolution of the system is given by

ψ(t) = cos(Rt)|10〉 − i sin(Rt)|01〉, (4)

which is an entangled state for the two centers. If we
choose Rτ = π/4, we could obtain the maximally entan-
gled two-particle state

ψ(τ) =
1√
2
(|10〉 − i|01〉), (5)

which is the well-known EPR state. This entangled state
is very robust because it only involves the ground states
of the two centers. The interaction (3) between the two
NV centers can be used to transfer arbitrary quantum
information encoded in ground spin states from one cen-
ter to the other. Suppose that NV1 is prepared in an
arbitrary unknown state α|0〉1 +β|1〉1 initially, and NV2
in the state |0〉2. Then under the interaction of Eq. (3),
the state vector at the time t is

Ψ(t) = α|00〉+ β[cos(Rt)|10〉 − i sin(Rt)|01〉]. (6)

At the moment Rtf = π/2, we turn off the couplings and
can get the state

Ψ(tf ) = α|00〉 − iβ|01〉. (7)

If we perform a gate operation U = (1, i), we could re-
trieve the state α|0〉2 + β|1〉2 for the second NV center:

(α|0〉1 + β|1〉1)|0〉2 → (α|0〉2 + β|1〉2)|0〉1. (8)

This process completes the quantum state transfer from
NV1 to NV2, during which the excited states of the total
system are never populated.
It is necessary to verify the model and study the per-

formance of this protocol under realistic circumstances
through numerical simulations. In the following, we will
simulate the dynamics of the system through the Monte
Carlo wave function (MCWF) formalism [13]. Two main
decoherence processes ought to be taken into considera-
tion, i.e., cavity photon loss (decay rate κ) and decay of
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the NV centers. For the NV centers, spontaneous emis-
sion from the excited state as well as additional deco-
herence terms should be included in the simulation. In
this proposal, we model these decoherence effects through
three characteristic decay rates, γe0, γe1, and γ10, with
γij(i, j = 0, 1, e) the decay rate from the state |i〉 to
|j〉. Then the system is governed by the following master
equation

ρ̇ = −i[Ĥ, ρ] + κ(2âρâ† − ââ†ρ− ρâ†â)

+
∑

i=1,2

γ10[(2σ̂
i
01
ρσ̂i

10
− σ̂i

10
σ̂i
01
ρ− ρσ̂i

10
σ̂i
01
)]

+
∑

i=1,2

[
∑

j=0,1

γej(2σ̂
i
jeρσ̂

i
ej − σ̂i

ej σ̂
i
jeρ− ρσ̂i

ej σ̂
i
je)],(9)

where â is the annihilation operator for the cavity mode,
and σ̂i

αβ = |α〉i〈β|. To solve the master equation numeri-
cally, we have used the MCWF formalism from the quan-
tum trajectory method [13]. In the numerical calcula-
tions we assume g1 ∼ g2 ∼ g, and γe1 ∼ γe0 ∼ 100γ10 ∼ γ
for simplicity.
Fig.3 displays the time evolution of the system in the

presence of the cavity loss and decay of the NV centers.
The system starts from the state 1√

2
(|0〉1 + |1〉1)|0〉2. At

the moment tf = π/(2R), the first center evolves into its
ground state |0〉1, while the second center evolves into
1√
2
(|0〉2 − i|1〉2). Because the WGM cavity is only virtu-

ally excited, photon loss can be described by an effective
decay rate ΓC ≃ g2κ/∆2. The occupation of the excited
state |e〉 can be estimated to be 〈e〉 ∼ |Ω1Ω2/Θ|2. De-
coherence from the excited state at a rate γ thus leads
to the effective decay rate ΓE ≃ |Ω1Ω2/Θ|2γ. From the
figure we find that, provided the condition R ≥ {ΓC ,ΓE}
is fulfilled (Fig. 3(a)-(c)), the transfer process is very ef-
ficient. At the end of the process, we can get the target
state with a fidelity higher than 99%. When the strong
coupling condition R ≥ {ΓC ,ΓE} is not satisfied (Fig.3
(d)), the transfer process is spoiled. To ensure coher-
ent evolution and efficient quantum information transfer
thus requires R ≥ {ΓC ,ΓE}.
In realistic experiments, the above strong coupling con-

dition R ≥ {ΓC ,ΓE} can be realized with current tech-
niques of the solid state cavity QED system. With the
chosen parameters ∆ = 10g, Ω1 = Ω2 = 0.01g, we have
R ∼ 10−3g, ΓC ∼ 10−2κ, and ΓE ∼ 10−2γ. Strong cou-
pling between individual NV center in diamond nanocrys-
tal and the WGM in microsphere or microdisk resonator
has been reached [4–6]. The coupling strength between
NV centers and the WGM can reach g/2π ∼ 0.3 − 1
GHz. The Q factor of the WGM microresonator can

have a value exceeding 109, which can leads to a photon
loss rate of κ = ω/Q ∼ 2π × 0.5 MHz for our case. For
the NV centers, the electron spin relaxation time T1 of
diamond NV centers ranges from several milliseconds at
room temperature to seconds at cryogenic temperature.
The dephasing time T2 induced by the fluctuations in
the nuclear spin bath has the value of several microsec-
onds in general, which can be increased to 2 milliseconds
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FIG. 3. (Color online) Evolution of the system from the so-
lution of the master equation. In all the figures, red solid line
represents the population of |1〉1|0〉2, and dark dash line rep-
resents the population of |0〉1|1〉2. The parameters are chosen
as ∆ = 10g, Ω1 = Ω2 = 0.01g.

in ultrapure diamond [7]. Therefore, the aforementioned
strong coupling condition R ≥ {ΓC ,ΓE} can be satisfied
in the solid-state cavity QED experiments, from which
we can ensure that the photon loss of the WGM and the
decay of the NV centers can have a negligible effect on
the quantum information transfer process.
In conclusion, we have presented an experimentally

feasible protocol for the implementation of quantum in-
formation transfer with NV centers coupled to a WGM
microresonator. Relied on the effective dipole-dipole in-
teraction between the NV centers mediated by the WGM,
quantum information can be transferred between the NV
centers through Raman transitions combined with laser
fields. This scheme may represent promising steps to-
wards the realization of quantum communications with
the solid state cavity QED system.
This work is supported by the National Key

Project of Basic Research Development under Grant
No.2010CB923102, and the New Staff Research Support
Plan of Xian Jiaotong University under No.08141015.

[1] For a review see,H. J. Kimble, Phys. Scr. T76, 127
(1998); H. Mabuchi and A. C. Doherty, Science 298,
1372 (2002).

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
Cambridge, UK, 2000).



4

[3] For a review see,K. J. Vahala, Nature (London) 424, 839
(2003).

[4] Y.-S. Park, A. K. Cook, and H. Wang, Nano. Lett. 6,
2075 (2006); M. Larsson, K. N. Dinyari, and H. Wang,
ibid. 9, 1447 (2009).

[5] S. Schietinger, T. Schroder, and O. Benson, Nano. Lett.
8, 3911 (2008); S. Schietinger and O. Benson, J. Phys.
B 42, 114001 (2009).

[6] P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beau-
soleil, Appl. Phys. Lett. 95, 191115 (2009); C. Santori,
P. E. Barclay, K.-M. Fu, R. G. Beausoleil, S. Spillane,
and M. Fisch, Nanotechnology 21, 274008 (2010); P. E.
Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and
O. Painter, Opt. Express. 17, 8081 (2009).

[7] G. Balasubramanian, P. Neumann, D. Twitchen,
M. Markham, R. Kolesov, N. Mizuochi, J. Isoya,
J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hem-
mer, F. Jelezko, and J. Wrachtrup, Nature Mater. 8,
383 (2009).

[8] C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G.
Beausoleil, A. D. Greentree, P. Olivero, M. Draganski,

J. R. Rabeau, P. Reichart, B. C. Gibson, S. Rubanov,
D. N. Jamieson, and S. Prawer, Opt. Express. 14, 7986
(2006); T. A. Kennedy, J. S. Colton, J. E. Butler, R. C.
Linares, and P. J. Doering, Appl. Phys. Lett. 83, 4190
(2003).

[9] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, K. W.
Goh, E. Wilcut, and H. J. Kimble, Phys. Rev. A
71, 013817 (2005); Y. Louyer, D. Meschede, and
A. Rauschenbeutel, ibid. 72, 013801 (2005).

[10] K.-M. C. Fu, C. Santori, S. Spillane, and R. G. Beau-
soleil, Proc. SPIE 6903, 69030M (2008); W. L. Yang,
Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, Appl. Phys.
Lett. 96, 241113 (2010).

[11] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. OBrien, Nature (London) 464, 45
(2010); G. Burkard, e-print arXiv:cond-mat/0409626v2
(2004).

[12] D. F. V. James, Fortschr. Phys. 48, 823 (2000).
[13] R. Schack and T. A. Brun, Comput. Phys. Commun.

102, 210 (1997).

http://arxiv.org/abs/cond-mat/0409626

