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EXTENSIONS OF THEOREMS OF RATTRAY AND MAKEEV

PAVLE BLAGOJEVIĆ AND ROMAN KARASEV

Abstract. We consider extensions of the Rattray theorem and two Makeev’s theorems, showing that
they hold true for several maps, measures, or functions simultaneously, if we consider orthonormal
k-frames in R

n instead of orthonormal bases (full frames).
We also present new results on simultaneous partition of several measures into parts by k mutually

orthogonal hyperplanes.
In the case when k = 2 we relate the Rattray and Makeev type results to the well-known embedding

problem for projective spaces.

1. Introduction

In this paper we consider extensions of the following results of Rattray and Makeev:
• any odd continuous map Sn−1 → Sn−1 takes some orthonormal basis to an orthonormal basis,
the Rattray theorem [19];

• for any absolutely continuous probabilistic measure µ in R
n there exist n mutually orthogonal

hyperplanes h1, . . . , hn such that any two of them partition µ into 4 equal parts, the Makeev
theorem [16, Theorem 4].

These result share a common family of possible solution, the manifold of all orthonormal bases O(n) in
R

n. Moreover, they can be seen as a consequence of a single result, Theorem 1, proved implicitly already
in [19].

A continuous function f : Sn−1 × Sn−1 → R will be called
(a) odd, if for any x, y ∈ Sn−1

f(−x, y) = −f(x, y), f(x,−y) = −f(x, y);

(b) symmetric, if for any x, y ∈ Sn−1

f(x, y) = f(y, x).

Theorem 1. Suppose f : Sn−1 × Sn−1 → R is an odd and symmetric function. Then there exists an
orthonormal basis (e1, . . . , en) ∈ O(n) such that for any i < j

f(ei, ej) = 0.

Proof. Consider a particular case when f(x, y) is a generic symmetric bilinear form. It follows from the
diagonalization theorem in linear algebra that the required orthonormal basis e1, . . . , en exists and is
unique modulo the action of the group Wn = (Z2)

n
⋊ Σn ⊂ O(n). Here the group Wn acts on basis

(e1, . . . , en) ∈ O(n) by

εi · (e1, . . . , en) = (e′1, . . . , e
′
n) where e′j =

{

−ej , for j = i
ej , for j 6= i

for the generators ε1, ..., εn of the component (Z2)
n and by

π · (e1, . . . , en) =
(

eπ(1), . . . , eπ(n)
)

for the permutation π ∈ Σn from the symmetric group component of the group Wn.
Let us show that:

• the differential of the corresponding system of equations evaluated at the solution e1, . . . , en is
nonzero, and
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• the solution set represents a nonzero element of the 0-homology H0(O(n)/Wn,F2).
Suppose the base vector ei has coordinates bij , and

f(x, y) =
∑

i

λixiyi

in the coordinate representation. Since f is generic symmetric bilinear form we can assume that λ1, . . . , λn
are distinct real numbers. The solution is bij = δij , and its first order deformation is bij = δij + sij ,
where sij is a skew symmetric n× n matrix. Now consider

f(ek, el) =
∑

i

λibikbil,

its linear part, with respect to sij , is

df(ek, el) =
∑

i

λiδiksil +
∑

i

λisikδil = λkskl + λlslk = (λk − λl)skl.

Since the values (λk − λl) are all nonzero, we see that the differentials df(ek, el) give together a bijective
map from the space of skew symmetric matrices to the space of symmetric expressions tkl for k 6= l. Since
any f can be deformed (by a convex combination) to this particular case, it follows that for generic f the
solution set represents the generator of H0(O(n)/Wn,F2) (and is nonempty), and the solution set must
be nonempty for all other f by compactness considerations. �

In this paper we consider the following generalized problems of Rattray and Makeev type.

Generalized Rattray problem. Determine the set Rorth
odd ⊂ N

3 [Rorth
odd,sym ⊂ N

3] of all triples (n,m, k)

with the property that for any collection f1, . . . , fm ofm odd [and symmetric] functions Sn−1×Sn−1 → R

there exists an orthonormal k-frame (e1, . . . , ek) ∈ V k
n such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

fl(ei, ej) = 0.

Here V k
n stands for the Stiefel manifold of all orthonormal k-frames in R

n.
This problem has a natural variation when the requirement for the vectors e1, . . . , ek to be orthonormal
is dropped. Determine the set Rodd ⊂ N

3 [Rodd,sym ⊂ N
3] off all triples (n,m, k) with the property that

for any collection f1, . . . , fm of m odd [and symmetric] functions Sn−1 × Sn−1 → R there exist k unit
vectors e1, . . . , ek such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

fl(ei, ej) = 0.

An elementary observation is that Rorth
odd ⊂ Rodd [Rorth

odd,sym ⊂ Rodd,sym] and

(n,m, k) ∈ Rodd ⇒ (n,m− 1, k) ∈ Rorth
odd

[

(n,m, k) ∈ Rodd,sym ⇒ (n,m− 1, k) ∈ Rorth
odd,sym

]

by putting inner product on R
n for fm.

Generalized Makeev problem. Let H = {x ∈ R
n | 〈x, v〉 = α} be an affine hyperplane in R

n. Here
v is a vector in R

n and α ∈ R some constant. The affine hyperplane H determines two open halfspaces

H− = {x ∈ R
n | 〈x, v〉 < α} and H+ = {x ∈ R

n | 〈x, v〉 > α}.

Let H = {H1, H2, ..., Hk} be an arrangement of affine hyperplanes in R
d. An orthant of the arrangement

H is an intersection of halfspaces O = Hα1
1 ∩ ...∩Hαk

k , for some αj ∈ Z2. For convenience we assume that

Z2 = ({+1,−1}, ·). There are 2k orthants determined by H. The orthants can be indexed by elements

of the group (Z2)
k
in a natural way.

Let µ be an absolutely continuous probabilistic measure on R
n. The arrangementH equiparts the measure

µ if for each orthant O determined by the arrangement µ(O) = 1
2k
µ(Rn).

Generalized Makeev problem is to determine the set M ⊂ N
4 [Morth ⊂ N

4] of all quadruples
(n,m, k, l), where 1 ≤ l ≤ k, with the property that for every collection of m absolutely continuous
probabilistic measures µ1, . . . , µm on R

n there exist k [mutually orthogonal] hyperplanes H1, . . . , Hk such
that any l of them equipart all the measures.
It is obvious that Morth ⊂ M. Moreover, by taking µm to be the uniform probability measure on the
unit ball in R

n we can derive that

(n,m, k, l) ∈ M ⇒ (n,m− 1, k, l) ∈ Morth.
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The generalized Makeev problem for l = k is known as a generalized Grünbaum mass partition problem as
introduced by Grünbaum in [11, 4. Remarks (v)] and further studied by Ramos in [18] and Mani-Levitska,
S. Vrećica, R. Živaljević in [15].

2. Statement of main results

Let A = F2[t1, . . . , tk] denote the polynomial algebra with variables t1, . . . , tk of degree 1. Then

w1 = t1 + · · ·+ tk, . . . , wk = t1t2 . . . tk

are elementary symmetric polynomials in A with the respect to permutation of variables. Set for l ≥ 1,

w̄l =
∑

i1,i2,...,ik≥0
i1+2i2+···+kik=l

(

i1 + · · ·+ ik
i1 i2 . . . ik

)

wi1
1 . . . wik

k ,

where
(

i1+···+ik
i1 i2 ... ik

)

stands for (i1+···+ik)!
(i1)! ... (ik)!

modulo 2.

2.1. Rattray type results. These results give sufficient conditions for a triple (n,m, k) to be in R∗
∗ and

can be formulated in the following way.

Theorem 2. Let (n,m, k) ∈ N
3. Then

(a)
∏

1≤i<j≤k(ti + tj)
2m /∈ 〈tn1 , . . . , t

n
k 〉 =⇒ (n,m, k) ∈ Rodd,

(b)
∏

1≤i<j≤k(ti + tj)
m /∈ 〈tn1 , . . . , t

n
k 〉 =⇒ (n,m, k) ∈ Rodd,sym,

(c)
∏

1≤i<j≤k(ti + tj)
2m /∈ 〈w̄n−k+1, . . . , w̄n〉 =⇒ (n,m, k) ∈ Rorth

odd ,

(d)
∏

1≤i<j≤k(ti + tj)
m /∈ 〈w̄n−k+1, . . . , w̄n〉 =⇒ (n,m, k) ∈ Rorth

odd,sym.

Remark. The degree of the polynomial
∏

1≤i<j≤k(ti + tj) = det
(

tj−1
i

)k

i,j=1
is at most 1

2k(k − 1) and

degree of each variable is at most k − 1. Therefore,

(1) (k − 1)m < n ⇒
∏

1≤i<j≤k(ti + tj)
m /∈ 〈tn1 , . . . , t

n
k 〉 ⇒ (n,m, k) ∈ Rodd,sym.

Similarly, 2(k − 1)m < n implies Rodd. Moreover, note that the bounds for Rorth
∗ in these theorems are

far from the original theorems of Rattray and Makeev in the case n = k and m = 1, and it seems that
they could be still improved.

Remark. Direct application of the criterion (d) of the theorem, for example, implies that (3, 2, 2), (4, 1, 2),
(4, 2, 2), (5,m, 2) for 1 ≤ m ≤ 6 and (5, 1, 3) are elements of Rorth

odd,sym. The most striking example is that

(5, 6, 2) ∈ Rorth
odd,sym since the triple does not fulfill even the inequality bound from the previous remark

for being element of Rodd,sym. The fact (5, 6, 2) ∈ Rorth
odd,sym is the consequence of

(t1 + t2)
6
= t61 + t41t

2
2 + t21t

4
2 + t62 /∈ 〈w̄4, w̄5〉

where
w̄4 = w4

1 + w2
1w2 + w2

2 = t41 + t31t2 + t21t
2
2 + t1t

3
2 + t42,

w̄5 = w5
1 + w1w

2
2 = t51 + t41t2 + t31t

2
2 + t21t

3
2 + t52,

and w1 = t1 + t2, w2 = t1t2.

Let us present some immediate consequences of Theorem 2; the second part generalizes the result
in [17].

Corollary 3. Let (n, k,m) ∈ Rorth
odd,sym.

(a) For every collection φ1, . . . , φm of m odd maps Sn−1 → Sn−1 there exists an orthonormal k-frame
(e1, . . . , ek) ∈ V k

n such that for any 1 ≤ l ≤ m the set (φl(e1), . . . , φl(ek)) is an orthonormal frame
too.

(b) For every collection g1, . . . , gm of m continuous even functions R
n → R there exists an orthonormal

k-frame (e1, . . . , ek) ∈ V k
n such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

gl(ei + ej) = gl(ei − ej).

Proof. For the first claim take fl(x, y) = (φl(x), φl(y)) and apply Theorem 2, while for the second one
take fl(x, y) = gl(x+ y)− gl(x− y). �

In some particular cases the obvious inequality bound (1) can be substantially improved by more
precise cohomology computations.



4 PAVLE BLAGOJEVIĆ AND ROMAN KARASEV

Theorem 4. Let n ∈ N and P (n) = min {2s | s ∈ N, 2s ≥ n}. Then

P (n) ≥ m+ 2 ⇐⇒ n ≥ 1
2P (m+ 2) + 1 =⇒ (n,m, 2) ∈ Rorth

odd,sym.

A further improvement of this result is possible, relating the Rattray problem for 2-frames to the
famous problem of embedding of projective spaces into a Euclidean space.

Theorem 5. If RPn−1 cannot be embedded into R
m because of the “deleted square obstruction”, then

(n,m, 2) ∈ Rorth
odd,symm.

Remark. The deleted square obstruction for an embedding M → R
m is the non-existence of a Z2-

equivariant map (M ×M) \∆(M) → Sm−1, where Z2 acts on the deleted square (M ×M) \∆(M) by
permutations and acts on Sm−1 antipodally. The Haefliger theory [12] states that in the range m ≥ 3n

2
(the metastable range) this is the only obstruction to the embedding. The results in [9] (see also the
table [8] for some low-dimensional cases) show that asymptotically the required inequality for embedding
of the projective space has the formm ≥ 2n−O(log n), i.e. falls into the metastable range. It follows that
for large enough n the condition (n,m, 2) ∈ Rorth

odd,symm also has an asymptotic form m ≤ 2n−O(log n).

Let us state more results in case k = 3. If we want to calculate in mod 2 equivariant cohomology,

we may consider the Sylow subgroup W
(2)
3 = D8 × Z2 (D8 is the square group). Thus we obtain the

following algebraic criterion:

Theorem 6. Consider the graded algebra F2[x, y, w, t] with dimx = dim y = dim t = 1, dimw = 2, and
relation xy = 0. Put

(1) w∗ = (1 + x+ y + w)(1 + t);
(2) w̄∗ = (w∗)

−1.
In the above notation, if ym(t2 + t(x + y) + w)m 6∈ 〈w̄n−2, w̄n−1, w̄n〉 then (n,m, 3) ∈ Rorth

odd,symm.

Remark. It can be checked “by hand” than (3, 1, 3) ∈ Rorth
odd,symm, i.e. the Rattray theorem for n = 3

follows from this theorem.

The results of Rattray type can be extended also in the following direction. It can be asked in addition
for the ”diagonal” values fl(ei, ei) to be equal.

Theorem 7. Let k and m be positive integers. There exists a function n : N
2 → N such that for

every n ≥ n(k,m) and any collection f1, . . . , fm of m odd functions Sn−1 × Sn−1 → R there exists an
orthonormal k-frame (e1, . . . , ek) ∈ V k

n such that for any 1 ≤ l ≤ m and 1 ≤ i < j ≤ k

fl(ei, ej) = 0 and fl(e1, e1) = ... = fl(ek, ek).

Remark. Description of the function n(k,m) remains a challenging open problem.

The final result of Rattray type we present is the following theorem.

Theorem 8. Let ψ : Sn−1 → Sm−1 be an odd continuous map and 1 ≤ k ≤ n. For any linear
subspace L ⊆ R

m of codimension n− k there exists an orthonormal k-frame (e1, . . . , ek) in R
n such that

(ψ(e1), . . . , ψ(ek)) is an orthonormal k-frame in L.

Remark. This theorem implies that m must be at least n (when considered k = n), i.e. it implies the
Borsuk–Ulam theorem.

2.2. Makeev type results. The following theorem gives sufficient conditions for (n,m, k, l) to be in
M∗.

Theorem 9. Let (n,m, k, l) ∈ N
4. Then

(a)
∏

s1,...,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + · · ·+ sktk)
m /∈ 〈tn+1

1 , . . . , tn+1
k 〉 =⇒ (n,m, k, l) ∈ M,

(b) 1
t1...tk

∏

s1,...,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + · · ·+ sktk)
m /∈ 〈w̄n−k+1, . . . , w̄n〉 =⇒ (n,m, k, l) ∈ Morth.

Remark. By considering maximal degree of the test polynomial in every variable we can get a rough
bound

n ≥ m

(

l
∑

i=0

(

k − 1

i

)

)

=⇒ (n,m, k, l) ∈ M.

Remark. Notice that for m = 1 and l = 2 algebraic conditions of Theorem 9 (b) and Theorem 2 (d)
coincide.
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Remark. For l = k, the case (a) is equivalent to the main result of the paper by Mani-Levitska, S. Vrećica,
R. Živaljević [15]. They obtained that

n ≥ 2q+k−1 + r =⇒ (n, 2q + r, k, k) ∈ M

where m = 2q + r and 0 ≤ r ≤ 2q − 1.

Similar to Theorem 5, we prove another particular result on partitioning measures by pairs of hy-
perplanes. This result is a projective analogue of the “ham sandwich” theorem [21, 20], the concept of
“projective measure partitions” is due to Benjamin Matschke (private communication).

Theorem 10. Suppose RPn−1 cannot be embedded into R
m because of the “deleted square obstruction”.

Let µ0, . . . , µm be m+1 absolutely continuous probabilistic measures on RPn−1. Then there exists a pair
of hyperplanes H1, H2 ⊆ RPn−1, partitioning every measure µi into two equal parts.

Remark. A single hyperplane does not partition a projective space, but two hyperplanes partition it into
two parts.

Remark. The condition is asymptotically m ≤ 2n−O(log n), as in Theorem 5.

3. The equivariant cohomology of the Stiefel manifold

Let V k
n denote the Stiefel manifold of all orthonormal k-frames in R

n. Any subgroup G ⊆ O(k) acts
naturally on k-frames by

(e1, . . . , ek) · g =





∑

j

ejsj1, ...,
∑

j

ejsjk





where (e1, . . . , ek) ∈ V k
n and g = (sij)

k

i,j=1 ∈ O(k). The action is right, but it transforms in a left action

in the usual way g · (e1, . . . , ek) := (e1, . . . , ek) · g
−1.

In this section we compute the Fadell–Husseini index of the Stiefel manifold V k
n with the respect to the

action of any subgroup G ⊆ O(k) and coefficients F2, i.e. we determine the generators of the following
ideal

IndexG,F2V
k
n = ker

(

H∗(G;F2) −→ H∗(EG×G V
k
n ;F2)

)

.

In particular, we determine explicitly the index with respect to the subgroup Z
k
2 of diagonal matrices

with {−1, 1} entries on diagonal. One description of the index IndexZk

2 ,F2
V k
n is given in the initial paper

of Fadell and Husseini [10, Theorem 3.16, page 78].

3.1. The cohomology of the Stiefel manifold V k
n with F2 coefficients is the quotient algebra (consult [6])

H∗
(

V k
n ;F2

)

= F2[en−k, ..., en−1]/J
k
n

where deg ei = i and J k
n is the ideal generated by the relations

e2i = e2i for 2i ≤ n− 1
e2i = 0 for 2i ≥ n.

In what follows, for a vector bundle F → ξ → B we denote by wi(ξ) ∈ Hi (B;F2) the associated
Stiefel–Whitney classes, by w̄i(ξ) ∈ Hi (B;F2) its dual Stiefel–Whitney classes, i ≥ 0. There is a relation
between these classes expressed via the total class by w · w̄ = 1 or particularly for l ≥ 1 by

w̄l(ξ) =
∑

i1,i2,...,ik≥0
i1+2i2+···+kik=l

(

i1 + · · ·+ ik
i1 i2 . . . ik

)

wi1
1 (ξ) . . . wik

k (ξ).

Let us recall that:
(a) the Grassmann manifold Gk(R∞) of all k-flats in R

∞ is the classifying space of the group O(k) and
we denote Gk(R∞) also by BO(k),

(b) the Stiefel manifold V k
∞ of all k-frames in R

∞ as a contractible free O(k) space serves as a model for
EO(k),
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(c) the associated canonical bundle:

R
k −→ γk −→ Gk(R∞)

can be seen as a Borel construction of the O(k)-space R
k [where the action is given by the matrix

multiplication from the left]:

R
k −→ EO(k)×O(k) R

k −→ BO(k)

(d) the cohomology of the Grassmanian Gk (R∞) ≈ BO(k) with coefficients in F2 is the polynomial
algebra generated by the Stiefel–Whithey classes w1, ..., wk of the canonical vector bundle γk:

H∗ (BO(k);F2) = F2 [w1, ..., wk] .

Now we state a very useful result from [6] (see also [14, Theorem 3.3]).

Proposition 11. Let (E∗,∗
i , di)i≥2 denote the Leray–Serre spectral sequence associated with the Borel

construction

R
k −→ EO(k)×O(k) R

k −→ BO(k) .

Then

IndexO(k),F2
V k
n = 〈w̄n−k+1, ..., w̄n〉 ⊂ F2 [w1, ..., wk]

where w̄i = w̄i

(

γk
)

= di−1 (ei−1).

3.2. The Borel construction is a functorial construction and therefore there is a morphism of fiber
bundles induced by the inclusion ι : G ⊆ O(k):

EO(k)×G V
k
n

- EO(k)×O(k) V
k
n

BG

π

? Bι
- BO(k)

µ

?

In the bundle on the left, EO(k) is used as a model for EG. The action of O(k) on the Stiefel manifold V k
n

is free. Therefore, the Ep,q
∞ -term of the Leray–Serre spectral sequence for the fibration EO(k)×O(k)V

k
n →

BO(k) has to vanish for p+ q > dim V k
n . Furthermore, O(k) acts trivially on the cohomology H∗(V k

n ;F2)
and so by Proposition 11 we have that di (ei) = w̄i+1 for n − k ≤ i ≤ n − 1. Here di denotes the i-th
differential of the Leray–Serre spectral sequence. The morphism of the bundles we considered induces a
morphism of the associated Leray–Serre spectral sequences as well. The morphism in the E2-term on the

0-column is the identity and on the 0-row determines the restriction morphism ι∗ =res
O(k)
G . Thus,

IndexG,F2V
k
n = kerπ∗ = res

O(k)
G (kerµ∗) = res

O(k)
G (〈w̄n−k+1, ..., w̄n〉)

= 〈res
O(k)
G (w̄n−k+1) , ..., res

O(k)
G (w̄n)〉.

We have proved the following claim.

Proposition 12. IndexG,F2V
k
n = 〈res

O(k)
G (w̄n−k+1) , ..., res

O(k)
G (w̄n)〉.

3.3. In the final step we identify the restriction morphism res
O(k)
G . Consider Rk as an O(k)-space where

the action is given by the left matrix multiplication. The inclusion ι : G ⊆ O(k) gives to R
k the structure

of G-space. Again, there is a morphism of associated Borel constructions, which in this case is also a
morphism of vector bundles:

EO(k)×G R
k - EO(k)×O(k) R

k

BG

φ

? Bι
- BO(k)

ψ

?

The naturality of the Stiefel–Whitney classes implies that

wi(EO(k)×G R
k) = ι∗(wi) = res

O(k)
G (wi)
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and consequently

w̄i(EO(k)×G R
k) = res

O(k)
G (w̄i).

Thus we have proved the following fact.

Proposition 13. IndexG,F2V
k
n = 〈w̄n−k+1(EO(k)×G R

k), ..., w̄n(EO(k)×G R
k)〉.

3.4. Let G = Z
k
2 be the subgroup of diagonal matrices with {−1, 1} entries. Let H∗

(

Z
k
2 ;F2

)

= A =
Z2[t1, . . . , tk] be the polynomial algebra with variables t1, . . . , tk of degree 1.

It is well known that the k-dimensional real Zk
2-representation R

k can be decomposed into the sum of
1-dimensional irreducible real Zk

2-representation. The total Stiefel–Whitey class of EO(k)×
Zk

2
R

k is given

by

w
(

EO(k)×Zk

2
R

k
)

=

k
∏

i=1

(1 + ti) = 1 + ω1 + ...+ ωk

where ωi denotes both: the elementary symmetric polynomial of degree i in variables t1, . . . , tk and the

i-th Stiefel–Whitney class of wi

(

EO(k)×
Zk

2
R

k
)

. For example, ω1 = t1+ t2+ ...+ tk while ωk = t1t2..tk.

The following result is proved.

Proposition 14. Let ω̄l =
∑

i1,i2,...,ik≥0
i1+2i2+···+kik=l

(

i1+···+ik
i1 i2 ... ik

)

ωi1
1 . . . ωik

k , for l ≥ 1, and then

Index
Zk

2 ,F2
V k
n = 〈ω̄n−k+1, ..., ω̄n〉 ⊂ A.

4. Proof of Rattray type results

4.1. The proofs of these results will be done via the configuration space–test map method. There are
two different natural configuration spaces of interest:

X =
(

Sn−1
)k

= the space of all collections of k vectors on the sphere Sn−1,
Y = V k

n = the space of all orthogonal k-frames in R
n

.

The group Wk = (Z2)
k
⋊ Σk ⊂ O(k) acts naturally on both configurations spaces. For the generators

ε1, ..., εn of the component (Z2)
n and (e1, . . . , ek) ∈ X or Y the action is given by

εi · (e1, . . . , ek) = (e′1, . . . , e
′
k) where e′i = −ei and e

′
j = ej for j 6= i

and for the permutation π ∈ Σk by

π · (e1, . . . , ek) =
(

eπ(1), . . . , eπ(k)
)

.

Let us consider the space Mk of all real k × k-matrices as a real O(k)-representation with respect to
the action

m 7→ gmg−1

where m ∈Mk and g is k× k-matrix representing an element of O(k). Then Mk has a structure of a real
Wk-representation via the inclusion map Wk →֒ O(k). Consider following real vector subspaces of Mk:

(2)
Rk of all k × k symmetric matrices with zeros on the diagonal,
Uk of all k × k matrices with zeros on the diagonal, and
Ik of all k × k matrices with zeros outside the diagonal and trace zero.

They are all real Wk-subrepresentations of Mk, and moreover Uk
∼= Rk ⊕Rk as Wk-representation.

For an odd [and symmetric] function f : Sn−1 × Sn−1 → R and k-vectors [k-frame] (e1, . . . , ek), we
denote by:

• µf (e1, . . . , ek) ∈ Uk [µf (e1, . . . , ek) ∈ Rk] the matrix given by entries

(µf (e1, . . . , ek))ij =

{

f (ei, ej) , i 6= j
0 , i = j

,

• ηf (e1, . . . , ek) ∈ Ik the matrix given by entries

(ηf (e1, . . . , ek))ij =

{

f (ei, ei)− c , i = j
0 , i 6= j

where c = 1
k
(f (e1, e1) + ...+ f (ek, ek)).
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4.2. Proof of Theorem 2. Let (n,m, k) ∈ N
3 and f1, . . . , fm be a collection of m odd [and symmetric]

functions Sn−1 × Sn−1 → R. Let us introduce the test maps for Rattray problems:

τodd : X → U⊕m
k , τodd,sym : X → R⊕m

k , τorthodd : Y → U⊕m
k , τorthodd,sym : Y → R⊕m

k .

All four test maps are defined by the same formula

(e1, . . . , ek)
τ∗

∗7−→ (µfr (e1, . . . , ek))
m

r=1

assuming appropriate domains and codomains. Have in mind that the test maps are functions of the
collection f1, . . . , fm, even we abbreviate this from notation. The test maps are all Wk-equivarian maps
and moreover have the following obvious but very important properties: If for every collection f1, . . . , fm
of m odd [and symmetric] functions Sn−1 × Sn−1 → R

• {0 ∈U⊕m
k } ∈ τodd (X), then (n,m, k) ∈ Rodd,

• {0 ∈U⊕m
k } ∈ τodd (X), then (n,m, k) ∈ Rodd,

• {0 ∈R⊕m
k } ∈ τodd,symm (X), then (n,m, k) ∈ Rodd,sym,

• {0 ∈U⊕m
k } ∈ τorthodd (Y ), then (n,m, k) ∈ Rorth

odd ,

• {0 ∈R⊕m
k } ∈ τorthodd,symm (Y ), then (n,m, k) ∈ Rorth

odd,sym.

Let us now assume that not the single instance of Theorem 2 stands. This means that for a specific
collection f1, . . . , fm of m odd [and symmetric] functions 0 ∈ U⊕m

k or 0 ∈ R⊕m
k is not in the image of

any of the test maps. Therefore, we have constructed Wk-equivariant maps

(3) X → U⊕m
k \ {0} , X → R⊕m

k \ {0} , Y → U⊕m
k \ {0} , Y → R⊕m

k \ {0} ,

i.e., after homotopy, Wk-equivariant maps

(4) X → S
(

U⊕m
k

)

, X → S
(

R⊕m
k

)

, Y → S
(

U⊕m
k

)

, Y → S
(

R⊕m
k

)

.

Obviously all these maps are also Z
k
2-equivariant maps, where Z

k
2 is the diagonal subgroup of Wk.

The basic monotonicity property of the Fadell–Husseini index theory [10] states that when there
is a G map A → B between G-spaces A and B there has to be an inclusion of associated indexes
IndexG,∗A ⊇ IndexG,∗B. Using the subgroup Z

k
2 of Wk the maps (4) induce following inclusions

(5)
IndexZk

2 ,F2
X ⊇ IndexZk

2 ,F2
S
(

U⊕m
k

)

, IndexZk

2 ,F2
X ⊇ IndexZk

2 ,F2
S
(

R⊕m
k

)

,

Index
Zk

2 ,F2
Y ⊇ Index

Zk

2 ,F2
S
(

U⊕m
k

)

, Index
Zk

2 ,F2
Y ⊇ Index

Zk

2 ,F2
S
(

R⊕m
k

)

.

We determine all Fadell–Husseini indexes appearing in (5).

Claim. With notation already introduced:
(a) Index

Zk

2 ,F2
X = 〈tn1 , ..., t

n
k 〉,

(b) IndexZk

2 ,F2
Y = 〈ω̄n−k+1, ..., ω̄n〉,

(c) Index
Z
k

2 ,F2
S
(

R⊕m
k

)

= 〈
∏

1≤a<b≤k(ta + tb)
m〉,

(d) Index
Zk

2 ,F2
S
(

U⊕m
k

)

= 〈
∏

1≤a<b≤k(ta + tb)
2m〉.

Proof. (a) Since the Z
k
2-action on X is component-wise antipodal the index is computed in the paper of

Fadell and Husseini [10, Example 3.3, p. 76].
(b) This fact is established in Proposition 14.
(c) Let us denote by Rab, for 1 ≤ a < b ≤ k, the 1-dimension real vector subspace of Rk described by

Rab = {m ∈ Rk | mij = 0 for (i, j) /∈ {(a, b), (b, a)} and mab = mba ∈ R} .

The subspace Rab is Zk
2 -invariant and

εi ·m =

{

−m
m

, for i ∈ {a, b}
, for i ∈ {1, ...k}\{a, b}

.

Moreover, Rk
∼=

⊕

1≤a<b≤k

Rab as a Z
k
2-module. Since the Fadell–Husseini index of a sphere in this case is

a principal ideal generated by the Euler class [= the top Stiefel–Whitney class] of the vector bundle

Rk −→ EZk
2 ×Zk

2
Rk −→ BZk

2

and

e(EZk
2 ×Zk

2
Rk) =

∏

1≤a<b≤k

e(EZk
2 ×Zk

2
Rab) =

∏

1≤a<b≤k

(ta + tb) .



EXTENSIONS OF THEOREMS OF RATTRAY AND MAKEEV 9

For details consult [5, Proof of Proposition 3.11]. It follows directly that

e(EZk
2 ×Zk

2
R⊕m

k ) =
∏

1≤a<b≤k

(ta + tb)
m

and consequently IndexZk

2 ,F2
S
(

R⊕m
k

)

= 〈
∏

1≤a<b≤k

(ta + tb)
m
〉.

(d) Follows from the decomposition Uk
∼= Rk ⊕Rk of Zk

2 -module. �

Now, the inclusions (5) with just determined indexes imply that:
∏

1≤a<b≤k

(ta + tb)
m

∈ 〈t1, ..., tk〉,
∏

1≤a<b≤k

(ta + tb)
m

∈ 〈t1, ..., tk〉,
∏

1≤a<b≤k

(ta + tb)
m ∈ 〈ω̄n−k+1, ..., ω̄n〉,

∏

1≤a<b≤k

(ta + tb)
m ∈ 〈ω̄n−k+1, ..., ω̄n〉.

This gives a contradiction with the assumptions of Theorem 2. Therefore, all claims of Theorem 2 hold.

4.3. Proof of Theorem 4. Before starting the proof let us once more isolate an important properties
of the Stiefel–Whitney classes already used in the proof of Theorem 2. Let H be a subgroup of a group
G and V a real G-representation. Then the following equality between the total Stiefel–Whitney classes
holds:

w (EH ×H V ) = resGH (w (EG×G V )) ⇐⇒ wi (EH ×H V ) = resGH (wi (EG×G V )) for all i ≥ 1

where V inherits the H-representation structure via the inclusion map H →֒ G.

In the proof we use the complete group of symmetries W2 = (Z2)
2
⋊Z2 = (〈ε1〉 × 〈ε2〉)⋊ 〈σ〉 which is

isomorphic to the dihedral group D8. The cohomology of the dihedral group D8 with F2 coefficients is
given by

H∗(D8,F2) = F2[x, y, w]/〈xy〉.

where deg x = deg y = 1 and degw = 2. Consult [1, Section IV.1, page 116] or [5, Section 4.2]. In what
follows we use the notations introduced in the paper [5, Section 4.3.2]. For example subgroup (Z2)

2 is
denoted by H1, while subgroup 〈σ〉 is either K4 or K5. Let us assume for clarity that K5 = 〈σ〉.

Let us consider W2 = D8 and its already introduced representations R2 and R
2. Computation of

the total Stiefel–Whitney class w
(

E(Z2)
2 ×(Z2)2 R2

)

conducted in Section 4.2, when translated into the
notation of [5, Section 4.3.2], gives us that

w (EH1 ×H1 R2) = 1 + (a+ a+ b) = 1 + b

Moreover, since EK5 ×K5 R2 is a trivial vector bundle

w (EK5 ×K5 R2) = 1

Thus, the restriction diagram presented in [5, Section 4.3.2, equations (26) and (27)] implies that

(6) w (ED8 ×D8 R2) = 1 + y.

On the other hand, presented in the new notation

w
(

EH1 ×H1 R
2
)

= (1 + a) (1 + a+ b) = 1 + b+ a (a+ b) .

The 2-dimensional real K5-representation R
2 can be decomposed into the direct sum R

2 ∼= V0 ⊕V1 of the
trivial 1-dimensional real K5-representation V0 and the 1-dimensional real K5-representation V1 where
the action of generator σ ∈ K5 is given by σ · v = −v, for v ∈ V1. Then the total Stiefel–Whitney class is

w
(

EK5 ×K5 R
2
)

= 1 + t5.

Again the restriction diagram [5, Section 4.3.2, equations (26) and (27)] gives that

(7) w
(

ED8 ×D8 R
2
)

= 1 + (y + x) + w.

Proposition 15. With notation already introduced:
(a) IndexD8,F2V

2
n = 〈w̄n−1(EO(2)×D8 R

2), w̄n

(

EO(2)×D8 R
2
)

〉 ⊆ H∗ (D8,F2) where
(

1 + w̄1

(

EO(2)×D8 R
2
)

+ w̄2

(

EO(2)×D8 R
2
)

+ ...
)

(1 + (y + x) + w) = 1.

(b) IndexD8,F2 S
(

R⊕m
2

)

= 〈ym〉.

(c) ym /∈ 〈w̄n−1(EO(2)×D8 R
2), w̄n

(

EO(2)×D8 R
2
)

〉 =⇒ (n,m, 2) ∈ Rorth
odd,sym.

(d) ym /∈ 〈w̄n−1(EO(2)×D8 R
2), w̄n

(

EO(2)×D8 R
2
)

, x〉 =⇒ (n,m, 2) ∈ Rorth
odd,sym.
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Proof. (a) Proposition 13 together with the evaluated total Stiefel–Whitney class (7) imply the claim.
(b) From (6) it follows that e(ED8 ×D8 R2) = y and consequently e(ED8 ×D8 R

⊕m
2 ) = ym. Since the

Fadell–Husseini index of a sphere in this case is a principal ideal generated by the Euler class [5, Proof
of Proposition 3.11] the claim is proved.
(c) This is a direct consequence of the configuration test map construction presented at the beginning of
Section 4.2.
(d) If ym is not an element of the bigger ideal

〈w̄n−1(EO(2)×D8 R
2), w̄n

(

EO(2)×D8 R
2
)

, x〉

it certainly can not belong to the smaller ideal

〈w̄n−1(EO(2)×D8 R
2), w̄n

(

EO(2)×D8 R
2
)

〉.

The statement follows from (c). �

Hence, the final effort is to determine a condition on the integer m such that

ym /∈ 〈w̄n−1(EO(2)×D8 R
2), w̄n

(

EO(2)×D8 R
2
)

, x〉

or

0 6= ym ∈ F2[y, w]/〈w̄n−1, w̄n〉

where (1 + y + w) (1 + w̄1 + w̄2 + ...) = 1.

If y and w are interpreted as the first and the second Stiefel–Whitney class in the cohomology of the
Grassmannian G2 (Rn) we can identify F2[y, w]/〈w̄n−1, w̄n〉 with H

∗
(

G2 (Rn) ;F2

)

. Then our final step
coincides with the well known problem of determining the height (maximal nonzero power) of the first
Stiefel–Whitney class in the cohomology of the Grassmannian G2 (Rn). In [13, Proposition 2.6, page 525]
the following statement is proved:
Lemma. Let n ≥ 2 , and let P (n) := 2s be the minimal power of two, satisfying 2s ≥ n. For the first
Stiefel-Whitney class w1 of the Grassmannian G2(Rn) holds

w2s−2
1 6= 0 and w2s−1

1 = 0.

Therefore,

P (n) ≥ m+ 2 ⇐⇒ n ≥ 1
2P (m+ 2) + 1 =⇒ (n,m, 2) ∈ Rorth

odd,sym.

4.4. Proof of Theorem 5. We have the Stiefel-Whitney manifold V 2
n and the action of D8 on it. We

want to know whether V 2
n can be mapped equivariantly to (R2)

m \ {0}.
Denote σ1, σ2, τ the generators of D8, where σ1 and σ2 reflect the base vectors in R

2, and τ transposes
the base vectors. The representation R2 is one-dimensional, σ1 and σ2 act as −1 on it, and τ acts trivially
on it.

Now consider an automorphism of D8, defined by

σ′
1 = σ1σ2τ

σ′
2 = τ

τ ′ = σ1.

Under this automorphism the representation of D8 on R
2 remains the same (it is sufficient to change

the base e′1 = e1 + e2, e
′
2 = −e1 + e2). The representation R2 is now acted trivially by σ′

1 and σ′
2 and

multiplied by −1 by τ ′. So we can go down to the space Xn = V 2
n /(σ

′
1, σ

′
2), the space of ordered pairs of

orthogonal lines through the origin in R
n. This space has the action of Z2 = (τ ′) by permuting the lines,

and we want to know whether X can be mapped Z2-equivariantly to γm \ {0}, where γ is the unique
one-dimensional representation of Z2. It is well known that X is homotopy equivalent to the deleted
square of the projective space RPn−1, i.e.

X ∼
(

RPn−1 × RPn−1
)

\∆(RPn−1).

The existence of a Z2-equivariant map X → S(γm)) is exactly the “deleted square obstruction” to
embedding of RPn−1 to R

m.
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4.5. Proof of Theorem 6. We consider the group G =W
(2)
3 = D8 × Z2. We already know that

H∗(D8,F2) = F2[x, y, w]/〈xy〉, H∗(Z2,F2) = F2[t],

and therefore H∗(G,F2) = F2[x, y, w, t]/〈xy〉 by the Künneth formula. The Stiefel–Whitney class of the
standard representation on R

3 is

w(R3) = (1 + x+ y + w)(1 + t),

and the Euler class of the representation R3 is

e(R3) = y(t2 + t(x + y) + w),

because R
3(G) = R

2(D8) ⊕ R
1(Z2) and R3(G) = R2(D8) ⊕ R

2(D8) ⊗ R
1(Z2) in the obvious notation.

The rest of the proof proceeds in the footsteps of the proof of Theorem 2.

4.6. Proof of Theorem 7. Before proving Theorem 7 we recall some basic facts and results on the
following Borsuk–Ulam type problem (consult the book [4]).
Problem. Let G be a finite group and V its real representation such that V G = {0}. Determine the
conditions for the vector bundle

EG× V → EG

to have a G-equivariant nonzero section.

The following result for p-groups will be used, consult [2, 3, 4, 7].
Lemma. Let G be a p-group and V its real representation such that V G = {0}. Then the image of
an equivariant map f : EG → V intersects V G = 0. Moreover, there exists an integer n(G, V ) such
that for every free G-space X is n− 1-connected where n ≥ n(G, V ), the image of an equivariant map
f : X → V meets V G = 0.

In order to prove Theorem 7 we slightly change the configuration test map construction given at the
beginning of this chapter. Let us fix positive integers k and m, and consider a collection of m odd
functions f1, ..., fm. The test map in this case is the Wk-equivariant map υ : Y → R⊕m

k ⊕ I⊕m
k defined by

(e1, . . . , ek)
υ

7−→ (µfr (e1, . . . , ek))
m

r=1 ⊕ (ηfr (e1, . . . , ek))
m

r=1

where Y stands for the Stiefel manifold V k
n as before. If there exists a positive integer n = n(k,m) such

that there is no Wk-equivariant map

Y →
(

R⊕m
k ⊕ I⊕m

k

)

\ {0} → S
(

R⊕m
k ⊕ I⊕m

k

)

then Theorem 7 is proved.

Without loss of generality we may increase n and k in such a way that k becomes power of 2. This
can be done since we do not need an optimal n and moreover proving the theorem for bigger k and fixed

n and m yields the same result for smaller k. Now consider the 2-Sylow subgroup W
(2)
k of Wk. Since

the W
(2)
k -fixed point set of the representation R⊕m

k ⊕ I⊕m
k is trivial, i.e.

(

R⊕m
k ⊕ I⊕m

k

)W
(2)
k = {0} the

previously presented lemma implies that every map Y → R⊕m
k ⊕ I⊕m

k must meet origin. Thus there

cannot be any W
(2)
k -equivariant (and consequently Wk-equivariant) map Y → S

(

R⊕m
k ⊕ I⊕m

k

)

. This
completes the proof of the theorem.

4.7. Proof of Theorem 8. Let λ1, . . . , λn−k be independent linear forms defining the subspace L in
R

m. In this proof we take R
k to be an O(k)-representation where the action is given by the left matrix

multiplication. The inclusion Wk ⊆ O(k) gives to R
k also the structure of Wk-representation, let us

denote this representation by Pk. Consider the following Wk-equivariant maps
• φ0 : V k

n → Rk given by

φ0(e1, . . . , ek) = (ψ(ei), ψ(ej))1≤i<j≤k,

• φr : V k
n → Pk, for 1 ≤ r ≤ n− k, given by

φr(e1, . . . , ek) = (λr(ψ(e1)), . . . , λr(ψ(ek)))

for 1 ≤ i ≤ k.



12 PAVLE BLAGOJEVIĆ AND ROMAN KARASEV

The sum of these maps, the Wk-equivariant map, φ = φ0 ⊕ φ1 ⊕ ...⊕ φn−k : V k
n → Rk ⊕ (Pk)

n−k
has the

property that if the image of φ meets zero in Rk ⊕P
n−k
k then the theorem follows. It is sufficient to show

that the Euler class

e(Rk ⊕ Pn−k
k ) ∈ H∗(BWk,F2)

has nonzero image in H∗
Wk

(V k
n ,F2), i.e.

e(Rk ⊕ Pn−k
k ) /∈ IndexWk,F2V

k
n .

Let us prove non-vanishing of the Euler class by counting zeroes of a generic map. We construct
another Wk-equivariant map:

τ : V k
n → Rk ⊕ Pn−k

k

with unique (up to Wk-action) non-degenerated zero. This will imply that e(Rk ⊕ Pn−k
k ) 6= 0 as an

element of H∗
Wk

(V k
n ,F2).

Let M = R
k ⊆ R

n be a standard inclusion, and let f(x, y) be a symmetric quadratic form, such that
f |M×M is generic. Put

τ0(e1, . . . , ek) = (f(ei, ej))1≤i<j≤k ,

and for 1 ≤ r ≤ n− k

τr(e1, . . . , ek) = (xk+r(e1), . . . , xk+r(ek)),

where xk+r are coordinate functions in R
n. Then a unique (up to Wk-action) basis in M is mapped

by τ to zero; because the conditions τr(e1, . . . , ek) = 0 (for 1 ≤ r ≤ n − k) imply e1, . . . , ek ∈ M and
condition τ0(e1, . . . , ek) = 0 implies that f |M×M is diagonal in the basis (e1, . . . , ek) of M . This zero is
non-degenerate, because the image of the differential dτ at (e1, . . . , ek)

• contains Rk, similar to the proof of the Rattray theorem;
• surjects onto Pn−k

k , because in the first order approximation the frame (e1 + δ1, . . . , ek + δk) is

orthonormal for any δ1, . . . , δk ∈M⊥.
Thus 0 6= e(Rk ⊕ Pn−k

k ) ∈ H∗
Wk

(V k
n ,F2) and the proof is complete.

5. Proof of Makeev type results

5.1. Proof of Theorem 9. Makeev type results will be considered via the classical configuration space–
test map scheme used for mass partition problems by hyperplanes, consult [15] or [5] for more details.
We consider two different configuration spaces depending whether we require configuration of orthogonal
hyperplanes or not.

Let R
n be embedded in R

n+1 by (x1, ..., xn) 7−→ (x1, ..., xn, 1). Every oriented affine hyperplane
H in R

n determines a unique oriented hyperplane H ′ through the origin in R
n+1 by H ′ ∩ R

n = H .
Converse is also true if the hyperplane xn+1 = 0 is excluded. Any oriented hyperplane H in R

n+1 passing
through origin is uniquely determined by the unit vector v ∈ Sd pointing inside the halfspace H+. Such
a hyperplane we denote also by Hv. Notice that H−

−v = H+
v . Thus, the space of all oriented affine

hyperplanes in R
n (including two hyperplanes at infinity) can be considered as the sphere Sn. The first

configuration space we consider is

X = (Sn)
k

= the space of all collections of k oriented affine hyperplanes in R
n.

Let µ be an absolutely continuous probabilistic measure on R
n with connected support. Then the

second configuration space Yµ = V k
n is shaped by µ in the following way: every orthonormal k-frame

(e1, ..., ek) ∈ V k
n determines a unique collection of k oriented affine hyperplanes (H1, ..., Hk) in R

n with
the property that ei ⊥ Hi and µ

(

H+
i

)

= µ
(

H−
i

)

for all 1 ≤ i ≤ k. This is because for every given
direction ei there is a unique hyperplane orthogonal to ei and partitioning µ into equal halves. In case
µ has disconnected support, we may approximate µ by a sequence of measures with connected support,
prove the theorem in this case, and then go to the limit using the compactness of the following space: for
a given 0 < ε < 1 consider the space of hyperplanes H that partition µ into parts H+, H− with difference
|µ(H+)− µ(H−)| ≤ ε.

The group Wk = (Z2)
k
⋊ Σk ⊂ O(k) acts on both configuration spaces X and Y in the same way as in

Section 4.
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Before defining the test maps let us introduce a particularWk/(Z2)
k-representation on the vector space

R
2kand study its structure. If we assume that the coordinate functions x(a1,..,ak) on R

2k are indexed by

the elements (a1, .., ak) of the group (Z2)
k, then the Wk-action we consider is given by

((b1, ..., bk)⋊ π) · x(a1,..,ak) = x(b1aπ−1(1),..,bkaπ−1(k))

where (b1, ..., bk) ∈ (Z2)
k and π ∈ Σk. The inclusion (Z2)

k ⊂ Wk induces also the structure of (Z2)
k-

representation on R
2k .

Real irreducible representations of the group (Z2)
k are all 1-dimensional. They are completely determined

by its characters χ : (Z2)
k → Z2. For (a1, .., ak) ∈ (Z2)

k = {+1,−1}2
k

, let Va1...ak
= span{va1...ak

} ⊂ R
2k

denote the 1-dimensional representation given by

εi · va1...ak
= ai va1...ak

.

Then there is a decomposition of real (Z2)
k representations

R
2k ∼=

∑

a1...ak∈(Z2)k

Va1...ak

∼= V+...+ ⊕
∑

a1...ak∈(Z2)k\{+...+}

Va1...ak
.

Observe that V+...+ is the trivial 1-dimensional real (Z2)
k representation. In order to simplify further

notation let us define for 1 ≤ i ≤ j ≤ k the following (Z2)
k representation

Sij =
∑

a1...ak∈(Z2)
k\{+...+}

i≤s(a1,...,ak)≤j

Va1...ak

where s(a1, ..., ak) denotes the number of −1 in the sequence s(a1, ..., ak).

Let µ1, . . . , µm be a collection of m absolutely continuous probabilistic measures on R
n. The test maps

we consider

τ : X → S⊕m
1l and τorth : Yµ1 → S⊕m

1l

are defined by

(v1, ..., vk)
τ

7−→
(

(

µi(H
a1
v1

∩ ... ∩Hak

vk
)− 1

2k
µi(R

d)
)

(a1,...,ak)∈(Z2)k

)

i∈{1,..,m}

(e1, ..., ek)
τorth

7−→
(

(

µi(H
a1
e1

∩ ... ∩Hak

ek
)− 1

2kµi(R
d)
)

(a1,...,ak)∈(Z2)k

)

i∈{1,..,m}

for (v1, ..., vk) ∈ X and (e1, ..., ek) ∈ Yµ1 . Since the configuration space Yµ1 is chosen in such a way that
each hyperplane equipartitions the measure µ1 the test map τorth factors

Yµ1

ρ
−→ S2l ⊕ S

⊕(m−1)
1l

ι
−→ S⊕m

1l

so that τorth = ι ◦ ρ and ι is induced by the inclusion S2l → S1l.

All test maps τ , τorth and ρ are Wk-equivariant maps, when the introduced actions on the spaces are
assumed. The key property of these test maps is that: If for every collection µ1, . . . , µm of m absolutely
continuous probabilistic measures on R

n

•
{

0 ∈ S⊕m
1l

}

∈ τ (X), then (n,m, k, l) ∈ M,

•
{

0 ∈ S2l ⊕ S
⊕(m−1)
1l

}

∈ ρ (Yµ1), then (n,m, k, l) ∈ Morth.

Using the contraposition we get that
• (n,m, k, l) /∈ M =⇒ there exist a collection of m absolutely continuous probabilistic measures on R

n

such that
{

0 ∈ S⊕m
1l

}

/∈ τ (X)
=⇒ there exists a Wk-equivariant map

X = (Sn)k → S⊕m
1l \ {0} → S

(

S⊕m
1l

)

,

• (n,m, k, l) ∈ Morth =⇒ there exist a collection of m absolutely continuous probabilistic measures on R
n

such that
{

0 ∈ S2l ⊕ S
⊕(m−1)
1l

}

/∈ ρ (Yµ1)

=⇒ there exists a Wk-equivariant map

Yµ1 = V k
n → S2l ⊕ S

⊕(m−1)
1l \ {0} → S

(

S2l ⊕ S
⊕(m−1)
1l

)

.

This implies that
• if there is no Wk-equivariant map X = (Sn)k → S

(

S⊕m
1l

)

, then (n,m, k, l) ∈ M,

• if there is no Wk-equivariant map Yµ1 = V k
n → S

(

S2l ⊕ S
⊕(m−1)
1l

)

, then (n,m, k, l) ∈ Morth.

Therefore, by proving the following statement we conclude the proof of Theorem 9.
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Proposition 16. (a) If
∏

s1,...,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + · · ·+ sktk)
m /∈ 〈tn+1

1 , . . . , tn+1
k 〉

then there is no Wk-equivariant map X = (Sn)k → S
(

S⊕m
1l

)

,
(b) If

1

t1...tk

∏

s1,...,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + · · ·+ sktk)
m /∈ 〈w̄n−k+1, . . . , w̄n〉

then there is no Wk-equivariant map Yµ1 = V k
n → S

(

S2l ⊕ S
⊕(m−1)
1l

)

.

Proof. Both statements follow from the Fadell–Husseini index computations:

IndexZk

2 ,F2
(Sn)

k
= 〈tn+1

1 , ..., tn+1
k 〉 ,

IndexZk

2 ,F2
S⊕m
1l = 〈

∏

s1,...,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + · · ·+ sktk)
m〉 ,

IndexZk

2 ,F2
V k
n = 〈ω̄n−k+1, ..., ω̄n〉 ,

IndexZk

2 ,F2
S2l ⊕ S

⊕(m−1)
1l = 〈 1

t1...tk

∏

s1,...,sk∈Z2

1≤s1+...+sk≤l

(s1t1 + s2t2 + · · ·+ sktk)
m〉 ,

and its basic property that if there is a G-equivariant map X → Y then IndexG,∗X ⊇ IndexG,∗Y . �

5.2. Proof of Theorem 10. Let us lift the measures to Sn−1 ⊆ R
n; we obtainm+1 centrally symmetric

measures on the sphere. It is sufficient to find a pair of oriented hyperplanes through the origin H1, H2

such that for every i = 0, 1, . . . ,m

µi(H
+
1 ∩H+

2 ) = µi(H
+
1 ∩H−

2 ) = µi(H
−
1 ∩H+

2 ) = µi(H
−
1 ∩H−

2 ).

Since the conditions µi(H
+
1 ∩ H+

2 ) = µi(H
−
1 ∩ H−

2 ) and µi(H
+
1 ∩ H−

2 ) = µi(H
−
1 ∩ H+

2 ) hold always
(because of the central symmetry), we may select the components of the test map to be

fi(H1, H2) = µi(H
+
1 ∩H+

2 )− µi(H
+
1 ∩H−

2 )− µi(H
−
1 ∩H+

2 ) + µi(H
−
1 ∩H−

2 )

The rest of the proof would follow directly from the proof of Theorem 5 (see Section 4.4), if we had m
measures. We are going to provide an additional argument to partition m+ 1 measures.

Take the measure µ0 and assume that its support equals Sn−1. Any measure can be approximated by
such a measure, and the standard compactness argument (the configuration space of all pairs (H1, H2)
is compact) extends the solution to arbitrary measures. We are going to show the following:

Proposition 17. If the support of µ0 is the whole Sn−1, then the configuration space X of pairs (H1, H2)
that equipartition µ0 (i.e. f0(H1, H2) = 0) is D8-equivariantly homeomorphic to V 2

n .

Proof. Take an orthogonal 2-frame (e1, e2). Denote the orthogonal complement of (e1, e2) by L
⊥(e1, e2),

and denote the reflections

σ1 : x 7→ x− 2(x, e1)e1, σ2 : x 7→ x− 2(x, e2)e2

Note that the hyperplane H1 is uniquely defined by the following conditions:
• H1 ⊇ L⊥(e1, e2);
• e1, e2 ∈ H+

1 ;
• H2 = σ1(H1) = −σ2(H1).
• f0(H1, H2) = 0.

The dependence of H1 no (e1, e2) ∈ V 2
n is continuous, and therefore we obtain a homeomorphism

between X and V 2
n , if the action of D8 on V 2

n is chosen properly. �

Now we continue the proof of Theorem 10. The functions f1, . . . , fm may be considered as functions
on V 2

n . If we consider the group Z2 × Z2 ⊂ D8, generated by σ1, σ2, then the functions fi are invariant
under this group action. Therefore they define a map

f̃ : V 2
n /(Z2 × Z2) ∼

(

RPn−1 × RPn−1
)

\∆(RPn−1) → R
m,

which is equivariant under the action of Z2 = D8/(Z2 × Z2) on
(

RPn−1 × RPn−1
)

\ ∆(RPn−1) by
permutations, and its antipodal action on R

m. This map must have a zero, because the “deleted square
obstruction” guarantees a zero by definition.



EXTENSIONS OF THEOREMS OF RATTRAY AND MAKEEV 15

References

[1] A. Adem, R.J. Milgram. Cohomology of Finite Groups, Second Edition, Grundlehren der Mathematischen Wis-
senschaften 309, Springer-Verlag, Berlin, 2004.

[2] T. Bartsch, M. Clapp, D. Puppe. A mountain pass theorem for actions of compact Lie groups. // J. reine angew.
Math., 419, 1991, 55–66.

[3] T. Bartsch. On the existence of Borsuk-Ulam theorems. // Topology, 31, 1992, 533–543.
[4] T. Bartsch. Topological methods for variational problems with symmetries. Berlin-Heidelberg: Springer-Verlag, 1993.
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