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Conservation of vacuum in an interferometer
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We show that the total quantum efficiency of multiple optical modes cannot increase under linear-
optical processing. That is, the sum of quantum efficiencies of any K output modes of a linear-
optical scheme cannot exceed the sum of quantum efficiencies in the K input modes with the
highest efficiencies. This result, which includes our earlier work (D. W. Berry and A. I. Lvovsky,
arXiv:1004.2245) as a special case for K = 1, imposes severe limitations on quantum processing
using linear optics. In particular, it rules out catalytic improvement of single-photon sources, in
which a single available photon source of high quantum efficiency would permit generating multiple
high-efficiency single photons in separate optical modes.

A leading approach to quantum information process-
ing is via linear-optical quantum computing (LOQC),
first proposed in 2001 by Knill, Laflamme and Milburn
[1]. Major progress has been made towards implementa-
tion of LOQC, both on the theoretical and experimental
fronts. Modifications have been proposed that greatly re-
duce the overhead costs [2], a quantum error correction
protocol has been introduced [3, 4], and experimental
implementation of primary gates has been demonstrated
[5].
In spite of this progress, practical linear-optical quan-

tum computing is still out of reach. Many of the difficul-
ties arise because the single-photon sources required for
LOQC, as well as LOQC circuits themselves, suffer from
losses. Although a certain degree of tolerance to losses
does exist in some LOQC schemes [4], the efficiency of
existing single-photon sources [6] as well as the quality of
individual circuit elements and waveguides are far below
the required minima.
Under these circumstances it appears beneficial to de-

velop a procedure that would eliminate the effect of
losses, perhaps at a cost of introducing extra resources.
It could be used, for example, to convert the outputs of
N imperfect single-photon sources into K < N single-
photon sources of improved quantum efficiency. Such
a procedure would be straightforward to implement if
nonlinear-optical interactions with single photons were
readily available. Indeed, with nonlinear optics one could
set up a quantum nondemolition measurement of the
photon number observable, followed by postselection on
the desired measurement result. Unfortunately, however,
implementation of such interactions at the present level
of technology is barely feasible [7] and, perhaps more im-
portantly, inherently lossy, which defeats the purpose of
efficiency correction.
In this paper, we are investigating the question of

whether improvement of quantum efficiency is possible
under linear-optical processing. Under this processing
we understand arbitrary interferometric transformations
and conditioning on results of arbitrary destructive mea-
surements on some of the optical modes involved. The
efforts to construct such a scheme began in 2004, mostly

ending with various no-go results [8–11]. Recently [12],
we have proven the most general no-go result so far,
showing that the quantum efficiency in any of the optical
states obtained through linear processing cannot exceed
the quantum efficiency of the best available input.
However, Ref. [12] is limited to a single output mode.

Therefore it does not rule out the possibility of “cat-
alytic” efficiency improvement, i.e. a scheme in which a
single or a few available photon sources of high quan-
tum efficiency would permit generating multiple high-
efficiency single photons in separate optical modes. In
the present work, we prove a more general result. We
show that the total efficiency of any K output modes
cannot exceed the total efficiency of the K highest effi-
ciency modes available at the input. That is, any loss
that has occurred at the input can neither be removed
nor redistributed so as to improve the efficiency in some
of the modes at the expense of lower-efficiency modes.
We start with the general definition of the efficiency of

a quantum optical state ρ̂ [12]

E(ρ̂) := inf{p | ∃ρ̂0 ≥ 0 : Ep(ρ̂0) = ρ̂}, (1)

where Ep represents a loss channel with transmissivity p.
In other words, E(ρ̂) is the lowest possible transmissivity
of a loss channel such that state ρ̂ can be obtained from
another state ρ̂0 by transmitting it through that channel.
For example, the efficiency of a coherent state is 0, and
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FIG. 1: The beam splitter model of absorption. a) Appli-
cation to the definition of the generalized efficiency. b) The
model is invalid if the transmitted state is conditional upon a
measurement in the reflected channel. In this example, condi-
tioning on the detection of vacuum results in a high-efficiency
single-photon state emerging in the transmitted channel, in-
dependent of the beam splitter transmissivity. c) Illustration
for Eq. (12).
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the efficiency of any coherent superposition of a finite
number of Fock states is 1. The efficiency of any light
state that has propagated through an attenuator with
transmissivity p cannot exceed p.

In our treatment, we model the loss channel by a beam
splitter, through which the initial state ρ̂0 propagates in
order to generate ρ̂ [Fig. 1(a)], with vacuum entering the
beam splitter’s other input port. In order for the model
to be valid, the transmitted state must not be conditioned
on any measurement performed in the reflected channel
of this beam splitter [Fig. 1(b)].

We consider a general method for processing optical
modes, as shown in Fig. 2. There are N input modes
with annihilation operators âj , in a tensor product of N
single-mode states with efficiencies pj. These modes are
passed through a general interferometer which performs
a unitary operation U on the mode operators. We retain
K of the output modes, and the remaining N−K modes
are subjected to a generalized destructive quantum mea-
surement. We consider postselection on a particular re-
sult of this measurement, and determine the efficiencies
in the remaining output modes. Below, we show that the
sum of these efficiencies cannot exceed the total of the K
largest values of pj .

First we note that we can obtain each of the interfe-
rometer input states by combining some initial state, in
a mode with annihilation operator b̂j, with vacuum on a
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FIG. 2: A general setup for processing photon sources. The
inputs are in a tensor product of N single-mode states with
generalized efficiencies pj . The modes pass through a general
interferometer, and all but K of the output modes are de-
tected via a measurement. The remaining K modes can be
conditioned on a particular measurement result (they need
not be in a product state). Each interferometer input mode
âj , which has efficiency pj , can be obtained by a beam split-

ter combining mode b̂j of generalized efficiency 1 and mode
v̂j containing a vacuum state.

beam splitter with transmissivity pj (Fig. 2):

âj =
√
pj b̂j +

√

1− pj v̂j . (2)

The action of the interferometer can then be written as

â′i =

N
∑

j=1

Uij âj =

N
∑

j=1

Uij
√
pj b̂j +

N
∑

j=1

Uij

√

1− pj v̂j . (3)

We see that each vacuum mode contributes to each of
the output modes, including those that are subjected to
measurements. It is thus difficult to evaluate which vac-
uum contribution leads to an efficiency loss, and which
is “compromised” by conditional measurements. We ad-
dress this issue by performing an RQ decomposition on
the matrix Uij

√

1− pj such that

Uij

√

1− pj =
N
∑

k=1

RikQkj , (4)

where Q is unitary and R is an upper triangular matrix,
so Rik = 0 for k < i. Then we get

â′i =

N
∑

k=1

Uik

√
pk b̂k +

N
∑

k=1

Rik v̂
′
k, (5)

where

v̂′k =

N
∑

j=1

Qkj v̂j (6)

are obtained by transforming modes v̂j in a fictitious in-
terferometer Q. Because all the v̂j are in vacuum states,
so are the v̂′k.

FIG. 3: The processing scheme modified in accordance with
Eq. (5). Vacuum inputs enter after the interferometer and
contribute to the signal according to the upper triangular ma-
trix Rik. Note that the summations in Eq. (5) (displayed as
black dots), are not unitary, and hence cannot be represented
by beam splitters.
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In the following, we show that the efficiency of output
mode â′i, with 1 ≤ i ≤ K, is upper bounded by

E(â′i) ≤ 1−
K
∑

k=1

|Rik|2. (7)

In this sum, we exclude the contribution of modes
v̂′K+1

, . . . , v̂′N because they contribute to the set of output
modes M := {â′K+1

, . . . , â′N} that are measured (Fig. 3).
Because the output is conditioned on the measurement
result, the effect of the latter vacuum modes on the out-
put efficiency cannot be generally quantified.
To formalize this intuition, we fix a specific value of i

for which Eq. (7) is to be proven, and define

̺ :=

K
∑

k=1

|Rik|2. (8)

There are two special cases that need to be considered
before we proceed further. If ̺ = 0, the sum in Eq.
(7) is zero. Because the efficiency cannot exceed 1, the
inequality (7) is trivial. The other special case is that
̺ = 1. In that case, the only contribution to â′i is vacuum
modes. This is because â′i is a unitary combination of
other modes, so Eq. (5) gives

N
∑

k=1

|Uik|2pk +
N
∑

k=1

|Rik|2 = 1. (9)

If ̺ = 1, then that implies ∀k Uik
√
pk = 0; hence the first

term in Eq. (3) is zero, and so is the efficiency. Equation
(7) is again trivially satisfied.
Now that we have eliminated these special cases, we

can define, for ̺ ∈ (0, 1),

Âi :=
1√
1− ̺

(

N
∑

k=1

Uik

√
pk b̂k +

N
∑

k=K+1

Rik v̂
′
k

)

, (10)

V̂i :=
1√
̺

K
∑

k=1

Rik v̂
′
k. (11)

The operator Âi represents those terms in Eq. (5) that
correspond to the input signal modes, as well as the last
N − K vacuum modes. The operator V̂i represents the
firstK vacuum modes. The choice of ̺ ensures that these
operators are normalized, in the sense that [Âi, Â

†
i ] =

[V̂i, V̂
†
i ] = 1.

Hence Âi and V̂i represent mutually orthogonal optical
modes that can be combined to give â′i via

â′i =
√

1− ̺Âi +
√
̺V̂i. (12)

This corresponds to a beam splitter transformation, as
shown in Fig. 1(c). The intensity transmissivity 1− ̺ of
this beam splitter equals the right-hand side of (7), so

to prove this inequality it only remains to prove that the
reflected output of the beam splitter is not measured.
Because {â′1, . . . , â′N} correspond to the output modes

of the initial interferometer (Fig. 2), they form an or-
thonormal set, andM (the measured modes) and â′i must
be orthogonal. The only vacuum modes that contribute
to M are v̂′K+1

, . . . , v̂′N , so V̂i is also orthogonal to M .

Because Âi can be expressed as a linear combination of
â′i and V̂i, it must be orthogonal to M as well. Hence,
Eq. (12) corresponds to a beam splitter transformation
where none of the modes are measured, and Eq. (7) must
hold.
While the beam splitter transformation (12) is not

physically present in the Fig. 2 scheme, it is possible to
rearrange this scheme into an equivalent one where â′i is
explicitly obtained by a beam splitter. This rearrange-
ment is presented in the Appendix.
Now that inequality (7) is proven, we can bound the

total efficiency in output modes â′1, . . . , â
′
K according to

K
∑

i=1

E(â′i) ≤ K −
K
∑

i=1

K
∑

k=1

|Rik|2

= K −
N
∑

i=1

K
∑

k=1

K
∑

ℓ,j=1

Uiℓ

√

1− pℓV
∗
kℓU

∗
ij

√

1− pjVkj

= K −
K
∑

k=1

N
∑

ℓ,j=1

δℓj
√

1− pℓV
∗
kℓ

√

1− pjVkj

=

K
∑

k=1

N
∑

j=1

pj |Vkj |2 =

K
∑

k=1

qk, (13)

where we defined

qk :=

N
∑

j=1

pj |Vkj |2. (14)

Because V is unitary, |Vij |2 is a doubly stochastic matrix.

It then follows [13] that ~p majorizes ~q, i.e.
∑K

k=1
qk ≤

∑K

k=1
pk as long as both ~p and ~q are sorted in non-

increasing order. Hence this total efficiency of the output
cannot be any larger than the total of the K largest val-
ues of pj .
A few comments are in order. First, the requirement

that the input be in a tensor product state is impor-
tant. This is because the total efficiency of multiple
single-mode states, dealt with in the present paper, can
be different from the efficiency of a state taken as a
whole. For example, consider the two-mode entangled
state (|10〉 + |01〉)/

√
2. This state cannot be produced

by attenuating any other state, i.e. it has efficiency one
when analyzed as a single entity. After passing this state
through a symmetric beam splitter, one obtains |10〉,
which has unit efficiency in one of the output modes. On
the other hand, each input mode considered separately
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is in the mixed state (|1〉〈1|+ |0〉〈0|)/2, from which one
may incorrectly conclude that the highest single-mode
efficiency that can be obtained is 1/2.
Second, the measurement performed on â′K+1

, . . . â′N is
an arbitrary generalized destructive measurement. This
includes the situation when no measurement is per-
formed, and one or all of the modes are simply discarded.
This means that the above bound on the total output ef-
ficiency is automatically valid for any K ′ ≤ K output
modes. In particular, if K ′ = 1, we obtain the result of
Ref. [12].
The result presented in this work establishes a ma-

jor limitation in linear-optical quantum information pro-
cessing. Once an incoherent vacuum contribution has
been injected into a linear-optical circuit, it cannot be
eliminated by any linear optical means. Not only can-
not the total efficiency be increased, but also the effi-
ciencies cannot be redistributed so as to further increase
the efficiency of higher-efficiency modes at the expense
of lower-efficiency modes. One consequence of this fact
is the exclusion of any possibility for “catalytic” effi-
ciency improvement, in which a single highly efficient
optical source would permit simultaneous preparation of
multiple high-efficiency optical states in separate optical
modes.
This work has been supported by NSERC, AIF, CI-

FAR and QuantumWorks. We thank B. C. Sanders for
stimulating discussions.
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Y

X
measurement

N modes

discarded

v̂ ¢K +1
· · · v̂N¢

¢ ¢

b̂1

v̂1

· · ·Â2Â1 ÂN

¢

v̂K¢

v̂2
¢

V̂1

V̂K

V̂2
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FIG. 4: The alternative representation of the processing
scheme, illustrated for the example of i = 1. The output
mode â′

i is now explicitly obtained from signal mode Âi and
vacuum mode V̂i by a simple beam splitter operation (12), so
its efficiency can be upper bounded.

Appendix. We can obtain interferometric transfor-
mations that lead to Eqs. (10) and (11) as follows.
Because V̂i is normalized and a linear combination
of {v̂′1, . . . , v̂′K}, we can use the Gram-Schmidt pro-

cedure to construct an orthonormal set, {V̂1, . . . , V̂K}.
We then define X to be the unitary transforming be-
tween these two orthonormal sets. Similarly, Âi and
{â′K+1, . . . , â

′
N} are orthonormal, and linear combina-

tions of {b̂1, . . . b̂N , v̂′K+1
, . . . , v̂′N}. We can therefore use

the Gram-Schmidt procedure to complete the orthonor-
mal set {Â1, . . . ÂN , â′K+1

, . . . , â′N}, and define Y to be
the corresponding unitary. BecauseX and Y are unitary,
we can obtain these transformations via an interferome-
ter, as shown in Fig. 4.

Each output mode â′1, . . . , â
′
K can be written as a linear

combination of states {Â1, . . . , ÂN , V̂1 . . . , V̂K}, which
can be interpreted as another interferometric transfor-
mation with some of its output modes discarded (Fig. 4).
Because â′i is a linear combination of Âi and V̂i alone, it
can be obtained via combining these at a beam splitter.
Combining the remaining modes at a separate interfe-
rometer then produces the other â′ℓ and the discarded
modes.
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