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Hidden XY structure of the bond-charge Hubbard model
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The repulsive one-dimensional Hubbard model with bond-charge interaction (HBC) in the su-
perconducting regime is mapped onto the spin-1/2 XY model with transverse field. We calculate
correlations and phase boundaries, realizing an excellent agreement with numerical results. The
critical line for the superconducting transition is shown to coincide with the analytical factorization
line identifying the commensurate-incommensurate transition in the XY model.
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The Hubbard Hamiltonian and its extensions are
known to model several correlated quantum systems,
ranging from high-Tc superconductors to cold fermionic
atoms trapped into optical lattices [1]. In particular, the
HBC model describes the interaction between fermions
located on bonds and on lattice sites [2, 3]. This exten-
sion is considered to be especially relevant to the field of
high-Tc superconductors [4]. In fact, it has recently been
found [5, 6] that a superconducting phase takes place also
for repulsive values of the on-site Coulomb interaction.
The phase is characterized by incommensurate modula-
tions in the charge structure factor. Its boundaries have
been explored numerically, though their fundamental na-
ture has not been understood yet.
We find that the explanation of the above features re-

sides into the underlying effective model, which for the
superconducting phase turns out to be the anisotropic
XY chain in a transverse field. Such model is known to
be equivalent to free spinless fermions and it is remark-
able how it can faithfully describe quantities of a strongly
correlated system like the HBC chain. Indeed, the map-
ping allows us to derive analytical expressions for both
the critical line and correlations, reproducing with amaz-
ing accuracy the numerical data.
The model Hamiltonian for the HBC chain reads

H =−
∑

iσ

[1−X (niσ̄ + ni+1σ̄)] (c
†
iσci+1σ + c†i+1σciσ)

+ U
∑

i

ni↑ni↓ −
U

2

∑

iσ

niσ (1)

where σ =↑, ↓ (σ̄ denoting the opposite of σ), and the op-

erator c†iσ creates a fermion at site i with spin σ. More-

over niσ = c†iσciσ. The parameters U and X, expressed
in units of the hopping amplitude, are the on-site and
bond-charge Coulomb repulsion respectively.
While the HBC model cannot be exactly solved for all

X , there are two integrable point at X = 0 and X = 1,
for all values of U . The former is the well-known Hubbard
model which is solvable by Bethe Ansatz. The integra-
bility of the case X = 1 is due to the fact that the empty

and the doubly occupied sites in this case are indistin-
guishable, and the same holds for the ↑ and ↓ spins in the
singly occupied sites, so that the model can be rephrased
in terms of tight-binding spinless fermions in 1D [7]. In
addition, the number of double occupancies turns out to
be a conserved quantity.
In the general case, Eq.(1) can be fruitfully recasted

passing to a slave boson representation. One can make
the transformation |0〉 → ei|0〉, c†iσ|0〉 → f †

iσ|0〉 and

c†i↑c
†
i↓|0〉 → di|0〉, where empty and doubly occupies sites

are bosons, while the single occupations are fermions.
The hard-core constraint e†iei + d†idi +

∑

σ f
†
iσfiσ = 1

completes the identification. Then, the c-fermions are
c†iσ = f †

iσei+d
†
ifiσ̄ and niσ = c†iσciσ = f †

iσfiσ+d
†
idi. The

total number of particles is N = Nf + 2Nd. The filling
factor is ν = N/L, with 0 ≤ ν ≤ 2. Accordingly, we have
νe+νf +νd = 1 and ν = νf +2νd. After the substitution,
the Hamiltonian becomes H =

∑

iσ Hiσ, where

Hiσ = −U
2
f †
iσfiσ +

[

f †
iσfi+1,σ

(

tXd
†
i+1di − e†i+1ei

)

−sXf †
iσf

†
i+1,σ̄ (ei+1di + di+1ei) + H.c.

]

, (2)

with tX = 1 − 2X , and sX = 1 − X . It can be rec-
ognized that the first two terms describe the kinetic en-
ergy of a single electron (hole) with spin σ in a back-
ground of empty (doubly occupied) sites, whereas the
third term describes the transformation of two opposite
spins into an empty and a doubly occupied site. Since
the coefficient sX turns out to give the smallest contri-
bution for X > 2/3, it is not surprising that the exact
solution obtained assuming sX = 0 (and arbitrary tX)
[8] shares in this regime many features of the ground
state of the true model, obtained by numerical investiga-
tion [9]. To some extent, these features hold within the
range X > Xc = 1/2, where Xc is the value at which tX
changes sign. This is true in particular as for the presence
of phase coexistence of domains formed by only empty or
doubly occipied sites, in which the single particles move.
On the other hand, fixing sX = 0 yields to a critical curve
UPS = 4X for the stabilility of the phase separated re-
gion, whereas the superconducting transition takes place
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(only for sX 6= 0) at a value USC which is well below that
line. Since the role of empty and doubly occupied sites,
as well as the conservation of their number, appears to
be the same as for sX = 0 [10] also in the superconduct-
ing case, one can infer that it is just the motion of the
single electrons and holes which determines the change
UPS → USC for sX 6= 0. In this paper, we assume this
point of view: treating the empty and doubly occupied

states as the vacuum in which the single particles move.
Let us go back to Eq.(2) and consider what happens

at sX 6= 0. The SU(2) charge symmetry is broken down
to U(1), which merely describes the conservation of the
number of fermions. The large spin degeneracy is re-
moved and it is like as if the fermionic dynamics is in-
fluenced by the background imposed by the bosons and
viceversa. This picture is correct as far as the spin and
charge degrees of freedom are not separated. For X . 1,
the pair creation term in Eq.(2) induces short-ranged
antiferromagnetic (AFM) correlations in both spin and
pseudospin degrees of freedom. Since at half-filling the
probabilities of having an empty and a doubly occupied
sites are identical and coincide with 1/2, we can ap-

proximate the term 〈e†i+1ei − tXd
†
i+1di〉 ≈ X . Thus,

in this case the kinetic energy term in Hiσ becomes
−X f †

iσfi+1σ + (X − 1) f †
iσf

†
i+1,σ̄ + H.c. where the term

f †
iσf

†
i+1,σ̄ always takes place due to the bosonic AFM cor-

relations. Both the bosonic species are considered as a
unique vacuum for the fermions f .
Assuming the existence of AFM correlations also in the

fermionic variables, we can drop the spin indices. The
effect of f †

i f
†
i+1 is to open a gap at the Fermi level, hence

reducing considerably the ground state (GS) energy. This
mechanism is analogous to what happens in the case of
the Peierls instability (in that case the gap is opened by
the dimerization) where the bosons here play the role of
the phonons that distort the lattice. So, we obtain a

free-spinless fermion model H(f) =
∑L

i=1 H
(f)
i , where

H(f)
i =−X

(

f †
i fi+1 +

1−X

X
f †
i f

†
i+1 +H.c.

)

− U

2
f †
i fi .

(3)

It is instructive to notice that even in this form one can
recover the exact solution of the case X = 1. Indeed
a straghtforward diagonalization in Fourier space gives
H = −2

∑

k[cos k + U/4]f †
kfk. The fermions fill the neg-

ative energy states up to the Fermi point kf = πνf . The
saturation occurs for Uc = −4 cos(πν) for 0 < ν < 2.
In the general case, H(f) can be easily shown to be

equivalent to the following XY model in a transverse field

HXY = E0−
1

ζ

L
∑

i=1

[

1 + γ

2
σx
i σ

x
i+1 +

1− γ

2
σy
i σ

y
i+1 + hσz

i

]

(4)
where γ = 1−X

X , h = U
4X , E0 = −UL

4 and ζ = 1
X , at

half filling. As usual we have applied the Jordan-Wigner

transformation σz
i = 2f †

i fi − I, σ+
i = f †

iKi−1, σ
−
i =

K†
i−1fi with Kl =

∏l
k=1 (−σz

k) = exp[iπ
∑l

k=1 nk].
AFM correlations in both bosonic and fermionic parti-

cles are here assumed on the intuitive basic observation of
the reduction of GS energy by means of the pair creation
terms. A more rigorous approach would involve a self-
consistent determination of the hopping coefficients in
the quadratic model in which the spin labels are retained.
Such approach allows to extend the analysis away from
half filling and in magnetic field, and goes beyond the
purpose of the present paper. We dedicate a forthcom-
ing extended manuscript to a self-consistent approach.
In what follows, we examine some important conse-

quences that can be derived from the exact solution of
the XY model, written in Eq.(4).
As known, the Hamiltonian (4) can be diagonalized:

H = E0 + 1
ζ

∑

k∈BZ Λk

(

β†
kβk − 1

2

)

, where the sum is

performed in the Brillouin zone (BZ), and the dispersion

relations are Λk = 2

√

(cos k + h)2 + γ2 sin2 k. Given
the positiveness of Λk, the GS energy EGS is deter-
mined by the vacuum of the Bogoliubov quasiparticles
βk, giving EGS = E0 − 1

2L

∑

k∈BZ Λk. By taking the
thermodynamic limit L → ∞, we get an energy density
eGS = −U

4 − X
4π

´ π

−π dkΛk.
We have compared the outcomes of our mapping with

numerical calculations using the density matrix renor-
malization group (DMRG) [12]. In particular, we used
extrapolations in 1/L of data collected by selecting 7
finite-system sweeps and 1024-1152 states. Numerical
and analytical results of the energy density at X = 0.8
are displayed in table I.

U enum

GS ethGS νnum

d νthd q/π ψ/π

0 −0.5390 −0.54612 0.2511 1/4 14/30 1/2

0.5 −0.670 −0.67708 0.216 0.22611 14/30 0.44841

1 −0.81544 −0.82011 0.19016 0.20164 12/30 0.39539

1.5 −0.9717 −0.97565 0.173 0.17588 10/30 0.33914

2.5 −1.3300 −1.3287 0.1063 0.11488 6/30 0.20116

Table I: Comparison between various quantities defined in
the text computed either numerically (num) with DMRG or
analytically by means of the equivalent XY model (th) for
X = 0.8, both for periodic boundary conditions. The latter is
treated directly in the thermodynamic limit, while the former
are extrapolated to L → ∞ from finite-size data. The char-
acteristic wavenumber q is extracted from Fourier transforms
at L = 30.

An important feature of the XY chain is the presence
of a factorization line h2+γ2 = 1, which corresponds to a
commensurate-incommensurate (CIC) transition. In the
HBC model this transition is mapped analytically into

USC = 4
√
2X − 1. (5)

Such transition was discovered numerically in Ref.[5]
and separates a incommensurate singlet superconducting
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Figure 1: Comparison between the phase diagram of the HBC
chain, calculated numerically in Ref.[6] (symbols with dashed
lines) and the phase diagram obtained from the mapping onto
the XY model in transverse field (continuous lines). The up-
per curves correspond to the spin gap transition where spin
excitations become gapless, while the lower curves mark the
transition into the ICSS phase where the charge compressibil-
ity diverges.

(ICSS) phase from a bond ordered wave (BOW) phase
[6]. As seen in Fig.1, the curve obtained with our map-
ping describes rather accurately the numerical data of
the transition.

Along the factorization line the GS in the S = 1/2
model is written as ⊗L

i=1|φ〉, where |φ〉 = cos θ
2 | ↑〉 +

sin θ
2 | ↓〉, with cos θ = [(1 − γ)/(1 + γ)]1/2 = α. Here

the local magnetization is 2νf − 1 = α =
√
2X − 1. Ac-

cordingly, the number of double occupations along the
factorization line at half filling is νd = (1 − α)/4 =
(1 −

√
2X − 1)/4. In the rest of the phase diagram, the

transverse magnetization of the XY chain is given by
〈σz

i 〉 = 2
L

∑

k∈BZ(h + cos k)Λ−1
k . The diverging charge

compressibility of the ICSS phase is explainable simply
by observing that adding two particles produce the con-
version of an empty site onto a doubly occopied one, with-
out changing the energy in the XY representation.

In addition, the XY model in 1D is known to undergo
a quantum phase transition along line h = 1, belonging
to the universality class of the classical Ising model in
2D. This translates directly into the line U = 4X in the
phase diagram of the HBC model (see Fig.1). The latter
coincides with the critical line of stability of PS (UPS) in
the integrable case sX = 0, and is close to the numerical
critical line between the spin density wave (SDW) and
the BOW phase in Fig. 1, at least for X close to 1.
Moreover, the line γ = 1, which is known to describe
the Ising model in a transverse field, here corresponds to
the case X = 1/2. While it is questionable whether the
assumptions that have originated our approximations for
the ICSS phase are still valid in the above limiting cases,
one can recognize that instead at the very crucial critical
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Figure 2: Analysis of the various contributions [see Eq.(7)] to
the static structure factor (Fourier transform) of the density
correlation function for the HBC model (L = 30) with the pa-
rameters reported in the legend. The vertical line corresponds
to ψ/π (see table I).

pointX = 1/2 and U = 0, our system described in Eq.(1)
is mapped into nothing but the Ising model.
From the seminal paper of Barouch and McCoy on

the statistical mechanics of the XY model [11], it is
known that the oscillation wavenumber of the correla-
tor ρxx(R) = 〈σx

i σ
x
i+R〉 in the incommensurate region

h2 + γ2 < 1 is

tanψ =

√

1− γ2 − h2

h
=

√

2X − 1

(U/4)
2 − 1, (6)

with a period R0 = 2π/ψ.
A first striking observation is the fact that the correla-

tions of the total density exhibit a peak very close to the
characteristic wavenumber ψ in Eq.(6): in the last two
columns of table I we report the wavevector q at which
the total density structure factor has a peak (see an ex-
ample in fig. 2) and the corresponding value of ψ. For
X = 0.9 and U = 3 with L = 32 the peak is located at
q/π = 0.1875 while ψ/π = 0.18342.
The appearance of the peak at wavenumber Q in the

Fourier transform of a correlation function that decays
as cos(QR) exp(−R/ξ)/Ra is related also to the expo-
nent a: the smaller is a the sharper is the peak. In
particular for a = 2 which is the case for the correla-
tion ρzz(R) = 〈σz

i σ
z
i+R〉 of the XY model, the peak it

not visibile at all, despite the fact that the oscillations
actually have characteristic wavenumber 2ψ. Hence, it is
worth to inspect in more detail the origin of the peaks
observed numerically. Since the local density operator ni

in terms of single and double occupancies nsi and ndi is
given by ni = nsi + 2ndi, the correlation function of the
total density decomposes in the following parts

〈nini+R〉 =〈nsinsi+R〉+ 4〈ndindi+R〉
+ 2〈ndinsi+R〉+ 2〈nsindi+R〉. (7)
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Figure 3: Comparison of the connected real-space correla-
tion functions Ns(R) (at half-filling) and ρ(R) for the HBC
and XY model, respectively (see text for definitions based
on singly occupied sites operators). The parameters of the
two models are related by mapping as γ = (1 − X)/X and
h = U/4X. All the DMRG calculations for the HBC model
and the analytical experessions of the curves for the XY model
refer to L = 50. From top to bottom the data have been offset
by +0.15, +0.10 and +0.05 for the sake of clarity.

It turns out that the peak in the static structure factor
is not due to the first term, but it is instead provided by
〈ndindi+R〉, as shown in Fig.2 for the test case X = 0.8
and U = 2.5, although we obtained the same qualitative
picture at U = 1.
According to our mapping, we can compare directly

the connected correlator Ns(R) = 〈nsinsi+R〉 − 〈nsi〉2
in the HBC model with the density correlation function
ρ(R) = 〈f †

i fif
†
i+Rfi+R〉−〈f †

i fi〉2 for the spinless fermions
with Hamiltonian (3). The calculation of the latter is
omitted here since it is quite lengthy, though it simply
involves a standard application the Wick theorem. The
fully fermionic correlatorNs(R) and the spinless fermions
correlator ρ(R) are compared in Fig.3 for various choices
of the parameters U and X in the ICSS phase of our
starting system (i.e. the incommensurate one in the XY
model); the agreement in real space is generally very
good. Such behaviour of Ns(R) is not obvious a priori
in the HBC model and we interpret it as a remarkable
nontrivial prediction of our mapping.
In summary, we have studied the Hubbard model with

bond-charge interaction in the superconducting regime,
unveiling its underlying XY structure. We have shown
that at half filling the numerical critical line for super-
conductivity coincides with remarcable accuracy to the
analytical factorization curve that marks the CIC tran-
sition of the anisotropc XY model in a transverse field.
Exploting the mapping for the calculation of correlations
in the effective model has allowed us to predict rather
accurately the peak in the charge structure factor of the
original model. The results confirm a posteriori the cru-
cial role of short range AF correlations and spin degrees

of freedom as to the onset of superconductivity. The ul-
timate presence of the latter is however to be ascribed to
the interplay of the spin with the charge degrees of free-
dom, the superconducting properties being absent from
the incommensurate phase of the free fermions model.

Based on the success of the present mapping, a number
of further result are now in order. First, since the one-
dimensionality of the model is not crucial to the map-
ping, the latter should hold in higher dimension as well.
In 2D, the numerical investigation of the XY model has
been largely explored in the literature: this could pro-
vide useful hints on the type of phase diagram which
characterizes the 2D HBC model. Moreover, it would be
interesting to understand the implications on the HBC
model of a non-vanishing string order parameter which
is peculiar of the XY model in transverse field. Finally,
we expect that a similar mapping should hold also in the
strongly repulsive regime U → ∞, since in that case no
doubly occupied sites occur, and it is still quite natural
to assume short range AFM order of single particles.
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