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Abstract. We show that any closed spin manifold not diffeomorphic to the two-sphere admits a sequence

of volume-one-Riemannian metrics for which the smallest non-zero Dirac eigenvalue tends to zero. As an

application, we compare the Dirac spectrum with the conformal volume.

Spineurs presque harmoniques

Résumé. Nous montrons que, sur toute variété spinorielle compacte sans bord non difféomorphe à la sphère

de dimension deux, il existe une suite de métriques riemanniennes de volume un pour laquelle la plus petite

valeur propre non nulle de l’opérateur de Dirac tend vers zéro. Comme application, nous comparons le spectre

de l’opérateur de Dirac avec le volume conforme.

1 Introduction and statement

Let Mn be an n(≥ 2)-dimensional closed spin manifold and denote by Dg the spin Dirac operator
associated to a Riemannian metric g. We denote by λ1(D

2
g) and λ+

1 (D
2
g) the smallest and the smallest

positive eigenvalue of D2
g respectively. It is well-known that the product λ+

1 (D
2
g)Vol(M

n, g)
2
n is scaling-

invariant and bounded from below by a positive constant in any conformal class [1, Thm. 2.3]. One can

ask whether the infimum of λ+
1 (D

2
g)Vol(M, g)

2
n on the space of all Riemannian metrics remains positive.

This holds true if M is the 2-sphere S2 since it has only one conformal class; alternatively, it follows from
C. Bär’s estimate [6] valid for any Riemannian metric g on S2:

λ1(D
2
g)Area(S

2, g) ≥ 4π. (1)

In this respect S2 is the only exception:

Theorem 1.1 For any n(≥ 2)-dimensional closed spin manifold Mn not diffeomorphic to S2 there exists

a sequence (gp)p∈N of Riemannian metrics on Mn such that λ+
1 (D

2
gp
)Vol(Mn, gp)

2
n −→

p→∞
0.

Therefore one can get the Dirac spectrum as close to 0 as one wants with fixed volume. Note however that
Theorem 1.1 does not prove the existence of non-zero harmonic spinors, i.e., that 0 is a Dirac eigenvalue.

Theorem 1.1 is proved in Section 2. In Section 3 we apply it to compare the Dirac spectrum with the
conformal volume.
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2 Proof

The proof of Theorem 1.1 relies on a standard technique first used in the spinorial context by C. Bär [7]
to show the existence of metrics with harmonic spinors. Namely we prove the result by gluing a model
manifold admitting such a sequence and by studying the convergence of the spectrum on the connected
sum. Thus the proof is two-step.

Lemma 2.1

i) Theorem 1.1 holds true on the standard sphere Sn for any n ≥ 3.

ii) Theorem 1.1 holds true on the 2-torus T2 endowed with any of its 4 spin structures.

Proof: Both statements follow from elementary arguments.
i) For any n ≥ 3 there exists on Sn a metric g̃ with Ker(Dg̃) 6= {0}: for n ≡ 3 (4) it is some Berger metric as
shown by C. Bär [7, Cor. p.906], for n = 2m ≥ 4 and n ≥ 5 the existence of such a metric has been proved
by L. Seeger [13] and M. Dahl [9, Cor. 4.2] respectively. Linear interpolation between the standard round
metric and g̃ provides a smooth one-parameter-family of Riemannian metrics (gt)0≤t≤1 with g0 = can
and g1 = g̃. Since the volume remains bounded and the Dirac spectrum depends continuously on the
metric in the C1-topology, we obtain the result.

ii) For a real parameter a > 1 consider the 2-torus T2 := R2
/Γ, where Γ := Z ·

(
1
0

)
⊕ Z ·

(
0
a

)
, with

induced flat metric ga. It carries 4 spin structures, 3 of which can be deduced from each other by an
orientation-preserving diffeomorphism of T2 (see e.g. [4]). Thus it suffices to prove the statement for two
spin structures which cannot be obtained from each other by a diffeomorphism, for example for the spin
structure inducing a trivial covering on both factors and for the spin structure inducing a trivial covering
on the first factor and a non-trivial one on the second one. For the former spin structure the smallest

positive eigenvalue of D2
ga

is 4π2

a2 and for the latter one it is π2

a2 . Since Area(T2, ga) = a we conclude that

in both situations λ+
1 (D

2
ga
)Area(T2, ga) −→

a→∞
0 (compare with [4, Sec. 3]). �

In the second step we consider the dimensions n = 2 and n ≥ 3 separately. In the latter case it only
remains to know how the Dirac spectrum behaves under connected sum1:

Theorem 2.2 (C. Bär [8]) Let (Nn
1 , g1) and (Nn

2 , g2) be closed Riemannian spin manifolds of dimen-
sion n ≥ 3. Let L > 0 and η ≥ 0 with ±(L+ η) /∈ (Spec(Dg1) ∪ Spec(Dg2)).

Then for any ε > 0, there exists a Riemannian metric g̃ on the connected sum Ñn := Nn
1 ♯N

n
2 such

that the Dirac eigenvalues of Nn
1

·
∪ Nn

2 and (Ñn, g̃) in ] − L − η, L + η[ differ at most by ε and that

Vol(Ñn, g̃) ≤ Vol(Nn
1 , g1) + Vol(Nn

2 , g2) + ε.

Note that, as an easy consequence, Theorem 2.2 remains valid when replacing the eigenvalues of the
Dirac operator by those of its square. Fix now any Riemannian metric g on Mn (with n ≥ 3). If p is any
positive integer, pick from Lemma 2.1 a Riemannian metric gp of volume one on Sn with λ+

1 (D
2
gp
) ≤ 1

p
.

Setting L := λ+
1 (D

2
gp
), ε :=

λ+
1 (D2

gp
)

2 and choosing η > 0 with L+ η /∈ (Spec(D2
gp
) ∪ Spec(D2

g)), Theorem

2.2 implies the existence of a Riemannian metric g̃p on Ñn := Mn♯Sn such that at least one eigenvalue

of D2
g̃p

lies in the interval [
λ+
1 (D2

gp
)

2 ,
3λ+

1 (D2
gp

)

2 ] and that Vol(Ñn, g̃p) ≤ Vol(Mn, g) + 1 + 1
2p . Since Ñn is

spin diffeomorphic to Mn we conclude the proof of Theorem 1.1 for n ≥ 3.

In dimension n = 2 we perform an induction on the genus of the surface. On T2 Theorem 1.1 already
holds true by Lemma 2.1. Assume it to hold true for any closed oriented surface M2(γ) of genus γ > 0
and consider a closed oriented surface M2(γ+1) of genus γ+1. The oriented surface can be obtained as
the connected sum of some M2(γ) and T2. Moreover, the spin structure induced on a circle bounding a
compact oriented surface is always a non-trivial covering [11, p.91], in particular it itself bounds a disk.
Therefore, every spin structure on M2(γ + 1) is induced by some spin structure on M2(γ) and some on
T22. It would remain to prove the analog of Theorem 2.2 for surgeries of codimension 2, at least for
connected sums of surfaces. We conjecture this holds true, using arguments and techniques from [2].
Actually much less is needed here:

1Thanks to Christian Bär for indicating to us the right reference.
2The argument given in the published version was wrong. Thanks also to Christian Bär.
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Lemma 2.3 Let (M1, g1) and (M2, g2) be any oriented closed Riemannian surfaces. Fix L > 0 and η ≥ 0
with ±(L+ η) /∈ (Spec(Dg1) ∪ Spec(Dg2)).
Then for any ε > 0 there exists a Riemannian metric g̃ on M1♯M2 such that, for any eigenvalue λ
of Dg1 or Dg2 in ] − L − η, L + η[, there exists an eigenvalue λ̃ of Dg̃ such that |λ̃ − λ| ≤ ε and
Area(M1♯M2, g̃) ≤ Area(M1, g1) + Area(M2, g2) + ε.

Proof: The proof relies on a classical cut-off procedure for eigenvectors of Dg1 and Dg2 . We want to

show that dim(Ker(Dg1 −λId))+dim(Ker(Dg2 −λId)) ≤ dim
(

⊕
µ∈[λ−ε,λ+ε]

Ker(Dg̃ −µId)
)
. Fix pi ∈ Mi,

i = 1, 2, and some sufficiently small δ > 0. Consider the connected sum M̃ := M1♯M2 obtained by gluing
M1 \Bp1(δ) and M2 \Bp2(δ) along their boundary, where Bp(r) denotes the open metric disc of center p

and radius r. From [7, p.932] or [2, Sec. 3.1-3.2] there exists a smooth Riemannian metric g̃δ on M̃ which
coincides with gi on Mi\Bpi

(
√
δ) and such that Area(M1♯M2, g̃δ) ≤ Area(M1, g1)+Area(M2, g2)+c ·

√
δ,

where c > 0 is a constant depending only on the metrics g1 and g2. In particular we may choose δ > 0
such that c ·

√
δ < ε. For i = 1, 2 define χi ∈ C(M̃, [0, 1]) by χi|

Mi\Bpi
(
√

δ)
:= 1, χi|Bpi

(δ)
:= 0 and

χi(x) := 2− 2 ln(d(x,pi))
ln(δ) otherwise, where d(x, p) denotes the distance between x and p. Note that χ1 and

χ2 are well-defined and continuous on the whole M̃ and that they can be smoothed out at both ∂Bpi
(δ)

and ∂Bpi
(
√
δ) such that the L2-norm of their gradient changes arbitrarily little. We keep denoting the

corresponding smooth functions by χ1 and χ2. Consider the map

Φ : Ker(Dg1 − λId)⊕Ker(Dg2 − λId) −→ Γ(ΣM̃)

(ϕ1, ϕ2) 7−→ χ1ϕ1 + χ2ϕ2,

which is well-defined because of χi|Bpi
(δ)

= 0 and injective by the unique continuation property (each Dirac

eigenvector vanishing on an open subset of a connected Riemannian spin manifold must vanish identically).

Now from the min-max principle it suffices to show that
‖(Dg̃δ

−λ)ϕ‖L2

‖ϕ‖L2
≤ ε for all ϕ ∈ Im(Φ) \ {0}.

Since the subspaces Φ(Ker(Dg1 − λId)) and Φ(Ker(Dg2 − λId)) are L2-orthogonal to each other (for
supp(χ1) ∩ supp(χ2) has zero measure), we can assume that ϕ ∈ Φ(Ker(Dg1 − λId)) with ‖ϕ‖L2 = 1.
Using the formula Dg(fϕ) = df · ϕ+ fDgϕ, we compute:

∫

M̃

|(Dg̃δ − λ)ϕ|2vg̃δ =

∫

M1

|(Dg̃ − λ)χ1ϕ1|2vg̃δ

=

∫

M1

|dχ1|2|ϕ1|2vg̃δ

≤ C sup
M1

(|ϕ1|2)
∫ √

δ

δ

4

r2ln(δ)2
rdr

≤ − C′

ln(δ)
,

where C > 0 is a constant depending only on the original metrics in the ring Bp1(
√
δ) \ Bp1(δ) and

C′ = 2C· sup
ϕ1∈Ker(Dg1−λId)

(sup
M1

(|ϕ1|2) (note that C′ < ∞ since Ker(Dg1 −λId) is finite-dimensional). We

deduce that ‖(Dg̃δ − λ)ϕ‖2L2 −→
δ→0

0 and the statement of Lemma 2.3. �

The proof of Theorem 1.1 for n = 2 follows the lines of that for n ≥ 3: given any Riemannian metric g
on M2(γ) and a positive p ∈ N, pick from Lemma 2.1 a Riemannian metric gp of unit area on T2 with
λ+
1 (D

2
gp
) ≤ 1

p
, whatever the spin structure of T2 is. Lemma 2.3 ensures the existence of a Riemannian

metric g̃p on M2(γ + 1) = M2(γ)♯T2 such that at least one eigenvalue of D2
g̃p

lies in the interval

[
λ+
1 (D2

gp
)

2 ,
3λ+

1 (D2
gp

)

2 ] and that Area(M2(γ + 1), g̃p) ≤ Area(M2(γ), g) + 1 + 1
2p . This proves the result

for γ + 1 and concludes the proof of Theorem 1.1.

3 Application

This note was motivated by the study of the relationship between the Dirac spectrum and the so-called
conformal volume, which is the conformal invariant defined for any closed Riemannian manifold (Mn, g)
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by

Vc(M
n, [g]) := inf

N∈N

(
inf

ϕ∈Immc(Mn,SN )

(
sup

γ∈Conf(SN )

(Vol(Mn, (γ ◦ ϕ)∗can))
))

,

where Immc(M
n, SN ) denotes the set of conformal immersions (Mn, g) −→ (SN , can) and Conf(SN )

the group of conformal diffeomorphisms of (SN , can). First introduced by P. Li and S.-T. Yau [12],
it has been shown to be directly related to the Laplace spectrum since it provides an upper bound of
the corresponding spectral invariant [12, 10]: (0 <)λ1(∆)Vol(Mn, g)

2
n ≤ nVc(M

n, [g])
2
n . For the Dirac

operator such a result cannot be expected because of sup
g∈[g]

(
λ+
1 (D

2
g)Vol(M

n, g)
2
n

)
= ∞, see [5, Thm. 1.1].

However, one could reasonably conjecture that the conformal volume bounds λ1(D
2
g)Vol(M, g)

2
n from

below, provided the possible eigenvalue 0 is left aside. For M = S
2 this is the case because of (1) and

4π = Areac(S
2) (see [12]). It is hopeless for any other manifold:

Corollary 3.1 For any n(≥ 2)-dimensional closed Riemannian spin manifold (Mn, g) not diffeomorphic
to S2 there exists no positive constant c(M) (depending only on M) such that

λ+
1 (D

2
g)Vol(M, g)

2
n ≥ c(M)Vc(M

n, [g])
2
n .

Proof: It is elementary to show that [12, Fact 2]

Vc(M
n, [g]) ≥ Vol(Sn, can), (2)

whose r.h.s. does not depend on the metric g. We conclude with Theorem 1.1. �

Still there exists a subtle relationship between the Dirac spectrum and the conformal volume. Indeed

by [1, Thm. 3.1 & 3.2] and [3, Thm. 1.1], infg∈[g]

(
λ+
1 (D

2
g)Vol(M

n, g)
2
n

)
≤ n2

4 Vol(Sn, can)
2
n , hence

combining with (2) one obtains

inf
g∈[g]

(
λ+
1 (D

2
g)Vol(M

n, g)
2
n

)
≤ n2

4
Vc(M

n, [g])
2
n .
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