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A SYSTEM OF THIRD-ORDER DIFFERENTIAL OPERATORS

CONFORMALLY INVARIANT UNDER so(8,C)

TOSHIHISA KUBO

Abstract. In earlier work, Barchini, Kable, and Zierau constructed a number of conformally
invariant systems of differential operators associated to Heisenberg parabolic subalgebras in simple
Lie algebras. The construction was systematic, but the existence of such a system was left open
in several anomalous cases. Here, a conformally invariant system is shown to exist in the most
interesting of these remaining cases. The construction may also be interpreted as giving an explicit
homomorphism between generalized Verma modules for the Lie algebra of type D4.

1. Introduction

Conformally invariant systems of differential operators on a manifold M on which a Lie algebra

g acts by first order differential operators were studied by Barchini, Kable, and Zierau in [1] and

[2]. Loosely speaking, a conformally invariant system is a list of differential operators D1, . . . ,Dm

that satisfies the bracket identity

[Π(X),Dj ] =
∑

i

Cij(X)Di,

where Π(X) is the differential operator corresponding to X ∈ g and Cij(X) are smooth functions on

M . We shall give the definition of conformally invariant systems more precisely in Section 2. While

a general theory of conformally invariant systems is developed in [2], examples of such systems

of differential operators associated to the Heisenberg parabolic subalgebras of any complex simple

Lie algebras are constructed in [1]. The purpose of this paper is to answer a question, left open

in [1], concerning the existence of a certain conformally invariant system of third-order differential

operators. This is done by constructing the required system. This result may be interpreted as

giving an explicit homomorphism between two generalized Verma modules, one of which is non-

scalar. The problem of constructing and classifying homomorphisms between scalar generalized

Verma modules has received a lot of attention; for recent work, see, for example, [5]. Much less is

known about maps between generalized Verma modules that are not necessarily scalar.

In order to explain our main results in this paper, we briefly review the results of [1] here. To

begin with, let g be a complex simple Lie algebra and q = l ⊕ n be the parabolic subalgebra of

Heisenberg type; that is, n is a two-step nilpotent algebra with one-dimensional center. We denote

by γ the highest root of g. For each root α let {X−α,Hα,Xα} be a corresponding sl(2)-triple,

normalized as in Section 2 of [1]. Then ad(Hγ) on g has eigenvalues −2, −1, 0, 1, 2, and the

corresponding eigenspace decomposition of g is denoted by

g = z(n̄)⊕ V − ⊕ l⊕ V + ⊕ z(n).
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Let D[n] be the Weyl algebra of n. Then each system constructed in [1] derives from a C-

linear map Ωk : g(2 − k) → D[n] with 1 ≤ k ≤ 4 and g(2 − k) the 2 − k eigenspace of ad(Hγ).

Let Πs : g → D[n] be the Lie algebra homomorphism constructed in Section 4 in [1]. Here s is a

complex parameter. We say that the Ωk system has special value s0 when the system is conformally

invariant for Πs0 .

In [1] the special values of s are determined for the Ωk systems with k = 1, 2, 4 for all complex

simple Lie algebras, but only exceptional cases are considered for the Ω3 system. A table in Section

8.10 in [1] lists the special values of s. The reader may want to notice that the entries in the

columns for the systems Ωbig
2 and Ωsmall

2 for types Br and Cr should be transposed. Theorem 21 in

[2] then shows that the Ω3 system does not exist for Ar with r ≥ 3, Br with r ≥ 3, and Dr with

r ≥ 5. There remain two open cases, namely, the Ω3 system for type A2 and the Ω3 system for type

D4. The aim of this paper is to show that the Ω3 system does exist for type D4 (see Theorem 3.13).

In order to achieve the result we use several facts from both [1] and [2]. By using these facts, we

significantly reduce the amount of computation to show the existence of the system. In the other

remaining case, for the algebra of type A2, the Heisenberg parabolic subalgebra coincides with

the Borel subalgebra, and the existence of the Ω3 system(s) follows from the standard reducibility

result for Verma modules (see for instance [3, Theorem 7.6.24]).

There are two differences between our conventions here and those used in [1]. One is that we

choose the parabolic Q0 = L0N0 for the real flag manifold, while the opposite parabolic Q̄0 = L0N̄0

is chosen in [1]. Because of this, our special values of s are of the form s = −s0, where s0 are the

special values shown in Section 8.10 in [1]. The other is that we identify (V +)∗ with V − by using

the Killing form, while (V +)∗ in [1] is identified with V + by using the non-degenerate alternating

form 〈·, ·〉 on V + defined by [X1,X2] = 〈X1,X2〉Xγ for X1,X2 ∈ V +. Because of this difference

the right action R, which will be defined in Section 2, will play the role played by Ω1 in [1]. In

addition to these notational differences, there are also some methodological differences between [1]

and what we do here. These stem from the fact that we make systematic use of the results of [2]

to streamline the process of proving conformal invariance.

We now outline the remainder of this paper. In Section 2, we review the setting and results

of Section 5 in [2], simultaneously specializing them to the situation considered here. It would be

helpful for the reader to be familiar with [2], particularly the concepts of g-manifold and g-bundle,

at this point; the definitions may be found on pp. 790-791 of [2]. In Section 3, we specialize further

by taking g to be of type D4. We fix a suitable Chevalley basis and give the definition of the Ω̃3

system whose conformal invariance is to be established. A remark on notation might be helpful

here. In [1], a system Ω′
3 is initially defined. It is then shown to decompose as a sum of a leading

term Ω̃3 and a correction term C3. These two are recombined with different coefficients to give

Ω3, which is finally shown to be conformally invariant for exceptional algebras. For type D4, it

emerges that Ω3 = Ω̃3, so that the correction term C3 is discarded completely. For this reason, we

do not recapitulate the process. Rather, we simply introduce Ω̃3 and proceed to show that it is

conformally invariant. This is done in Theorem 3.11, which is our main result.
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2. Conformally Invariant Systems

The purpose of this section is to introduce the notion of conformally invariant systems. Let G0

be a connected real semisimple Lie group with Lie algebra g0 and complexified Lie algebra g. Let

Q0 be a parabolic subgroup of G0 and Q0 = L0N0 a Levi decomposition of Q0. By the Bruhat

decomposition, the subset N̄0Q0 of G0 is open and dense in G0, where N̄0 is the nilpotent subgroup

of G0 opposite to N0. Let n̄ and q be the complexifications of the Lie algebras of N̄0 and Q0,

respectively; we have the direct sum g = n̄⊕ q. For Y ∈ g, write Y = Yn̄+Yq for the decomposition

of Y in this direct sum. Similarly, write the Bruhat decomposition of g ∈ N̄0Q0 as g = n̄(g)q(g)

with n̄(g) ∈ N̄0 and q(g) ∈ Q0. Note that for Y ∈ g0 we have

Yn̄ =
d

dt
n̄(exp(tY ))

∣

∣

t=0
,

and a similar equality holds for Yq.

We consider the homogeneous space G0/Q0. Let Cχ−s be the one-dimensional representation of

L0 with character χ−s. The representation χ−s is extended to a representation of Q0 by making

it trivial on N0. For any manifold M , denote by C∞(M,Cχ−s) the smooth functions from M to

Cχ−s. The group G0 acts on the space

C∞
χ (G0/Q0,Cχ−s) = {F ∈ C∞(G0,Cχ−s) | F (gq) = χ−s(q−1)F (g) for all q ∈ Q0 and g ∈ G0}

by left translation, and the action Πs of g on C∞
χ (G0/Q0,Cχ−s) arising from this action is given by

(Πs(Y )•F )(g) =
d

dt
F (exp(−tY )g)

∣

∣

t=0

for Y ∈ g0. Here the dot • denotes the action of Πs(Y ). This action is extended C-linearly to g and

then naturally to the universal enveloping algebra U(g). We use the same symbols for the extended

actions.

The restriction map C∞
χ (G0/Q0,Cχ−s) → C∞(N̄0,Cχ−s) is an injection whose image is dense

for the smooth topology. We may define the action of U(g) on the image of the restriction map by

Πs(u)•f =
(

Πs(u)•F
)

|N̄0
for u ∈ U(g) and F ∈ C∞

χ (G0/Q0,Cχ−s) with f = F |N̄0
. Define a right

action R of U(n̄) on C∞(N̄0,Cχ−s) by

(

R(X)•f
)

(n̄) =
d

dt
f
(

n̄ exp(tX)
)
∣

∣

t=0

for X ∈ n̄0 and f ∈ C∞(N̄0,Cχ−s). A direct computation shows that

(2.1)
(

Πs(Y )•f
)

(n̄) = −sdχ
(

(Ad(n̄−1)Y )q
)

f(n̄)−
(

R
(

(Ad(n̄−1)Y )n̄
)

•f
)

(n̄)

for Y ∈ g and f in the image of the restriction map C∞
χ (G0/Q0,Cχ−s) → C∞(N̄0,Cχ−s). This

equation implies that the representation Πs extends to a representation of U(g) on the whole space

C∞(N̄0,Cχ−s). Note that for all Y ∈ g, the linear map Πs(Y ) is in C∞(N̄0,Cχ−s)⊕ X(N̄0), where
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X(N̄0) is the space of smooth vector fields on N̄0. This property of Πs(Y ) makes N̄0 a g-manifold

in the sense of [2, page 790].

Let L−s be the trivial bundle of N̄0 with fiber Cχ−s . Then the space of smooth sections of L−s

is identified with C∞(N̄0,Cχ−s). An operator D : C∞(N̄0,Cχ−s) → C∞(N̄0,Cχ−s) is said to be a

differential operator if it is of the form

D =
∑

|α|≤k

aα
∂α

∂xα
,

where aα ∈ C∞(N̄0,Cχ−s), k ∈ Z≥0, and multi-index notation is being used.

Denote the space of differential operators by D(L−s). The elements of C∞(N̄0,Cχ−s) may be

regarded as differential operators by identifying them with the multiplication operator they induce.

A computation shows that in D(L−s),

(

[Πs(Y ), f ]
)

(n̄) = −
(

R
(

(Ad(n̄−1)Y )n̄
)

•f
)

(n̄)

for Y ∈ g and f ∈ C∞(N̄0,Cχ−s). This verifies that Πs gives L−s the structure of a g-bundle in

the sense of [2, page 791].

Definition 2.2. Let Πs and L−s be as above. A conformally invariant system on L−s with respect

to Πs is a list of differential operators D1, . . . ,Dm ∈ D(L−s) so that the following two conditions

are satisfied:

(C1) The list D1, . . . ,Dm is linearly independent at each point of N̄0.

(C2) For each Y ∈ g there is an m × m matrix C(Y ) of smooth functions on N̄0 so that, in

D(L−s),

[Πs(Y ),Dj ] =
∑

i

Cij(Y )Di.

The map C : g →Mm×m(C∞(N̄0)) is called the structure operator.

Now we define

D(L−s)
n̄ = {D ∈ D(L−s) | [Πs(X),D] = 0 for all X ∈ n̄}.

Proposition 2.3. [2, Proposition 13] Let D1, . . . ,Dm be a list of operators in D(L−s)
n̄. Suppose

that the list is linearly independent at e and that there is a map b : g → gl(m,C) such that

(

[Πs(Y ),Di]•f
)

(e) =

m
∑

j=1

b(Y )ji(Dj•f)(e)

for all Y ∈ g, f ∈ C∞(N̄0,Cχ−s), and 1 ≤ i ≤ m. Then D1, . . . ,Dm is a conformally invariant

system on L−s. The structure operator of the system is given by C(Y )(n̄) = b(Ad(n̄−1)Y ) for all

n̄ ∈ N̄0 and Y ∈ g.
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As shown on p.802 in [2] the differential operators in D(L−s)
n̄ can be described in terms of

elements of the generalized Verma module

M(Csdχ) = U(g)⊗U(q) Csdχ,

where Csdχ is the q-module derived from the Q0-representation (χs,C). By identifying M(Csdχ) as

U(n̄)⊗ Csdχ, the map M(Csdχ) → U(n̄) given by u⊗ 1 7→ u is an isomorphism. The composition

(2.4) M(Csdχ) → U(n̄) → D(L−s)
n̄

is then a vector-space isomorphism, where the map U(n̄) → D(L−s)
n̄ is given by u 7→ R(u).

Suppose that f ∈ C∞(N̄0,Cχ−s) and l ∈ L0. Then we define an action of L0 on C∞(N̄0,Cχ−s)

by

(l · f)(n̄) = χ−s(l)f(l−1n̄l).

This action agrees with the action of L0 by left translation on the image of the restriction map

C∞
χ (G0/Q0,Cχ−s) → C∞(N̄0,Cχ−s). In terms of this action we define an action of L0 on D(L−s)

by

(l ·D)•f = l ·
(

D•(l−1 · f)
)

.

One can check that we have l · R(u) = R(Ad(l)u) for l ∈ L0 and u ∈ U(n̄); in particular this

L0-action stabilizes the subspace D(L−s)
n̄. Also L0 acts on M(Csdχ) by l · (u⊗z) = Ad(l)u⊗z, and

with these actions, the isomorphism (2.4) is L0-equivariant. For D ∈ D(L−s), we denote by Dn̄ the

linear functional f 7→ (D•f)(n̄) for f ∈ C∞(N̄0,Cχ−s). The following result is the specialization of

Theorem 15 in [2] to the present situation.

Theorem 2.5. Suppose that F is a finite-dimensional q-submodule of the generalized Verma module

M(Csdχ). Let f1, . . . , fk be a basis of F and define constants ari(Y ) by

Y fi =
k

∑

r=1

ari(Y )fr

for 1 ≤ i ≤ k and Y ∈ q. Let D1, . . . ,Dk ∈ D(L−s)
n̄ correspond to the elements f1, . . . , fk ∈ F .

Then

[Πs(Y ),Di]n̄ =

k
∑

r=1

ari
(

(Ad(n̄−1)Y )q
)

(Dr)n̄ − sdχ
(

(Ad(n̄−1)Y )q
)

(Di)n̄

for all Y ∈ g, 1 ≤ i ≤ k, and n̄ ∈ N̄0.

3. The Ω3 System on so(8,C)

In this section, we specialize to the situation where G0 is a real form of the group SO(8,C) that

contains a real parabolic subgroup of Heisenberg type. In this setting, we construct a system of

differential operators on the bundle L1 and show that it is conformally invariant. We first introduce

some notation.

Let g = so(8,C). Choose a Cartan subalgebra h of g and let ∆ be the set of roots of g with

respect to h. Fix ∆+ a positive system and denote by S the corresponding set of simple roots. We

denote the highest root by γ. Let Bg denote a positive multiple of the Killing form on g and denote

by (·, ·) the corresponding inner product induced on h∗. The normalization of Bg will be specified
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below. Let us write ||α||2 = (α,α) for any α ∈ ∆. For α ∈ ∆, we let gα be the root space of g

corresponding to α. For any ad(h)-invariant subspace V ⊂ g, we denote by ∆(V ) the set of roots

α so that gα ⊂ V .

It is known that we can choose Xα ∈ gα and Hα ∈ h for each α ∈ ∆ in such a way that the

following conditions hold. The reader may want to note that our normalizations are special cases

of those used in [1].

(C1) For each α ∈ ∆+, {X−α,Hα,Xα} is an sl(2)-triple. In particular,

[Xα,X−α] = Hα.

(C2) For each α, β ∈ ∆, [Hα,Xβ ] = β(Hα)Xβ .

(C3) For α ∈ ∆ we have Bg(Xα,X−α) = 1; in particular, (α,α) = 2.

(C4) For α, β ∈ ∆ we have β(Hα) = (β, α).

Let q be the parabolic subalgebra of g of Heisenberg type; that is, the parabolic subalgebra

corresponding to the subset {α ∈ S | (α, γ) = 0}. Denote by l the Levi factor of q and by n the

nilpotent radical of q. Then the action of ad(Hγ) on g has eigenvalues −2, −1, 0, 1, 2, and the

corresponding eigenvalue decomposition of g is denoted by

g = z(n̄)⊕ V − ⊕ l⊕ V + ⊕ z(n).

Note that V + and V − are irreducible l-modules, since the Heisenberg parabolic q is maximal (see

[4, Exercise 5, page 638] for instance).

Let Dγ(g, h) be the deleted Dynkin diagram associated to the Heisenberg parabolic q; that is,

the subdiagram of the Dynkin diagram of (g, h) obtained by deleting the node corresponding to the

simple root that is not orthogonal to γ, and the edges that involve it.

As on p.789 in [1] the operator Ω2 is given in terms of R by

Ω2(Z) = −
1

2

∑

α,β∈∆(V +)

Nβ,β′Mα,β′(Z)R(X−α)R(X−β)

for Z ∈ l. It follows from Theorem 5.2 of [1] and the data tabulated in Section 8.10 of [1] that

each Ω2 system associated to a singleton component of Dγ(g, h) is conformally invariant on the line

bundle L1. The reader may want to note here that the special values of our Ω2 system are of the

form −s0 with s0 the special values of the Ω2 system given in [1], because the parabolic q is chosen

in this paper, while the opposite parabolic q̄ is chosen in [1]. One can also check that we have

Ω2(Ad(l)Z) = χ(l)l ·Ω2(Z) for all l ∈ L0. Note that this is different from the Ad(l) transformation

law that appears in [1], for the same reason. We extend the C-linear maps dχ, R, and Ω2 to be left

C∞(N̄0)-linear so that certain relationships can be expressed more easily.

In the rest of this paper our line bundle is assumed to be L1 and for simplicity we denote Π1 by

Π. Now we define an operator Ω̃3 on C∞(N̄0,Cχ) by
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Ω̃3(Y ) =
∑

ǫ∈∆(V +)

R(X−ǫ)Ω2

(

[Xǫ, Y ]
)

for Y ∈ V −.

Lemma 3.1. Let W1, . . . ,Wm be a basis for V + and W ∗
1 , . . . ,W

∗
m be the Bg-dual basis of V

−. Then

Ω̃3(Y ) =

m
∑

i=1

R(W ∗
i )Ω2

(

[Wi, Y ]
)

.

Proof. Suppose that ∆(V +) = {ǫ1, . . . , ǫm}. Each Wi then may be expressed by

Wi =

m
∑

j=1

aijXǫj

for aij ∈ C. Let [aij] be the change of basis matrix and set [bij ] = [aij ]
−1. Then define

W ∗
i =

m
∑

k=1

bkiX−ǫk

for i = 1, . . . ,m. Since Bg(Xǫi ,X−ǫj ) = δij with δij the Kronecker delta, it follows that

Bg(Wi,W
∗
j ) = δij .

Thus {W ∗
1 , . . . ,W

∗
m} is the dual basis of {W1, . . . ,Wm}. Note that we have

∑m
i=1 bkiaij = δkj since

[bij][aij ] = I. Then a direct computation shows that

m
∑

i=1

R(W ∗
i )Ω2([Wi, Y ]) =

m
∑

j,k=1

(

m
∑

i=1

bkiaij
)

R(X−ǫk)Ω2([Xǫj , Y ])

=

m
∑

j=1

R(X−ǫj)Ω2([Xǫj , Y ]).

This completes the proof. �

Lemma 3.2. For all l ∈ L0, Z ∈ l, and Y ∈ V −, we have

(3.3) Ω̃3(Ad(l)Y ) = χ(l)l · Ω̃3(Y )

and

[Π(Z), Ω̃3(Y )] = Ω̃3

(

[Z, Y ]
)

− dχ(Z)Ω̃3(Y ).

Proof. Recall that l · R(u) = R(Ad(l)u) for l ∈ L0 and u ∈ U(n̄). Since we have Ω2(Ad(l)W ) =

χ(l)l · Ω2(W ) for l ∈ L0 and W ∈ l, it follows that

(3.4) χ(l)l · Ω̃3(Y ) =
∑

ǫ∈∆(V +)

R(Ad(l)X−ǫ)Ω2

(

[Ad(l)Xǫ,Ad(l)Y ]
)

.

By Lemma 3.1, the value of Ω̃3(Y ) is independent from a choice of a basis for V +. Therefore the right

hand side of (3.4) is equal to the sum
∑

ǫ∈∆(V +)R(X−ǫ)Ω2

(

[Xǫ,Ad(l)Y ]
)

, which is Ω̃3(Ad(l)Y ).

The second equality is obtained by differentiating the first. �
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Proposition 3.5. We have

[Π(X), R(Y )]n̄ = R
(

[Ad(n̄−1)X,Y ]V −

)

n̄
− dχ

(

[Ad(n̄−1)X,Y ]l
)

for all X ∈ g, Y ∈ V −, and n̄ ∈ N̄0.

Proof. Let F be the subspace of M(C−dχ) spanned by X−α⊗1 and 1⊗1 with α ∈ ∆(V +). A direct

computation shows that F is a q-submodule of M(C−dχ) and that for Z ∈ l and U ∈ n we have

Z(X−α ⊗ 1) = [Z,X−α]⊗ 1− dχ(Z)X−α ⊗ 1

and

U(X−α ⊗ 1) = −dχ([U,X−α]l)1⊗ 1.

Then it follows from Theorem 2.5 that if X ∈ g and
(

Ad(n̄−1)X
)

q
= Z + U with Z ∈ l and U ∈ n

then for Y ∈ V −,

[Π(X), R(Y )]n̄ = R
(

[Z, Y ]
)

n̄
− dχ

(

[U, Y ]
)

.

Since [Z, Y ] = [Ad(n̄−1)X,Y ]V − and [U,X−α]l = [Ad(n̄−1)X,Y ]l, this completes the proof. �

Let ω2(X) denote the element in U(n̄)⊗ C−dχ that corresponds to Ω2(X) under R.

Lemma 3.6. For W,Z ∈ l, we have

ω2

(

[Z,W ]
)

= Zω2(W ) + 2dχ(Z)ω2(W ).

Proof. Since Ω2(Ad(l)W ) = χ(l)l · Ω2(W ) for l ∈ L0, we have ω2(Ad(l)W ) = χ(l)Ad(l)ω2(W ) by

Lemma 18 in [2]. Then the formula is obtained by replacing l by exp(tZ) with Z ∈ l0, differentiating,

and setting at t = 0. �

Proposition 3.7. We have

[Π(X),Ω2(W )]n̄ = Ω2

(

[Ad(n̄−1)X,W ]l
)

n̄
− dχ

(

(Ad(n̄−1)X)l
)

Ω2(W )n̄

for all X ∈ g, W ∈ l, and n̄ ∈ N̄0.

Proof. Recall that the Ω2 system is conformally invariant on the line bundle L1. Therefore F ≡

spanC{ω2(W ) | W ∈ l} is a q-submodule of M(C−dχ). By applying Lemma 3.6 with Z = Hγ , we

obtain Hγω2(W ) = −4ω2(W ) for all W ∈ l. For U ∈ V + we have HγUω2(W ) = −3Uω2(W ), and

HγXγω2(W ) = −2Xγω2(W ) for all W ∈ l. Therefore if U ∈ n then Uω2(W ) = 0 for all W ∈ l,

because otherwise Uω2(W ) would have the wrong Hγ-eigenvalue to lie in F . Since Lemma 3.6

shows that

Zω2(W ) = ω2([Z,W ])− 2dχ(Z)ω2(W )

for Z,W ∈ l, the proposed formula now follows from Theorem 2.5. �

Lemma 3.8. For X ∈ V + and Y ∈ V −, we have
∑

ǫ∈∆(V +)

Ω2

(

[[X,X−ǫ], [Xǫ, Y ]]
)

= 2Ω2([X,Y ]).
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Proof. Since we have ||ǫ||2 = 2 for all ǫ ∈ ∆(V +), it follows from Proposition 2.2 of [1] that

∑

ǫ∈∆(V +)

Ω2

(

[[X,X−ǫ], [Xǫ, Y ]]
)

=
1

2

∑

C

p(D4,C)Ω2

(

prC([X,Y ])
)

,

where C are the connected components of Dγ(g, h) as in [1] and prC([X,Y ]) is the projection of

[X,Y ] onto l(C), the ideal of [l, l] corresponding to C. (See Section 2 of [1] for further discussion.)

One can find in Section 8.4 of [1] that p(D4,C) = 4 for all the components C. Then the fact that

Ω2(Hγ) = 0 shows that we obtain
∑

ǫ∈∆(V +)

Ω2

(

[[X,X−ǫ], [Xǫ, Y ]]
)

= 2Ω2

(

[X,Y ]
)

,

which is the proposed formula. �

Now with the above lemmas and propositions we are ready to show the following key theorem.

Theorem 3.9. We have [Π(X), Ω̃3(Y )]e = 0 for all X ∈ V + and all Y ∈ V −.

Proof. The commutator [Π(X), Ω̃3(Y )] is a sum of two terms. One of them is given by
∑

ǫ∈∆(V +)

[Π(X), R(X−ǫ)]Ω2

(

[Xǫ, Y ]
)

(3.10)

=
∑

ǫ∈∆(V +)

R
(

[Ad(·−1)X,X−ǫ]V −

)

Ω2

(

[Xǫ, Y ]
)

−
∑

ǫ∈∆(V +)

dχ
(

[Ad(·−1)X,X−ǫ]l
)

Ω2

(

[Xǫ, Y ]
)

,

by Proposition 3.5. At e, the first term is zero, since [X,X−ǫ]V − = 0 for all ǫ ∈ ∆(V +). By writing

out X as a linear combination of Xα with α ∈ ∆(V +), one can see that at the identity the second

term in (3.10) evaluates to

−
∑

ǫ∈∆(V +)

dχ
(

[X,X−ǫ]
)

Ω2

(

[Xǫ, Y ]
)

e
= −Ω2

(

[X,Y ]
)

e

since dχ(Hα) = 1 for α ∈ ∆(V +). The other term is given by

∑

ǫ∈∆(V +)

R(X−ǫ)
[

Π(X),Ω2([Xǫ, Y ])
]

(3.11)

=
∑

ǫ∈∆(V +)

R(X−ǫ)Ω2

(

[Ad(·−1)X, [Xǫ, Y ]]l
)

−
∑

ǫ∈∆(V +)

R(X−ǫ)dχ
(

(Ad(·−1)X)l
)

Ω2

(

[Xǫ, Y ]
)

,

by Proposition 3.7. To further evaluate this expression, we make use of a simple general observation.

Namely, if D is a first order differential operator, φ and ψ are smooth functions, and φ(e) = 0 then

De(φψ) = De(φ)ψ(e). Notice that n̄ 7→ ad(Ad(n̄−1)X) is a smooth function on N̄0. It follows from

the left C∞(N̄0)-linear extension of Ω2 that the first term of the right hand side of (3.11) can be

expressed as
∑

ǫ∈∆(V +)

R(X−ǫ)
(

ad(Ad(·−1)X)l · Ω2

(

[Xǫ, Y ]
))

,

where ad(Ad(·−1)X)l denotes the map Z 7→ [Ad(·−1)X,Z]l for Z ∈ g. Since we have
(

R(X−ǫ)•(Ad(·
−1)X)

)

(e) = [X,X−ǫ],
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[X, [Xǫ, Y ]]l = 0, and Xl = 0, the right hand side of (3.11) then evaluates at the identity to
∑

ǫ∈∆(V +)

Ω2

(

[[X,X−ǫ], [Xǫ, Y ]]
)

e
−

∑

ǫ∈∆(V +)

dχ
(

[X,X−ǫ]
)

Ω2

(

[Xǫ, Y ]
)

e
,

which is equivalent to
∑

ǫ∈∆(V +)

Ω2

(

[[X,X−ǫ], [Xǫ, Y ]]
)

e
− Ω2

(

[X,Y ]
)

e
.

Therefore we obtain

[Π(X), Ω̃3(Y )]e =
∑

ǫ∈∆(V +)

Ω2

(

[[X,X−ǫ], [Xǫ, Y ]]
)

e
− 2Ω2

(

[X,Y ]
)

e
.

Now it follows from Lemma 3.8 that [Π(X), Ω̃3(Y )]e = 0. �

Proposition 3.12. For Y ∈ V −, we have [Π(Xγ), Ω̃3(Y )]e = 0.

Proof. Since z(n) = [V +, V +], it suffices to show that [Π
(

[X1,X2]
)

, Ω̃3(Y )]e = 0 for X1,X2 ∈ V +.

Note that we have Π
(

[X1,X2]
)

= [Π(X1),Π(X2)], so it follows from the Jacobi identity that

[Π
(

[X1,X2]
)

, Ω̃3(Y )] may be expressed as a sum of two terms. The first is

[Π(X1), [Π(X2), Ω̃3(Y )]] = Π(X1)[Π(X2), Ω̃3(Y )]− [Π(X2), Ω̃3(Y )]Π(X1).

By (2.1), we have Π(X)e = 0 for all X ∈ n. Using this fact and Theorem 3.9, it is obtained that

[Π(X1), [Π(X2), Ω̃3(Y )]]e = 0 since (D1D2)e = (D1)eD2 for D1,D2 ∈ D(L1). The second term is

[Π(X2), [Ω̃3(Y ),Π(X1)]] = Π(X2)[Ω̃3(Y ),Π(X1)]− [Ω̃3(Y ),Π(X1)]Π(X2).

It follows from the same argument for the first term that we have [Π(X2), [Ω̃3(Y ),Π(X1)]]e = 0.

This concludes that the proposition. �

Theorem 3.13. Let g be the complex simple Lie algebra of type D4, and q be the parabolic subalgebra

of Heisenberg type. Then the Ω̃3 system is conformally invariant on the line bundle L1.

Proof. For Y ∈ V −, it follows from Lemma 3.2 that

[Π(Z), Ω̃3(Y )]e = Ω̃3

(

[Z, Y ]
)

e
− dχ(Z)Ω̃3(Y )e

for all Z ∈ l. Also Theorem 3.9 and Proposition 3.12 show that [Π(U), Ω̃3(Y )] = 0 for all U ∈ n.

By the definition of Ω̃3(Y ), it is clear that [Π(Ū ), Ω̃3(Y )]e = 0 for all Ū ∈ n̄. Now by applying

Proposition 2.3 we conclude that the Ω̃3 system is conformally invariant on L1. �

Let ω3(Y ) denote the element in U(n̄) ⊗ C−dχ that corresponds to Ω̃3(Y ) under R. Theorem

3.13 then implies that E ≡ spanC{ω3(Y ) | Y ∈ V −} is a q-submodule of M(C−dχ). Note that

it follows from (3.3) that we have ω3(Ad(l)Y ) = χ(l)Ad(l)ω3(Y ) for l ∈ L0. By using the Ad(l)

transformation law, one can check that a map Y ⊗1 7→ ω3(Y ) from V −⊗C−dχ to E is L0-equivariant

with the standard action of L0 on V − ⊗C−dχ. In particular, E is an irreducible l-module, because

V − is l-irreducible. Since ω3 has the same Ad(l) transformation law as ω2, we have

(3.14) ω3

(

[Z, Y ]
)

= Zω3(Y ) + 2dχ(Z)ω3(Y )
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for Y ∈ V − and Z ∈ l. The same argument in the proof of Proposition 3.7 then shows that n acts

on E trivially. Hence, E is a leading l-type in the sense of [2, page 808].

Now there exists a non-zero U(g)-homomorphism from a generalized Verma module U(g)⊗U(q)E

to M(C−dχ), that is given by

u⊗ ω3(Y ) 7→ u · ω3(Y ).

It follows from (3.14) that Hγ acts on E by −5, while it acts on C−dχ by −2; in particular, E is

not equivalent to C−dχ. We now conclude the following corollary.

Corollary 3.15. Let g be the complex simple Lie algebra of type D4, and q be the parabolic subal-

gebra of Heisenberg type. Then the generalized Verma module M(C−dχ) is reducible.
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