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A SPATIAL VERSION OF THE IT O-STRATONOVICH CORRECTION

MARTIN HAIRER AND JAN MAAS

ABSTRACT. We consider a class of stochastic PDEs of Burgers type itiaspa
dimensionl, driven by space-time white noise. Even though it is weliwkn
that these equations are well-posed, it turns out that if meréorms a spatial
discretisation of the nonlinearity in the “wrong” way, thiére sequence approx-
imate equations does converge to a limit, but this limit bikian additional
correction term.

This correction term is proportional to the local quadratiass-variation (in
space!) of the gradient of the conserved quantity with tHetem itself. This
can be understood as a consequence of the fact that for adytifixe, the law of
the solution is locally equivalent to Wiener measure, wisgr@ce plays the role
of time. In this sense, the correction term is similar to theal Itd-Stratonovich
correction term that arises when one considers differenpteal discretisations
of stochastic ODEs.

1. INTRODUCTION

In this work, we give a rigorous analysis of the behaviour totkastic Burg-
ers equations in one spatial dimension under various appaton schemes. It
was recently argued in [HV10] that if the approximation sukeefails to satisfy a
certain symmetry condition, then one expects the apprdioms to converge to
a modified equation, with the appearance of an additionakction term in the
limit. This correction term is somewhat similar to the Biratonovich correction
that appears in the study of SDEs when one compares centdednarsided ap-
proximations. The present article provides a rigorousifjaation of the results
observed in [HV10], at least in the case where the nonlibeafithe equation is of
gradient type, and therefore the limiting equation is vpelsed in a classical sense.

More precisely, we will consider in this work stochastic PDd the form

Ou = vd*u + F(u) + VG (u)dpu + €, (1.1)

whereu = u(z,t) is anR™-valued function, withx € [0,2x], ¢ > 0. In this
equationy > 0 is a positive constant, the functiod$G : R” — R"™ are assumed
to beC?, and the stochastic forcing terconsists of independent space-time white
noises in each componentRf. For the sake of simplicity, we endow this equation
with periodic boundary conditions, but we do not expect tbislter our results
significantly.

Equation (1.1) is locally well-posed [Gy©98], providedthwve rewrite the non-
linearity asd,G(u) and consider solutions either in the weak or the mild form
[DPZ92]. (Note that our noise term i®t the gradient of space-time white noise,
as in [BG97]. Therefore, our solutions are actually cordimufunctions.) The aim
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of this article is to show that this well-posedness is musk Eable than one may
imagine at first. Indeed, if we set
ulr +¢) —ux
Dfu(z) = ( 2 (z) :
and consider the family. of solutions to the approximate equation

Oy = V@iue + F(ue) + VG(uE)D;“u‘E + &,

then our main result, Theorem 1.6 below, implies that= u, whereu is the
solution to (1.1), but with?” replaced by

_ 1
F(u) = F(u) — EAG(U) , (1.2)
whereA is the usual Laplacian oR".

Remarkl.1 An explicit calculation allows to check that the local quettlr varia-
tion (in space!) ofu for the solution to (1.1) is precisely given By (2v). There-
fore, one can interpret the correction term appearing i) (as precisely being
equal to—% times the quadratic covariation betweerand VG(u). Recall that
is exactly the correction term that appears when one svéttleéween I1td and
Stratonovich integral in the usual setting of stochasticutas.

Remarkl1.2 This correction term is a purely stochastic effect and is gletely
unrelated to the fact that our discretisation scheme is matpavind scheme (see
[CIR52, MRtTBO5]). In the absence of noise, we would stilVé@dhe regularising
property from the non-vanishing viscosity, so that prettycin any “reasonable”
numerical scheme would converge to the correct solution.

If DF is replaced byD_, defined byD u(z) = (u(z) — u(z — €)) /e, then a
similar result is true, but the sign in front of the correati@rm in (1.2) changes.
We will actually consider a much more general class of agpratons to (1.1),
where we also allow both the linear operatér and the noise tern§ to be re-
placed by approximate versions that are still translatmvariant, but modified at
the lengthscale.

1.1. Statement of the main result. Fore > 0 we consider approximating stochas-
tic PDEs of the type

Orue = VA u: + F(ua) + VG(US)DaUe +& .

Since our system is invariant under spatial translatidreeems natural to restrict
ourselves to a class of approximations that enjoys the saopegty. Throughout
this article, we will therefore use approximate differahtiperatorsA. andD,, as
well as an approximate space-time white ngisgiven by their Fourier transforms:

Aculk) = =k f(e|k])a(k) , Deu(k) = ikg(ek)a(k) , & (k) = h(elk])E(k) -
We will make the following standing assumptions on thesecsj

Assumption 1.3. The functionf : [0,00) — [0, +0o0] is twice differentiable at
0 with f(0) = 1 and f’(0) = 0. Furthermore, there existg € (0, 1] such that
f(k) > qforall k > 0.

If f(k) = 400 for some values of, we use the convention ekptoo) = 0 for
everyt > 0. In this case, the semigroup generated\yis not strongly continuous,
but this is of no consequence for our analysis.
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Assumption 1.4. There exists a signed Borel measursuch that
[ uldo) = ik g(h)
and such that )
pR) =0, [ul(R) < oo, /R sude) =1, [ fal'lnlide) <00 (@3)
In particular, we have D.u)(z) := 1 [ u(z + ey) p(dy).

Assumption 1.5. The function is bounded and such that/f is of bounded
variation. Furthermore/. is twice differentiable at the origin with(0) = 1 and

h'(0) =
Let u be the solution to the equation
ot = vO2u+ F(a) + VG(4)0,u + & , (1.4)
In this equation,
F = (F - AAG)
andA € R is a correction constant given by

_ 2
A g QWV/R / (1 —cogyt))h(t )u(dy) g (1.5)

t2f(¢)
Note that a straightforward calculation shows thais indeed well-defined, as a
consequence of the fact that/f is bounded by assumption and that has a
finite second moment.

Before we state our main result, note that the equation (&.4)cally well-
posed inL®°, see [BCF91, BCJL94, DPDT94, Gy©98, Hai09]. As a consecgien
it has a well-defined blow-up time, (possibly infinite) such that, almost surely,
lim;_,, [|a(t)|| L~ = +oo on the even{r, < oco}. With this notation, we are now
ready to state the main result of this paper.

Theorem 1.6. Letx > 0. There exists a sequence of stopping timesatisfying
lim._, 7. = 7 in probability, and such that

lim IP’( sup |juc(t) — u(t)||pee > g%—“> =0.
e—0 tSTE

Remarkl.7. The statement of Theorem 1.6 is slightly incomplete sincelavaot
specify how we choose the initial conditions. In order toidviarther technical
complications, we will actually consider sequences ofahitonditions that have
the property that the initial condition far. “behaves like” the solution.(¢) for
positive times. This statement will be made more precisen@ofem 2.2 below.

Before we proceed, we list some of the most common examplégsofetisa-
tions that do fit our framework. Far,b > 0 with a + b > 0, it is natural to
discretise the derivative operator by choosing
dg —0_p
pi=
This is also the discretisation that was considered in [HVAB far as the discreti-
sations of the noise and the Laplacian are concerned, theeed keast three natural
choices.
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No discretisation. This is the case’ = h = 1 where only the nonlinearity is

discretised. With this choice, one can check that the ctorec¢actor is given by
_ lab

A= o5

Finite difference discretisation. In this case, we divide the intervgl, 27| into N

equally sized intervals. For convenience we assumethiatodd and we set

(Acu)(z) = 6—12(u(:v +e)tulz—e)—2u(z)), e= %T .

We furthermore identify a function with the trigopnometric polynomial of degree
(N —1)/2 agreeing withu at the gridpoints. This corresponds to the choice

A sirt(k/2), kelo,m)

flk) = { Yoo, k€ [ro00) h=1),

The natural choice for the discretisation of the derivatiperator in this case is
to choosea and b to be integers, so that discretisation takes place on the gri
points. With this choice, it can be shown that the correcfamtor is identical to
that obtained in the previous case. Note however that thimishe case if the
discretisation of the derivative operator is not adaptethéogridsize.

Galerkin discretisation. In this case, we approximat& and¢ by only keeping
those Fourier modes that appear in the approximation bgridmetric polynomi-
als. This corresponds to the choice

[ 1, ke [0,m)

f(k) = { too, ke [r00) h =1y -

The correction factoA is then given by

A cogma) + ma Si(ra) — cogwb) — wb Si(wb)
N 2m2v(a +b) ’
whereSit = [ SNz g,

The rest of this paper is structured as follows. In Sectiore2ntroduce notation,
we give a refined formulation of the main result and presertdline of the proof
of the main result (Theorem 2.2). In Section 3 we prove séveseful bounds
on the approximating semigroups and the approximationeeoftadient. Section
4 is devoted to several estimates for stochastic convaisitithe most crucial one
being Proposition 4.6, which is responsible for the coroecterm appearing in the
limiting equation. Most of the work is performed in Sectionihere convergence
of various approximating equations is proved.
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the Royal Society through a Wolfson Research Merit Award] #e Leverhulme Trust
through a Philip Leverhulme prize. JM was supported by Rarbigrant 680-50-0901 of
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2. PROOF OF THE MAIN RESULT

In order to shorten notations, we introduce the semigradupadS,, defined as
rescaled versions of the heat semigroup and its approxamati

S(t) def eft(lfuafc) , Sg(t) d:efeft(lquE)

where we defines. by Fourier analysis, making use of the conventiorr® = 0.
Since we will always work with the mild formulation, it willdconvenient to have
a notation for the convolution (in time) of a function witheof the semigroups.
We will henceforth write

(S *w)(t) E /O S(t— s)w(s)ds .

Let (W (t)):er be a two-sided cylindrical Wiener process Hns' L2([0,27],R™)

(see [DPZ92, Hai09] for precise definitions) anddktbe the bounded operator on
‘H defined as a Fourier multiplier by

Qeu(k) = h(elk|)a(k) .
(We assume that it acts independently on each componeng)lyriwe define the
‘H-valued processeg andy by

/ St — 5)dW (s) / S.(t — $)Q- W (s) ,

so that, in the notations of the previous section, they astttionarysolutions to
the linear equations

Oy =W -1+, = wA 1) +E .

With all of these notations at hand, we can rewrite the eqnatforuz andw. in the
mild form as

a(t) = S(t)vo + ¥(t) + S = (F(a) + VG(u)0,u)(t) (2.1)
uc(t) = Se(t)vo + P(t) + S-* (F(us) + VG(u) Do) (t) . (2.2)

Remark2.1 Note that we have used here a common initial conditigrior the

differenceu — ¢» andu, — 1. As a consequence, the two equatidosnotstart with

the same initial condition! However, as— 0, the initial condition ofu. converges
to that ofu. The reason for not starting with the same initial condiimostly of

technical nature.

It will be convenient to define forany < v < ¥,
def

Oy U -T), ¢ BTy, X E (e — L)

The expressions)w, 1/)7, and{ﬁ?f are defined analogously. Hefky denotes the
projection onto the low-frequency components of the Fowsigansion, defined
by IIye, def 1 <nen, Wheree, (z) = (277)7%6"”3.

We set -

_ def _ ~ def ~
v:eu—w, v:eug—w.

In the proof it will be convenient to work with the function8 andv” defined by

@vd:d@+1p7:g_¢,y’ o ey +¢7—u€ 1;7‘
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It follows from (2.1) and (2.2) that these functions satiffg following equations:

v7(t) = S(t)vo + 7 () + S * (F(07 +¢y) + 0. (G(07 +¢,))) (1), (2.3)
07 (t) = Se(t)vo + {pvv(t) + Se * (F(W + {/;v) + VG0 + {/;V)De(fm + 1;7)2 (t))
2.4

For large parts of this article, it will be convenient to wdrkthe fractional
Sobolev spacé/® for somea > 3, so thatH® C L. Furthermore, we will need
to use a high-frequency cut-off, which will smoothen outsbéutions at a scalex
for somey > 1. It turns out that a reasonable choice for these parametgigan

by

a:%1 7:%’ X:%1 (25)
and we will fix these values from now on. With these notatiartsaad, the follow-
ing theorem, which is essentially a more precise reforrafabf Theorem 1.6, is
a more precise statement of our main result. Here and in gieofdéhe paper we
write ||u[| 5 to denote the norm of an elementn the fractional Sobolev spadé”

for 5 € R.

Theorem 2.2. Let x > 0 be an arbitrary (small) exponent and ley € H” for

al 5 < % There exists a sequence of stopping timesatisfyingr. — 7, in

probability ase — 0, such that

lim IP’( sup |juc(t) — w(t)||pee > g%"‘> =0. (2.6)
e—0 tSTE
In fact, we have the bounds
lim ]P’( sup|a (t) — 7 (t)[|a > a%ﬂ ~0, 2.7)
e—0 t<te
. - 1.\
g@y(;ggnww — %y (B)lle > 577) =0, (2.8)

Remark2.3 We emphasise again that the initial condition®) and u.(0) are
slightly different. In fact, one has.(0) = u(0) 4 (0) — 1(0).

Remark2.4. The rate% is not optimal. By adjusting the parametersy andy in
an optimal way, and by sharpening some of the arguments iproof, one could
achieve a slightly better rate. However, we do not belieat &imy rate obtained in
this way would reflect the true speed of convergence, so we Wil the values
(2.5) that yield simple fractions.

Remark2.5. From a technical point of view, the general methodologyoie#d in
this section and the subsequent sections is inspired freail{{, where a some-
what similar phenomenon was investigated. Besides thetstal differences in
the equations considered here and in [Hail0], the main teshdifficulties that
need to be overcome for the present work are the following:

(1) In [Hail0], it is possible to simply subtract the stodimsonvolution
(or ) and work with the equation for the remainder. Here, we Bbte
subtract only the highest Fourier modesyof The reason for this choice
is that it entails that” — @ ase — 0. This allows us to linearise the
nonlinearity around” in order to exhibit the desired correction term. As
a consequence, our a priori regularity estimates are muckertban those
in [Hail0] and our convergence rates are worse. The maironeasy
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we need this complication is that our approximate derieatiy does not
satisfy the chain rule.

(2) All of our fixpoint arguments need to be performed in tteefional Sobolev
spaceH“, for somea > % This is in contrast to [Hail0] where some of
the arguments could be performed firstZiff, and then lifted taH“ by a
standard bootstrapping argument. These bootstrappingnaits fail here,
since the nonlinearity of our approximating equation cimrs@n approxi-
mate derivative, which gives rise to correction terms whithnot easy to
control.

(3) In one crucial step where a Gaussian concentration ali¢égis employed
in [Hail0], it was necessary that the stochastic convahstioelong taH “
for somea > % This is the case in [Hail0] as a consequence of the extra
regularising effect caused by a small fourth-order terns@néin the linear
part. This additional regularising effect is not alwaysgaet in the current
work. We therefore perform another truncation in Fouriesicgp at very
high frequencies. This is the purpose of the exponent

Note also that Proposition 4.6 is the analogue of Propaositid in [Hail0]. One
difference is that we have a much cleaner separation of thieapilistic and the
analytical aspects of this result.

By a standard Picard fixed point argument (see, e.g. [Hai0@hn be shown
that (2.1) admits a unique mild solutiendefined on a random time interval, 7..|.
Moreover, the spatial regularity @f andu equals that of a Brownian path, in the
sense that)(t) anda(t) are continuous and belong f6° for any 5 < % and any

t > 0, but not toH 3. We shall take advantage of the fact that the procéssnuch
more regular. In facty(t) € H” almost surely for any; < % and anyt > 0, but

one does not expect it to beIongH)% in general. This follows immediately from
the mild formulation (2.1) combined with a standard boeafging argument. It
follows from these considerations that, for every fixed timezonT", the stopping
time

F=T A ([o()]la Vla®) e > K}

converges in probability to, A T asK — oc.

It will be shown in Section 4 that a number of functionalsyoind< scale in
the following way:

X ()| S 27", [y (£) | e S €375,
(Bl 37, [l S e,

17 () lo S 7102, PX () 0 S e X 2)r
[67(8) = 47 (D)l S 277 F2) 7 O-(, (1) S,
O (b () S, JA=E(BX(1)]-a S

where the quantitie®. and=. are defined by

def - get [ €y”
0:(1) 2 [ s 1Dayulfs lul(d) . Eew)® | Z-Dayue Dyl

Note that all of these relations are of the fo#j(¢) < ¢~ " for some expression
W? depending orr and some exponent;. In the proof it will be convenient to
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impose this behaviour by means of a hard constraint. Fopthjsose we introduce
the stopping time’, which is defined fo& > 0 by

PREE A inf{t ¢ Fi s WE() > %R (2.9)
From now on, we will writeC'x to denote a constant which may depend7on
(andT) and is allowed to change from line to line. Similarkywill be a positive
universal constant which is sufficiently small and whoseeas$ allowed to change

from line to line. However, the final value afis independent of, K andT.
The remainder of this section is devoted to the proof of Téen2.2.

Proof of Theorem 2.2Most of the work in the proof consists of bounding the dif-
ference between” andv” in H%. This bound will be obtained in several steps,

using the intermediate procesaé@, i=1,...,4, defined by

J(t) = S(t)vo + 7 (t) + S = (F(ul" )+8G M), (2.10a)
é (t) = S(t)vo + 97 () + S * (F(ol)) + DG (1) , (2.10b)
v (t) = Se(t)vo + 9 (t) + Se * (F(!P) + DG (¢) (2.10c)
v (t) = S:(tyvo + 97 (t) (2.10d)

+ S (P +9X) + VA@D +§2) De(ol) + X)) (1) -

Recall furthermore the definition of the stopping tinf€ given in (2.9). With this
def

definition at hand, we setl* ®©f K as well aso” & 57 and v & 77, and we
define recursively a sequence of stopping tin‘;@s/vithj =1,...,5hy

K =K Ainf{t P () — oIV (@)]la > K (2.11)
With these notations at hand, Propositions 5.1 — 5.7 stateftir every fixed values
K,k >0andeveryj=1,...,5, 0ne has

lim IP’( sup 09 () — w0V (t) 0 > séﬂ ~0, (2.12)

e—0 t<rK

—J

Combining all of these bounds, we conclude immediately, foaevery fixed time
horizonT > 0 and every choice of valugs andx, we have
lim IP’( sup [[77(t) — 07 ()|l > g%ﬂ ~0.
e—0 t§T5K
This is formally very close to (2.7), except that we still bate valued”, K > 0
appearing in our statement and consider the solutions gntg the stopping time
e
Sincer, AT — 7, asT — oo and since we already argued théi — T NANT
as K — oo, the bound (2.7) follows if we are able to show that, for eviexgd
choice of K andT,
lim P(r& £ 75y =0. (2.13)
e—0
Since the statement of our theorem is stronger, the smhbevdlue ofx, we can
assume without loss of generality that< % In this case, lim_,q £5 R = 0, so
that (2.12) and (2.11) together imply that

lim IP’( 7é t1)=0,

e—0

forj =1,...,5, from which we conclude that lim,o P(r* # 75) = 0.
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In order to finish the proof of (2.7), it now suffices to showttha. o P(7% #
75 = 0. Fix an arbitraryl’ > 0 andx > 0. It then follows from Propositions 4.3,
4.4 and 4.5 that for each of the ternli appearing in (2.9), there exists a constant
Cj > 0 such that

E sup Wwi(t) < Cjei~z
t€[0,T)]
uniformly for alle < 1. It then follows from Chebychev’s inequality that

P(r% £ 7K) <Z]P’( sup W5(t) >gO‘J"‘“> ZCs

t€[0,T)

from which the claim follows.

Since (2.6) follows from (2.7) and (2.8), the proof of thedremm is complete if
we show that (2.8) holds. Since it follows from PropositiaB 4nd Chebychev’s
inequality that

I. P( . — oo l_’%) - ’
Iy PLSURIA (8) = 9y (D= > €2 0
for everyT > 0, this claim follows at once. O

3. ANALYTIC TOOLS

3.1. Products and compositions of functions in Sobolev space$n this sub-
section we collect bounds for products and compositionsiections in Sobolev
spaces. As is usual in the analysis literature, we use ttetiontb < ¥ as a short-
hand for ‘there exists a constafit such thatd < C'U’. These estimates will be
useful in order control the various terms that arise in thgdraexpansion of the
nonlinearity that will be performed in Section 5 below.

Lemma 3.1. Letr, s, ¢ > 0 be such that A s > tandr +s > 1 + 1.
(1) For f € H" andg € H* we havefg € H' and

I glle S I1fI-llglls - (3.1)
(2) For f € H" andg € H~ ! we havefg € H* and
1fgll=s S f[l-llgll- - 3.2)

Proof. The bound (3.1) is well-known and an elementary proof canobed for
example in [Hai09, Theorem 6.18]. To prove (3.2), we take H* and use (3.1)
to obtain

(o, fg) = (of 9) < llefllellgll— < llellslfllrllgll—e
which implies the desired result. O

Lemma 3.2. Lets € (%, 1). There exist&’ > 0 such that for any, € H* and any
G € C1(R™;R") satisfying

[Gullcr = sup{|G(z)| + [VG(2)] : |z < [lul[pe} <00,
we have

G oulls < CllGuller (1 + ulls) -
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Proof. Let 7, be the shift operator defined byu(z) := u(x —h). Itis well known
(see, e.qg., [DS93] or, for functions defined RA, [AF03, Theorem 7.47]) that the

expression
Lr 2 dt\ 2
fullga+ 7 suplu=malzo| G (33)

|h|<t
defines an equivalent norm di®. The result then follows by inserting the esti-
mates

|G oullrz: < |G oulre < CfGuller
1Gou—mh(Gou)|r2 < CllGullerllu — Thul| 2
into (3.3). O

3.2. Semigroup bounds. We will frequently use the fact that fer > 5 andT" >
0, there exists a constaat > 0 such that

I1S(t)ulle < Ct2@B)|[ul|4 (3.4)

for anye € (0,1], t € [0,T] andu € H”. This is a straightforward consequence
of standard analytic semigroup theory [Lun95, Hai09]. 8itiee generator of is
selfadjoint in all of theH*, it is also straightforward to prove (3.4) by hand. As a
consequence, we have

Lemma 3.3. Leta, 5 € R be suchthad < o — 5 < 2 and letT" > 0. There exists
C > 0 such that for allt € [0, 7] andu € C(]0,t]; H?) we have

H /Ot S(t— s)u(s) ds‘

Proof. It suffices to integrate the bound (3.4). O

< Ct'73=9 sup fu(s)lls - (3.5)
@ s€[0,t]

The following bounds measure how wéll approximatesS in these interpola-
tion spaces. The general philosophy is that every powerlas to be paid with
one spatial derivative worth of regularity. This type of moveounting is a direct
consequence of the fact that the functiprihat measures how much, differs
from 92, is evaluated at|k| in the definition ofA.. The precise bounds are the
following:

Lemma 3.4. Letx € [0,2]. ForT" > 0 there existsC' > 0 such that for any
t€[0,T], ¢ € (0,1], andu € HP, we have

1S:(t)u — S(tulla < Ct2CP Ry, (B<a+26),  (3.6)

1
I1Se(tulla < CE2 Jul g B<a). BT

Proof. We setf g f — 1and assume = 1 for notational simplicity, since the
casev # 1is virtually identical. The assumptions grimply that|f(en)| < ce?n?
whenevem < ¢/ andd is some sufficiently small constant. Using the mean value

theorem and the fact that we can assume 1 without loss of generality, we obtain
forn < ¢/ andk € [0, 2],

|exp(—tn®f(en)) — 1] < (2 A ct€2n4)eCt€2”4 < Ctieinrectdn®

< CentgnQHec(SQt(l-l—nQ) ]
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Inserting this bound into the identity
(Sc(t)u— S(t))e, = (e_tnzf(‘m) - 1)e_t(1+”2)en ,
it then follows from (3.4) that
Hné/a(sa(t) = S#)ulla < Ce"t2 1S((1 - 520)0“”@4-&/@
L (3.8)
< Certm 3Ot |5,

provided that we choosgsufficiently small so thag?c < % say.
On the other hand, note that

(I =T/ )(Se(t)u — S(t))en = 1{|n‘>5/8}(6—tn2f(8n) _ l)e—t(1+n2)en

Recall thatf (en) > ¢q—1 for all n, and thayy € (0, 1]. Then we can find a constant
C' such that

| exp(—tn?f(en)) — 1]e~ ") < Ceandt,

Moreover, for anys > 0 we havel g, -s/-3 < |en/d|". It thus follows, using (3.4)
again, that

(I = T )(S(t) = S(E))ulla < C=F[[S(gt)ullat s < Ct=2F9 |y .

The bound (3.6) now follows by combining this inequality lv{8.8). The inequal-
ity (3.7) follows by combining the special case= 0 with (3.4). O

3.3. Estimates for the gradient term. In this section, we similarly show how well
the operatorD. approximates),.. Again, the guiding principle is that every power
of ¢ “costs” the loss of one derivative. However, we are also gjoinuse the fact
that D. is a bounded operator. In this case, we can gain up to onakgativative
with respect to the operatat,, but we have to “pay” with the same number of
inverse powers of. The rigorous statement for the latter fact is the following

Lemma 3.5. Let3 € Randa € [0,1]. There existy” > 0 such that for all
e € (0,1] andu € H” the estimate

[Dzullp—a < Ce* Hlullg
holds.

Proof. Using the assumption thadt/ := |u|(R) < oo, together with Jensen’s in-
equality and Fubini’s theorem we obtain

Dl < 5 [ ([ uta o) m\(dy>)2dx

M M?
<% [ [ tute+ o)l i) de = Tl

On the other hand, assuming for the moment th& smooth, we use the as-
sumption thai(R) = 0, and apply Jensen’s inequality and Minkowski’s integral
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inequality to obtain

| Deull7> = = </ u(x + ey) p (dy)>2dx

e2

_ <// (& + 2) dz,u(dy))zdx
<M // (/ ' w+z>|dz)2m|<dy>dx
S </|u'<x+z>|2dx)%dz>2m|<dy>

= M2 /R y2lul(dy) < Cllull? -

Using complex interpolation, it follows thatD.u| 2 < Ce® ! ul|, for every
€ [0,1]. The desired result then follows from the fact tliat commutes with
every Fourier multiplier. O

The announced approximation result on the other hand isottmving:

Lemma 3.6. Let3 € Randa € [0,1]. There exist€” > 0 such that for all
e € (0,1] andu € H” the estimate

[Devv — Opullp-1-a < Ce*|lullp
holds.

Proof. In view of (1.3) we have, assuming for the moment th& smooth,

(De //Ey/ "z + 2) dz dw p(dy) .

Integrating against a test functignand applying Fubini’s theorem, we arrive at

[ o= anuwyas < S [ [ [" lellslulls dz dwuiay)

< Cellolasllulls /R 2 1l (dy)

which implies that
[(De = Oz)ullg—2 < Cellulls .
On the other hand, Lemma 3.5 implies that
1(De = O)ullg—1 < Cllulls
and the result then follows as before by interpolating betwiese estimates.[]
As an immediate corollary of these bounds, we obtain thevietig useful fact:

Corollary 3.7. Letj € [0, 1). There exist€' > 0 such that for: € (0, 1], u € H5,
andG € C'(R") we have

1D-G (1) = 3:G(u)||-1 < C||Gullor (1 + [lullg) |

where||G, || is defined as in Lemma 3.2.
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Proof. Using Lemmas 3.6 and 3.2 we obtain
ID-G(u) — 0,G(u)| -1 < CeP(|G(u)|lp < CP||Gullor (1 + [lullg) ,
which is the stated claim. O

4. PROBABILISTIC TOOLS

In this section we prove some sharp estimates for certairesgjpns involving
stochastic convolutions. Our main tool is the followingsien of Kolmogorov's
continuity criterion, which follows immediately from thene given for example in
[RY94]. The reason why we state condition (4.1) in this forsithat it is automat-
ically satisfied (by hypercontractivity) for random fieldsking values in a Wiener
chaos of fixed (finite) order.

Lemma 4.1. Let(¢(t)):c)0,1)» b€ a Banach space-valued random field having the
property that for any; € (2, co) there exists a constaut, > 0 such that

1 1
Elle®)l?) e < Kq(Elle@®)lI?)*
1 1
(Elle(s) = @77 < Kq(Ello(s) = o)),
for all s,¢ € [0, 1]". Furthermore, suppose that the estimate
Ellp(s) — (81> < Kols — 1

holds for somésy,d > 0 and all s, ¢ € [0, 1]™. Then, for every > 0 there exists
C > 0 such that

E sup [@(t)|IF < C(Ko+E[p(0)]*) .
te(0,1]m

(4.1)

[SIS]

Thro~ughout this subsection we shall w;}eandgk for the Fourier coefficients of
1 andw), so that

V()= Ok(ter,  U(t) =Y Ok(ter .

keZ keZ

With this notation at hand, we first state the following apgmmation bound, which
shows that we can again trade powerg dbr powers ofz, provided that we look
at the difference squared:

Lemma4.2. Fort > 0, k € Z ande € (0, 1] we have
E|0,(t) — 0:(t)]> < C(k~2 A e*k?) . (4.2)

Proof. We write againf = f—1 and assume = 1 for simplicity. The Itd isometry
then implies that

~ oo _ 2
E|§x () — 0 (1) = c/ €72 (1 (e e )
0
<C / ) (1 _ eftk‘zf(e\kn)Q gt
0 (4.3)
+C / e*2t<1+k2>e*2tk2f@l’f\>(1 - h(a]k\))th
0

dZEffl + I .
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Letd > 0 be a (small) constant to be determined later and considetifgsermi;
with |ek| < 4. S_incef is twice differentiable near the origin, we can fingmall
enough so thatf(|ek|)| < ce?k? for somec > 0. Therefore, fort > 0,

11— e FTERD| < oge?ktec= ™ < et k1t (4.4)

so that

1| < CALS /OO t2672t(1+k2)+2052k2t dt
0
If we ensure tha# is small enough so thas? < 1, we obtain

L] < Ce'k® / 2e Mt at < Ce'R? < C (K2 A e'R?)
0

where the last inequality follows from the fact that| < § by assumption.
To treat the cas&k| > ¢, we use the fact that by assumption there exjsts
(0,1] such thatf > ¢, so that

[ 2 00
L] < / o2tk (1 - e—tk2<q—1>> dt < C / e24K g (4.5)
0 0

<Ck?<C(k?ne'k?) .

The bound onl; works in pretty much the same way, using the fact that the
assumptions oh imply that

11— h(elk])| < C(1AER?) .
Using again the fact that > ¢, we then obtain
L<C / e 2R (1A k) dt < C(K2 Aeh?)
0
as required. O

We continue with a sequence of propositions, in which thenegés obtained
in the previous lemma are used to establish various boumdgdohastic convolu-
tions.

Proposition 4.3. Let0 < v < x. For x > 0 ande € (0, 1] we have
E sup [[¢(t)|re <Ce27,  E sup [[vy(t)]|~ < Ce2 7",

te[0,7] t€[0,7)
s - 1
E sup [dX(t)le < 3%, E sup [l () — iy (D)= < Ce3 7"
t€[0,7] t€[0,T)

Proof. We start with the proof of the second estimate. Observedthiata complex
one-dimensional stationary Ornstein-Uhlenbeck proce#s warianceh?/(2(1 +
vk?f)) and characteristic timé+ vk f. This implies that

N )

)
ooy < o

and
B0 (t) — 0r(s)|> < Ch2(elk|)|t —s| < Clt — s| . (4.7)
These bounds imply that, on the one hand,
E|0k(t)er(x) — Ou(s)ex(y)* < CEIG:(t)|* + CE|fk(s)|* < C(ANK2)
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while on the other hand, one has
E|0k(t)er(x) — Ou(s)er(y)|?
< CE|fk(t) — Ok(5)|” + CK*|x — y"E|6)(s)
<COlt—s|+Clz—yl?.

Combining these inequalities we find that, for every [0, 2],

E|0(D)ex(x) — Ox(s)en(y)|? < COLART)I 35|t — 5| + |z — y[2)% .

Since thed,’s are independent except for the reality condition, = 5_k we infer
that

Eliby (t,2) = Uy (s,9)> < C > Elf(t)ex(@) — Ox(s)en(y))?
|k|>e—
SO(t—sl+le—yP)% Y Ak
|k|>e—
< Ce (|t —s| + |z —yl?)2 .
Arguing similarly, we obtain
E[},(0,007 <C Y EL0))P<C > (IAk?)<Ce.
|k|>e=7 |k|>e=7

The result now follows by combining these two bounds with besr4. 1.
The proof of the first and third estimates being very simika,do not reproduce
them here. In order to prove the last estimate, we use Lemana ébtain

E|fi(t) — () < C(k™2)THi7 (") 118 < Celrp1r

This bound then replaces (4.6), and the rest of the proofasanalogous to the
proof of the second estimate. O

Proposition 4.4. Let{ > 0. For k > 0 ande € (0, 1] we have

E sup [[¢S(t)]|a < Ce ) r | (a> 1, (4.8)
t€[0,T]

T —C(a+2)—k
E sup [[0(t) = (t)lla < CE2TDTN 0 (a>—F). (49)
te[0,7)

Proof. In view of the estimates
E0x(1)]> < Ck™,  El6x(t) — Ox(s)]> < Clt — 5], (4.10)
we obtain

Elly¢(t) =4 (s)lla < Clt —sI® D (L&)

|k|<e=¢
< Clt - S|H€72C(a*%+n)
and
E[4(0)]2 < Ce~X(@=3)

The inequality (4.8) thus follows from Lemma 4.1.
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In order to prove (4.9) we argue similarly, but the estimates slightly more
involved. Writed,, := 6, — ), So thaty¢ — ¢)¢ = ngg,g orex. Using (4.7) and
(4.10) we have fog,t > 0,

E|8i(t) — 6k (s)[* < CJt — | .
Combining this bound with Lemma 4.2, we infer that foe [0, %),
E|6k(t) _ 6k(8)|2 < C(k_Q)H(€4k2)1_QH|t _ S|H _ C€4—8f@k2—6/@|t _ S|H

Forx € (0, 3o + 3), we thus obtain

BJ|(9° — 4 (1) — (8 = 9€) ()|2 < Cft — s 3~ (14 k)1

] <o
< C|t _ S|n€4—g‘(2a+3)—8/@

and similarly
E sup [[45(t) — ¢C(1)]|2 < Cetmo(Rats)=8
te(0,T]
The desired estimate (4.9) now follows from Lemma 4.1. 0

Proposition 4.5. Let{ > 0. For everyx > 0 there exists” > 0 such that

E sup O(¢(t)) < Ce™HEDT=r
te[0,7)

4 ded def

forall € € (0,1], where we wrot¢¢ — 1) =0V ({ — 1).

Proof. As in the proof of Propositions 4.3 and 4.4, we shall applyrkadorov’s
continuity criterion from Lemma 4.1, this time fdr*-valued random fields. It
follows from (4.6) that

eikey _ 1 2

- E|0k(t) — Ok (s)|?

El|Dey (9c(t) = be(s) 2 = 3

|k|>e—¢

1 — cogkey)
<C
2 Jeky?
k>e—¢

Note that, up to a factat|y|, this sum can be interpreted as a Riemann sum for the
function H( ) £74=2(1 — cogt)). Infact, sinceH (t) < 2(1 A t72),

COik:sy /oo _9 =1+
€ = elylH (key) < 2 1At dt < Ce .
1yl 2 R TSR Z; ylHKey) <2 [ ( ) dt <
k>e=¢ k>e—¢
(4.11)
It thus follows that
E|| Dey (v () — vc(s)) |72 < Cley| 10" (4.12)
On the other hand, (4.6) and (4.7) imply that

E|fx () — O(5)|> < C(LAk™2) [t — o],
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and therefore

=~ ~ ~ ikey _ 1 2 ~
E|Dey (dc(t) = ()22 = > | E|Gu(t) — 04 (s)|?
k| >e¢
<Cleyl2t—sli Y (akHi  G13)

|k|>e—¢
< Cley| 2|t — st .
Combining (4.12) and (4.13), we find that

-~ ~ ~ 1
E|| Dey (¢ (t) — e (5)) |22 < eyt — s|Tre=mEDT,
Similarly, we obtain

s ) ezkey _ 1 )
E|| Dyt (0)l[72 = E[6,(0)]
|k|>e—¢
1 — cogqkey) 1 (C—1)*
<C o < Cley| DT
|k§< lekyl?

In view of Lemma 4.1, the latter two estimates imply that

. S[up} HDezﬂ/’C( )”%2 < C‘gy’_l_ﬁg(l_ﬁ)(g_lﬁ-
telo

Using this bound, the desired result t@(ig(t)) can be obtained easily, since

E sup ©(ic(t)) =E sup !y\ 1Dyt ()72 |1l (dy)
te[0,7) t€[0,T

< [ WPE sup Dy (o) )
R te[0,T)

e MR TR
R
< Ca—l—n+(1—m)((—1)+.
The result now follows by rescaling O

The next and final result of this section involves the termohlgives rise to the

correction term in the limiting equation. Before stating tlesult, we introduce the
notation
2
— def €Y~ =~ ~
EY(u) = 7Deyu ® Deyu

2
v 2717,, . t}; f((?) (1 — cog(yt)) dt

and

y def def (1 — cog(eky))h?(ck)
As= Z A Z 2re(1 + vk2f(ek))

eTV<k<e™X eTV<k<e™X
Note that one has the identities

== [Soutd), A= [ Audy), ESUG) = A
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where the constant is given by (1.5).

Proposition 4.6. Leta > 1,y < 1, andx > 3. Fore € (0, 1], we then have

E sup [|A - Z.(X(t)]-a < Ce? .
t€[0,T]

Proof. The proof is an application of Lemma 4.1 wigh= A—Eg(@‘). For brevity
we shall writed := Z_(¢X) and Av := Z¥(¢X). We divide the proof into several
steps.

Step 1.First we claim that(¢) = A — A(t) satisfies the condition (4.1) concern-
ing the equivalence of all-moments.

To see this, note thatX admits the representation(t) = 3", ax(t)e; Where
eachay () is a Gaussian random vectorR¥. As a consequence, for eveyye R,
each component of? — AY is a polynomial of Gaussian random variables of degree
at most two. It thus belongs to the direct sum of Wiener chmo$erder< 2 and
the same is true foh. — A, since each Wiener chaos is a closed subspace of the
space of square integrable random variables. The clainfdfiow/s from the well-
known equivalence of moments for Hilbert space-valued \&fierhaos (see, e.g.,
[KW92]).

Step 2. In this step, we estimate how wellY approximates\?. Since|l —
cosz| < C(1 A 2?), we have the bounf\! | < C(ey® A (¢k?)~!) for some
constantC. As an immediate consequence, we have the bound

B VN E e Ca e (4.14)
E>1

Define now the function

(1 — cogyt))h*(t)
2t f(t) ’

so that, sincé?/ f is bounded by assumption, we obtain the bound

(I)y(t) =

2
€y
‘Ag,k — €(I)y(€]€)‘ § C? .
Combining this bound with (4.14), we have

AY — Z 5<I>y(5k)‘ <Oy +ex ).
k>1

At this stage, we recall that for any functi@n of bounded variation, one has the
approximation
[ee]
> (k) - / (1) di] < <@
k>1 0
where||®||gyv denotes the variation @ overR .. Furthermore, for any paib, ¥,
we have the bound
20|y < ||z [1¥]BY + [[¥][L [ ®[BV - (4.15)

If we setW,(t) = (1 — cog(yt))/t?, we have

o0 ® lytsinyt + 2 cosyt — 2
wmw:/|%mw=/'y yt + 2cosyt — 2]
0 0

+3
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SC\y[‘O’/ <1/\y >dt<Cy

Since¥(0) = y?/2, a similar bound holds for it&> norm, and we conclude from
(4.15) that

1@y [lBv < Cy? .
It follows immediately that we have the bound
|AY — AY] < C’(&:k“’y2 +ey? +eX7h) . (4.16)

Step 3.We now use these bounds in order to obtain control gver A2, for
a fixed timet > 0 (which is often suppressed in the notation).
In order to shorten the notations, note that, we can write

h(e|k|)
ex() ,
kezz V24/1 +uk2f e|l<:
where they, are a sequence of i.i.@"-valued Ornstein-Uhlenbeck processes with
E(m(t) @ me(s)) = E 0kl . & = exp(—(1+vk*f(elkl))[¢]) ,

and satisfying the reality condition_, = 7. Here,I denotes the identity matrix.
We will also use the notational shortcut
def
Al = mi(t) @ me(t) -
Set now ‘
ethey — 1 h(e|kl)

k __
ETTVE TRk IER)

as a shorthand. With all of these notations in place, it fefldrom the definition
of AY that

AY(t) — AT = > bt (Al — k) enie,

e <[kl || <ex

As a consequence, we have the identity

E|ALT — AY()|2, =D (1 + [k[*)” Z(ﬁ(ﬁ frgtm
kez

x Etr ((Aﬁk ¢ = Okol) (AL, m—ékpl)),

where the second sum ranges ove¥fath € Z for which ¢, k. — ¢, m, k —m belong
to (e77,e~X]. A straightforward case analysis allows to check that

Etr ((AM ¢ = Skol) (AL, 5,9701)) = gm0, (4.17)
so that
E[AYT — AY(0)]2, < CY A+ KPPl

keZ lez

Note now that there exists a constahsuch that the bound

-6 . _B _B
|@<c¢ﬂmAwQSCeMMzwla
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isvalid foralle < 1,k € Z,y € R, andp € [0, 1]. It follows that there exists a
constantC' > 0 such that we have the bound

g% q™ gt 12|
E|[AYT — AV(#)|?, <C Y oo <C Y SEEE

2 i
tm>1 |€+m| T e |m|a
4-28
£2-28 Y| 3
2o T < CEll

where we made the choigg¢ = % to obtain the last bound, using the fact that
o> 1 by assumption. Combining this bound with (4.16), the caistsy < 3
andx > , and using the fact that has finite fourth moment, we have

EMJ—mwwasc/wmwnwwwawww
< c/EHAg — AV, pl(dy) + Ce < Ce .

Step 4.Finally we shall estimat&||A(t) — A(s)|?>,,. Similarly to (4.17), this
involves the identity
Etr (Al (AS, 1) = 10k0 + (nOm + 0201 4—m)E} °EZS,
As a consequence, we infer that
Diym(t, s) EEtr <(A§,k4 — Al ) (AL, — A Smkfm))
= 2(n8pm + n*Sep—m)(1 — E5ELS ).

It thus follows that for any € [0, 1],

Dipm(t,s)

< (80 + So—m) (1 A2+ v F(e|l]) + vk — m)>f (elk — ml)) |t — s\)

< COum + rim)lt = I (1+ 62 F (=16 + (k = m)? f(elk = m])*)

Using this bound we obtain

ElAY(t) — AV ()|]° =S+ k)™ ¢t " Dt 5)

keZ
<> 1+ K" Z P16 (Dree(t, ) + Dipge—e(t, 5))
kezZ
<Clt—s° Zlﬂkl Z\qg\ i
kez

x(r+ﬁ%@wu++k—a%ﬂdk—aﬁ).

Note that this expression is almost the same as in Step 3.glséncalculations
done there and taking into account thaindh / f? are bounded functions, we infer
that

> ARl
EHAy(t) - Ay(S)HQ— - C’t - ’6 M‘a 625‘ 8’04 28 < C’t - Slég‘ylg J
fm>1
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and therefore, using Jensen'’s inequality (which can beegpgince|y| has finite
mass), and Fubini’s theorem,

BA() = AG)IE = || [ (47 - 47) utay)|

<c / EAY(t) — 4Y(s)[2, [l (dy)

—Q

< Celt— s /R P |ul(dy) < Celt — s|°

which is the desired bound.
The result follows by combining these steps with Lemma 4.1. O

5. CONVERGENCE OF THE APPROXIMATIONS

This last section is devoted to the convergence resulf.itRecall that we are

considering a number of intermediate proceséé)swithj =1,...,4 defined in
(2.10). This section is correspondingly broken into fivessdions, with theth
subsection yielding a bound cﬂméj) - véj_l)Ha. To prove these bounds, we shall
introduce in each step a stopping time that forces the diffez between the pro-
cesses considered in that step to remain bounded. We thertlsticthis difference
actually vanishes as — 0 with an explicit rate. As a consequence, the process
actually doesn't “see” the stopping time with high probail

5.1. From 27 to vél). Define

=B At < T oD(t) =37 (t)||a > K} -

We shall show that fot < 7, the H*-norm of ! )( t) — v7(t) is controlled by

the L°°-norm of ¢, which is of orderz2 " for any s > 0, as shown in Section

4. The proof uses the mild formulations of the equatlona;ﬂ))randvv( t) as well
as the regularising properties of the semigrgugNote that the next proposition
would still be true if we had replaced tHg*-norm in the definition of-* by the
L*>-norm. However, in the proof of Proposition 5.2 below it Wik important to

have a bound ongl) in He.

Proposition 5.1. For x > 0 we have

i M) — 7 37K\ =
l'L“oP( sup [[v (&) — 3 ()]0 > &3 )_o.

tﬁTIK

Proof. Let0 < s <t < 7*. It follows from (2.3) and (2.10a) that. := v D _ gy
satisfies the equation

0:(t) = S(t — 5)0x(s /St—rxo + 0,02)(r) dr

where

Q
MmN O =
I
Q
|
)
+
s
N
|
Q
<
)
+
=
o
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Lemma 3.3 yields the estimate

lo=(t)la < llge(8)la + C(t — 5)30-2) sup (o2 +0:02)0)]-1
re(s,

1
< Jlos()]la + C(t = 5)20 ) S(up) loz ()l zee + o2 (r) == -
re(s,t

Sincew7, g., andi, are bounded ilL>°-norm forr < 7%, and F, G areC3, it
follows that

lod(r)llzee + o2l < Crllos(r)llLe + Crlltby (r)] Los,
from which we infer that

o (®)lla < llo=(3)lla + Ciclt = )20 sup (Jlo2 ()= + 16y () 1 )

re(s,t)

li-a
Chooseix > 0 so small that”’; 6[2((1 )

i= sup{|lo:(t)|la : t € [kdx AT, (k+1)dx AT{]}.
Taking into account that7® C L°°, we obtain the inequality

<1 and set fork > 0,

1 1
~Tpe1+ = sup ||y ()],

Tl ST+
2 2 t€[0,T]

which reduces to

i1 < 2r 4+ sup [[Yy(8)[| e -
t€[0,T]

Combined with the estimate

ro <2 sup by (r)|ze
T<5K/\T1

which can be derived similarly, it then follows that

sup [loc(t)lla < sup 71 < Ck sup (|9 (t)]l 1,
te[0,75] 0<k<T/Sk te[0,77

which together with Proposition 4.3 implies the desirediltes O

5.2. From v§ ) to v(2) For the purpose of this section, we define the stopping time
=K Ainf{t < T 2 0@ () — oD (t)]|o > K},

as well as the exponent

~ def Y
( L

1 )+ _2
Ty T3

Proposition 5.2. For x > 0 we have

i (2) (4) — o@D a-k\) _
QQOP(EI:{QH% () = v (@)lla > 7)< 0.

Proof. Let0 < s <t < 7* and note thap, := v (2) — vﬁl) satisfies

0:(t) = S(t — s)o:(s /St—raE )dr,

where
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From the definition 0fr2K we know thatvél) and . are bounded if.>° by a con-

stant depending of’. Moreover, we have the bourd!" (|, < Cye (" 2)",
Using these facts together with Corollary 3.7 we obtainyfer 7%,

loell—1 < IIF @) = F(ol))]|
+ (D = )G () |1 + | DG + 02) = G(olV)] -1
< Ckflozll + Cree® (1 + [0 [la) + G0V + 02) = G(Wl)) |1
< Ox (™" + leellz=) .

hence
1
lo=(B)lla < llo=(8)lla + C(t = 5207 sup [lo=(r)] -1
re(s,t)
< loe )l + Crelt = 920 sup (=5 4 (1))
re(s,t)

Arguing as in the proof of Proposition 5.1, it follows that

sup [lo-(t)lla < Cre®",
t€[0,7]

which immediately yields the desired result. O

5.3. From v§2) to vé?’). Define

=K Ainf{t <T - v () =@ (#)]o > K} .

£

In this case, the singularity — s)‘%o‘ which arises in the proof below, prevents
us from arguing as in Proposition 5.1. We nevertheless have:

Proposition 5.3. For x > 0 we have
iim P( sup o (t) — @ ()| > ) =0,
e—0 tSTg{(
where the exponetis given by
def 2

CEanG-an-ra+d) =3

Remark5.4. The exponent arises by collecting the bounds (5.2), (5.3), and (5.5).

Proof. Let 0 < s < ¢t < 7*. It follows from (2.10b) and (2.10c) thai. :=

vf’) — v§2) satisfies
0=(t) = S=(t—5)0:(5)+(S=(t—5) =S (t—5)v) (s)+Ru (s, ) +Ra(s, 1) , (5.1)

where
Rils,t) E (7 () = 07(1)) — (S=(t — s)i7(s) — S(t — 5)07(s))

and

Ra(s,t) = / (Se(t =7) = S(t =) (F (1) + DGD(r) ) dr

L / S(t - r)(FeD @) — P ()
+ D.Gw® (r)) = DG (r))) dr .
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We shall first prove a bound oR; (s, t). Using both inequalities from Lemma
3.4, we obtain

1(Se(t = $)v7(s) = S(t — )17 (s))
< [18e(t = 5)(¥7(5) = ¥7(5)) o + [ (Se(t = 5) = St = )7 (3) |
< CY( () = ¢7(5))lla + CE[[E (5) lata
and therefore
IR1(s, )l < 17 () = 47 (8)) [l + CI (&7 (5) = 47 (5))
+C?[[¢7(s)llata -

It thus follows from Proposition 4.4 that
E sup |[Ri(s,t)]a < Ce2ot2)—r (5.2)

s,t€[0,T

We shall now prove a bound 0R»(s,t). For this purpose, we note that the
definitions of the various stopping times imply th)é%) (t) is bounded i “-norm

by Cre="(@=3)=*_ Using this fact, together with Lemmas 3.4, 3.5 and 3.2, we
obtain

[ (5ett=1) = 8t = 1) (FOO0) + DG ) ) dr

«

t
<e [t HEOFRO0) + DG ) oo dr

< Ce(t— )20 sup (| (1) ]la + |GP (1))]1a)

re(s,t]
< Cre®(t— )21 (1 + sup [[v® (r)]a)
rels,t]
< Cre®(t —5)207) (1 4 s[up]<||v§2> (Mo + llo=(r)[la))
re|s,t

< Cre¥"(t — s)%(l_o‘) .

Furthermore, taking into account tlé*-bounds om§2> and p. enforced by the
stopping times, Lemma 3.5 implies that

/ S(t—r) (FOO @) = FO@ () + DG (1) = DG (1) ) dr

< Ot - 5)2079) sup |F(P)(r) - F@P(r))
re(s,t)

«

+ DG (1)) = DGO (1)1
< C(t =) sup (|FO ) - FEO(r

re(s,t)

+IGEE (1) = GEP )1 )

< Ck(t— S)%(l_a) sup |lo=(r)| e -
re(s,t)
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It thus follows that

IRa(s, )l < Chelt = )20 (5 4 sup flo-(r)li=) . (63)
re(s,t)

where we gave the constant a name, since it will be reusetwbelo
l1_qa 1,
Choosedx € (0,1) sufficiently small so thal (6;<(1 )4 §%) < . For
k > 0 putly == kix A i, and fork > 1 set
T 1= SUP{HQe(t)Ha tte [fk—l,fkﬂ]} .

Our next aim is to find a bound fer . Observe that, whesn= 0, (5.1) simplifies
to

0=(t) = (S=(t) = S(t))vo + (¥7(t) — ¢ (1)) + R2(0,1) , (5.4)
with R, defined as previously. Using Lemma 3.4 and the definition’df we
obtain , ,

1(Se(t) = S(t))volla < Ce2™*Flugl[s _,, < Cre2"""". (5.5)

Li-a .
Sincet < 20 andeKéf((1 ) < i, it follows from (5.3) and (5.4) that
~ 1 -~
r < CkeF 07 4+ sup [§7() — 0 (Ola + 5+ 1)
t€[0,T] 2

hence, by definition of ¥,
r < CKe(%—a)/\(Q—'y(OH-%))/\&e—m _ CK(EC—/@ ’ (56)

where( is defined as in the statement of the result.
Next we shall prove a recursive bound fqr Note that the nonnegativity of the
function f in the definition ofS. implies that

1S(t = s)ee(s)lla < llo=(s)lla -

Furthermore, by Lemma 3.4 and the fact tlhaf)Ha < CKa*V(O‘*%)*“ before
time 74, we have

[(Se(t = 5) = S(t = )l (s)lla < Ce(t = 5)72% [0l (5)]|a

< Ck(t— s)*%aaaf" .

Combining these bounds with (5.1) and (5.3), we find that
lo=(t)llar < llo=(5)lla + Cic (£ — 8) 727 + [Ry(5,1)]|o

+ Che(t— )20 (%% 4 sup [[o(r)la) -
re(s,t)
Takingk > 1, s = {1, andt € [lg,lr1o], it then follows, sincet — s| €

[6x,30] and 620~ < L that
lo=(t)lla < lloc(tk—1)lla + Cre™ " + | R1(h—1,8)lla + 5% + §risa -
Taking the supremum overc [¢y, {x 2], We obtain

ri1 <7p+ Cre® "+ sup |Ri(s,8)|la + 275t
$,t€[0,T

hence

Frp1 < 2r + Cre® " +2 sup ||R1(s,t)]|a - (5.7)
5,t€[0,T]
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It readily follows from (5.6) and (5.7) that

sup [lo=(t)lla = sup 1y < Ci( 4+ 4 sup |Ru(s,t)]a)
te[0,7] 1<k<[T/éK] 5,t€[0,T]
hence the result follows in view of the bound & (s, t). O

5.4. From vf’) to v§4). Define
K =K ainf{t <T - o@D () =B #)]o > K} .

Proposition 5.5. For x > 0 we have

i (@) () — 3 E—r) —
lim P(*sup [0 (1) = vl ()] > &) =0,

t§T4K
where
defy \ (~ 1 1 1) _
§=3n(@-3)A(z-xla—3) =72

Remark5.6. Similarly to above, the exponert arises from the bounds (5.9)-
(5.14).

Proof. Let 0 < s < ¢t < 7*. It follows from (2.10d) and (2.10c) that. :=
v§4) (3) satisfies

0e(t) = Sc(t — 8)pe(s /S r)dr,
where
02 1= Fl +3) - F(o)
+ VG + ) De(olY + %) = DG(u) + AAG() .

The definition ofD. together with (1.3) imply that for any functianthe following
identity holds:

D:G(u)(x) = VG(u(z))Deu(z)

n / = DG (@) Deyi(), Doyu(w)] u(dy)

/ /O /0 /0 DAG((1 — ryu(x) + ru(z + ey))

[Dgyu(x), ﬁgyu(x), ﬁgyu(m)] dr dsdt u(dy) ,

(5.8)

wherAe the operatof)€ is defined by taking: := §; — d¢ in the definition of D,
i.e., D.u(z) = e Hu(z + €) — u(x)). As a consequence, we may write
e = F( +4%) = F(ol¥) + Do(G(l + ¢X) — G(u®))
+ (AAGWE)) — AW, uM)) - B
= P +9X) = F(ol) + D(G +4%) = G(l))
— A, oY) =240, 9X) + (AAG(W) — AW, ¥Y)) —



A SPATIAL VERSION OF THE ITO-STRATONOVICH CORRECTION 27

where we have used

A(w,w)(x) / Y D2 (2))[ Doy (), Doyw()] (dy)

ot oo [ 0-riti
Y

D, u (z), D u(4)( ), Deyu( )( ) dr ds dt p(dy)

andu(4) = vg —|— ¢’y

Our next aim is to prove the estimates (5.9)—(5.14) belowraento bound
[CA/Y )
First term. Sinceu§4), ¥X andp. are bounded i by definition ofr}, it follows
that

IF(® +9X) — F®)||-1 < CIFD +9X) — FolP — 0.)|| 1=
< Cr(|[pX|| o + [loz]lz=)
< O (e? ™"+ [|oclla) - (5.9)

Second termWe use Lemma 3.5 and the fact thé‘f), 1;2(/ and . are bounded in
L™ by definition of 7/, to estimate

ID=(G (0 +9X) = G| -1 < OGN +9X) = Gl - oo)|| 1=
< Cr ([l + leellz=)
< Cr(e ™" + [leza) - (5.10)
Third and fourth termFirst we note that for arbitrary functions w, one has
| A(v,w)]—1 < ClA(, )11 < Ce|D*G(u®)||L /O (0)O:(w) -
since|[ul”) ()|~ < Cx for t < 7K, we have
ID*G(ui)|1 < Cr .

Furthermore, we observe thi!"||, < Cxe 7@ 2)=* pefore timerX. Using
this bound together with Lemma 3.5 and (1.3), we estimate

0. (1) = / y2 | Deyo |2, |1l (dy)
< Cx / y ey 2@ o @2 |l (dy)

< Cic [ gPeyfe Vel b uj(ay)
R
S CK€2572711 .
Moreover, by definition of the stopping timé< we have

@5(”&%() < @5(1Zy) < CKg_l_H-
Putting everything together, we obtain

JA@W® , v®)||_1 < Cge?d172x (5.11)
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and
A, )| -1 < Cre® 372, (5.12)

Fifth term. Finally we estlmateAAG(v€ ) (1/)7,%) By definition of 7€, we

have|[ ¢ ||, < Cxe X2~ pefore timerX . Since[|v™ ||, < Cre(@—2) =+
as observed before, we thus have

[u® ||, < CKg—x(a—%)—H

1

Furthermore, sincer > 3, there exists a constaat > 0 such that we have the

bound
[AAG() — AWY, 3] -a = |[tr (DG (AL - Z3))) |
< CYID*G (W) |AT = Zo()]|-a -

Since the stopping time” enforces thaf| Al — EE(%‘)H_Q < Cke?, we infer
that

IAAG (D) — A(GX, X)|| o < CrezX—3)=K

Sinceu§4) (3)

= 0. + 1%, we have by definition of X,

IAG(uf) = AGWD)|| 0 < |AG(ul) — AGWD)]| o0
< Cklloelze + Crc[[9X]| o
< Oklloc]la + Cre? ™.

Putting these bounds together, we obtain
IAAGEE) = AW, PY)l|-a < Cke (27D 4+ 6377 4 [loc]|a) . (5.13)

Sixth term.To estimateB, we use the fact thajtu§4) (t)||z= < Ok fort < 7K, so
that one has the bound

1Bl < Cx / / 24| Doyl ()2 11| (dy)

We will split this expression into two parts, using the fetwattu " ¢X + o,
First, using the fact tha@(zpy) < Cgel=* before tlmerf by definition of the
stopping timer €, we find that

/ /R e2y| Doy 0X(2) ? |l (dy) dx
< 2| / / e | Dey X () 2 |1l (dy) dx

= 26| || 1O (4X) < COre 2|l < Ore? 3%

Second, usmg the fact th&fs C L3, Lemma 3.5 and the fact that; Ha <
Cre=@=3)=% e obtain

| [ D@ lultdn) do < 022 [ 11Dt 1

a—3 oa—1
< ot} /R 1P |l (dy) [0 2
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It thus follows that
IBlpr < Cxe?=3% 4 Cged@2)73n (5.14)
Combining the inequalities (5.9)—(5.13), we find that

sup floe (1)1 < O (37 4 5372 1 AXCD 7 4 sup Jlo.(r)]la)
re(s,t) re(s,t)

and the result now follows as in Proposition 5.2. O
5.5. From v§4) to v7. Define

A =K Anf{t < T : |07(t) — oW (#)]lo > K} .
Proposition 5.7. For x > 0 we have

' V() — @) Ix—1-r) _
lim P (" sup [ (£) = oV (1)]|o > £33 ) =0.

t§T5K

Proof. Let0 < s <t < 7*. It follows from (2.4) and (2.10d) that. := v” — v§4)
satisfies

t
0:(t) = / Se(t —r)os(r)dr,
where
0c 1= VG(@ + 1) De(TY +y) — VG@ + X — 02) De(T" + 90X — 0.)
FF@ +4y) — F@ +9X - 0.) .
In order to estimate. we use (5.8) to write

0. = DG + 7;7) - D.G(v" + 7;2(/ — 0:)

2

9 ~ ~

-~ / —g (D*G(u.) — D*G(uM)) [Deyuz, Deyue] p(dy)
R

2
€ A D
B /R 2-D?G(uM)[Dey (e +u), Doy (2 = ul)] u(dy)

- 52 (Ra(uea us) - Ra(ugl)augl)))

+ F(@ +4,) — F(@ + 9% — o.)
=10z1+...+0c5.

whereu, := 07 + J»y, ut = ol 4 1;%( and

1 t s
Re(ul,u2)(az) ::/52y3/ / / DgG((l—T)ul(az)+ru1(w+ey))
R o Jo Jo
[ﬁayuQ, lA)eyUZ, ﬁgyuQ] drdsdtdu(y) .

We shall now estimate. 1, ..., 0. 5 individually.
First term. First we observe that”, v, w%‘, andp. are bounded in.>° before
time T5K. Using Lemma 3.5, the embeddidg™ C L°°, and the definition of the
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stopping time to bouanXHLm, we obtain
loell-1 = ID=(G@ + ) = G@ + 9% = 22))l| -1
< ClIG@ + ) = G@ + 0% — 0c)l|
< Cr([[9xllze + lleell <)
< Ox (e + Jloella) -

(5.15)

Second term.Using Lemma 3.5 and the fact that(®~2)%|77|,, is bounded
before timer{<, we estimate

0.(") = /R Y2 Dy |22 |1l (dy)
e / Y2 ey 20T 2 |l (dy)

< Ck / yPey 2o De 20220 |y (dy)
< CK&.QF;fon ,
and by the definition of the stopping timé*,
O-(1h,) < Cre 175
As a consequence,
O (ue) < 2(0-(77) + Oc(vy)) < C (267277 4 e717%) <7177 (5.16)

Note that|u.|| .~ and|[u” ||~ are bounded before timg?. Using thatL! C
H~1 we obtain
loz2ll-1 < llozallor < el D*Glus) — D*G(ulM)|| O (ue)

< O™ flue = ul |1

L N (5.17)
< Ore™# (lleellzee + l[¥xllze=)
< Cre™ (llo-llo +£377) |
Third term.By Lemma 3.5 we have
0-(0:) = [ 11Dy B ()
R (5.18)

<c /R Ve 2D 0u]12 il (dy) < Ce22 g2

Observe thati. + ul" = 207 — o, + ¢, + ¥X andu. — ul?) = ¢, + o.. Taking
into account that

51+R@6({£ﬂ/)= EHHGS({/;V)? 527X+R@6(1Zx)7 [l 0c la
are all bounded before timtg{(, we obtain

Oc (ue + u§4)) < C(@s(gv) +O:(0e) + @s(i’y) + 96(7;%())

_ (5.19)
< CK (5201727/1 + €2a71 + 5717/@) < CK&,flf/i ,
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and
®e(ue - u§4)) < C(@€(¢X) + @E(QE)) (5.20)
< CgeX27% + 072 o2 . '

Using thatHué‘l) L= < Ck before timerg(, we obtain

Joesllor < lowslzs < < D*G ||Loo¢@ (ue + ul™)0- (e — ul?)
§CK(52X 3T 40 “lloclla) -
Fourth term.We shall show that
ocall-1 < Ck (e 2“Hg€Ha+a2X 372 (5.21)

First we use thd.*°-bound onu§ ) enforced by the stoppping time, to obtain the
pointwise bound

[Re(ttz,u2) = Re(ue, ul?)
< O /R 2" (1Deytte? + | Deytel | Deyul| + | DeyulV?)
| Dy otz — )]l (dy)
< Cic [ e (Daytel+ 1Dy Doy e = ) ()

In view of (5.20) it thus follows that
(| Re (ue, ue) — Re(usau(4))||L1

< O / 52 (1Deytic] + [ Deyul® )| Dy (e — )] |11 11l (dy)

< CK&‘/R 2 (| Deytel| 2 + |1 Deyul | 12) | Dey (e — ul) | 2 |1l (dy)

< Oy (Oc(ue) + 0. (u)) 0. (e — ul?)

Using (5.16), (5.18), and the definition of the stopping tmé)ounde)g({pvx), we
find that

Oc (ue) + @€(u£4)) < C(ee(ue) + Oc(0:) + @a({gx))
< CK(eflf/i + 820172 + 6)(717/1) < 8717.‘-@ )
Using (5.20), we thus obtain
| Rty ) = Relue, ul) |1 < Cue (37272 4+ 2072 o]la) . (5.22)
Furthermore, taking into account that
e = ul || o < Crc(llyllze + lloellze) < Cr(e2X ™ + [loclla) .

we have by (5.16),

1R (e, ulM) = Re(ul, ulV)]| (5.23)

< Cxe2fue — u®| 1 / 511 Dyt 11 11l (dy)

< Crellue — u®|p~ / V2 Deyu®| 2. 111l (dy)
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= Crellue — ul || L~ O2(ulV)
< O (e 4672 gcla) -
The claim follows by adding (5.22) and (5.23) and using théeading L' C
H L
Fifth term. As in the first step, we have
loeall -1 = [F@ + ) = F@ + ¢ — o)l -1
< Ok (Itxllze + llozllz~) (5.24)
< Cr (e + [loela) -
Combining the five estimates, we obtain

1
lo=(t)la < C(t = )27 sup [low(r)]-1

re(s,t)
<C(t- s)%(l_o‘) sup <€_2"‘HQ5(T)HQ + aéx_%_%) )
re(s,t)
The result now follows as in the proof of Proposition 5.1. O
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