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A SPATIAL VERSION OF THE IT Ô-STRATONOVICH CORRECTION

MARTIN HAIRER AND JAN MAAS

ABSTRACT. We consider a class of stochastic PDEs of Burgers type in spatial
dimension1, driven by space-time white noise. Even though it is well-known
that these equations are well-posed, it turns out that if oneperforms a spatial
discretisation of the nonlinearity in the “wrong” way, thenthe sequence approx-
imate equations does converge to a limit, but this limit exhibits an additional
correction term.

This correction term is proportional to the local quadraticcross-variation (in
space!) of the gradient of the conserved quantity with the solution itself. This
can be understood as a consequence of the fact that for any fixed time, the law of
the solution is locally equivalent to Wiener measure, wherespace plays the role
of time. In this sense, the correction term is similar to the usual Itô-Stratonovich
correction term that arises when one considers different temporal discretisations
of stochastic ODEs.

1. INTRODUCTION

In this work, we give a rigorous analysis of the behaviour of stochastic Burg-
ers equations in one spatial dimension under various approximation schemes. It
was recently argued in [HV10] that if the approximation scheme fails to satisfy a
certain symmetry condition, then one expects the approximations to converge to
a modified equation, with the appearance of an additional correction term in the
limit. This correction term is somewhat similar to the Itô-Stratonovich correction
that appears in the study of SDEs when one compares centred and one-sided ap-
proximations. The present article provides a rigorous justification of the results
observed in [HV10], at least in the case where the nonlinearity of the equation is of
gradient type, and therefore the limiting equation is well-posed in a classical sense.

More precisely, we will consider in this work stochastic PDEs of the form

∂tu = ν∂2xu+ F (u) +∇G(u)∂xu+ ξ , (1.1)

whereu = u(x, t) is an Rn-valued function, withx ∈ [0, 2π], t ≥ 0. In this
equation,ν > 0 is a positive constant, the functionsF,G : Rn → Rn are assumed
to beC3, and the stochastic forcing termξ consists of independent space-time white
noises in each component ofRn. For the sake of simplicity, we endow this equation
with periodic boundary conditions, but we do not expect thisto alter our results
significantly.

Equation (1.1) is locally well-posed [Gyö98], provided that we rewrite the non-
linearity as∂xG(u) and consider solutions either in the weak or the mild form
[DPZ92]. (Note that our noise term isnot the gradient of space-time white noise,
as in [BG97]. Therefore, our solutions are actually continuous functions.) The aim

Date: November 4, 2010.
2000Mathematics Subject Classification.Primary 60H15; Secondary 35K55, 60H30, 60H35.
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of this article is to show that this well-posedness is much less stable than one may
imagine at first. Indeed, if we set

D+
ε u(x) =

u(x+ ε)− u(x)

ε
,

and consider the familyuε of solutions to the approximate equation

∂tuε = ν∂2xuε + F (uε) +∇G(uε)D+
ε uε + ξ ,

then our main result, Theorem 1.6 below, implies thatuε ⇒ ū, whereū is the
solution to (1.1), but withF replaced by

F̄ (u) = F (u)− 1

4ν
∆G(u) , (1.2)

where∆ is the usual Laplacian onRn.

Remark1.1. An explicit calculation allows to check that the local quadratic varia-
tion (in space!) ofu for the solution to (1.1) is precisely given by1/(2ν). There-
fore, one can interpret the correction term appearing in (1.2) as precisely being
equal to−1

2 times the quadratic covariation betweenu and∇G(u). Recall that
is exactly the correction term that appears when one switches between Itô and
Stratonovich integral in the usual setting of stochastic calculus.

Remark1.2. This correction term is a purely stochastic effect and is completely
unrelated to the fact that our discretisation scheme is not an upwind scheme (see
[CIR52, MRtTB05]). In the absence of noise, we would still have the regularising
property from the non-vanishing viscosity, so that pretty much any “reasonable”
numerical scheme would converge to the correct solution.

If D+
ε is replaced byD−

ε , defined byD−
ε u(x) =

(
u(x) − u(x − ε)

)
/ε, then a

similar result is true, but the sign in front of the correction term in (1.2) changes.
We will actually consider a much more general class of approximations to (1.1),
where we also allow both the linear operator∂2x and the noise termξ to be re-
placed by approximate versions that are still translation-invariant, but modified at
the lengthscaleε.

1.1. Statement of the main result. Forε > 0 we consider approximating stochas-
tic PDEs of the type

∂tuε = ν∆εuε + F (uε) +∇G(uε)Dεuε + ξε .

Since our system is invariant under spatial translations, it seems natural to restrict
ourselves to a class of approximations that enjoys the same property. Throughout
this article, we will therefore use approximate differential operators∆ε andDε, as
well as an approximate space-time white noiseξε given by their Fourier transforms:

∆̂εu(k) = −k2f(ε|k|)û(k) , D̂εu(k) = ikg(εk)û(k) , ξ̂ε(k) = h(ε|k|)ξ̂(k) .
We will make the following standing assumptions on these objects.

Assumption 1.3. The functionf : [0,∞) → [0,+∞] is twice differentiable at
0 with f(0) = 1 and f ′(0) = 0. Furthermore, there existsq ∈ (0, 1] such that
f(k) ≥ q for all k > 0.

If f(k) = +∞ for some values ofk, we use the convention exp(−t∞) = 0 for
everyt > 0. In this case, the semigroup generated by∆ε is not strongly continuous,
but this is of no consequence for our analysis.
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Assumption 1.4. There exists a signed Borel measureµ such that∫

R
eikx µ(dx) = ik g(k) ,

and such that

µ(R) = 0 , |µ|(R) <∞ ,
∫

R
xµ(dx) = 1 ,

∫

R
|x|4 |µ|(dx) <∞ . (1.3)

In particular, we have(Dεu)(x) :=
1
ε

∫
R u(x+ εy)µ(dy).

Assumption 1.5. The functionh is bounded and such thath2/f is of bounded
variation. Furthermore,h is twice differentiable at the origin withh(0) = 1 and
h′(0) = 0.

Let ū be the solution to the equation

∂tū = ν∂2xū+ F (ū) +∇G(ū)∂xū+ ξ , (1.4)

In this equation,

F := (F − Λ∆G)

andΛ ∈ R is a correction constant given by

Λ
def
=

1

2πν

∫

R+

∫

R

(1− cos(yt))h2(t)
t2f(t)

µ(dy) dt . (1.5)

Note that a straightforward calculation shows thatΛ is indeed well-defined, as a
consequence of the fact thath2/f is bounded by assumption and that|µ| has a
finite second moment.

Before we state our main result, note that the equation (1.4)is locally well-
posed inL∞, see [BCF91, BCJL94, DPDT94, Gyö98, Hai09]. As a consequence,
it has a well-defined blow-up timeτ∗ (possibly infinite) such that, almost surely,
limt→τ∗ ‖ū(t)‖L∞ = +∞ on the event{τ∗ < ∞}. With this notation, we are now
ready to state the main result of this paper.

Theorem 1.6. Let κ > 0. There exists a sequence of stopping timesτε satisfying
limε→0 τε = τ∗ in probability, and such that

lim
ε→0

P

(
sup
t≤τε

‖uε(t)− ū(t)‖L∞ > ε
1

8
−κ

)
= 0 .

Remark1.7. The statement of Theorem 1.6 is slightly incomplete since wedo not
specify how we choose the initial conditions. In order to avoid further technical
complications, we will actually consider sequences of initial conditions that have
the property that the initial condition foruε “behaves like” the solutionuε(t) for
positive times. This statement will be made more precise in Theorem 2.2 below.

Before we proceed, we list some of the most common examples ofdiscretisa-
tions that do fit our framework. Fora, b ≥ 0 with a + b > 0, it is natural to
discretise the derivative operator by choosing

µ :=
δa − δ−b

a+ b
.

This is also the discretisation that was considered in [HV10]. As far as the discreti-
sations of the noise and the Laplacian are concerned, there are at least three natural
choices.
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No discretisation. This is the casef = h = 1 where only the nonlinearity is
discretised. With this choice, one can check that the correction factor is given by
Λ = 1

4ν
a−b
a+b .

Finite difference discretisation. In this case, we divide the interval[0, 2π] intoN
equally sized intervals. For convenience we assume thatN is odd and we set

(
∆εu

)
(x) =

1

ε2
(
u(x+ ε) + u(x− ε)− 2u(x)

)
, ε =

2π

N
.

We furthermore identify a functionu with the trigonometric polynomial of degree
(N − 1)/2 agreeing withu at the gridpoints. This corresponds to the choice

f(k) =

{
4
k2

sin2(k/2), k ∈ [0, π)
+∞, k ∈ [π,∞)

, h = 1[0,π) ,

The natural choice for the discretisation of the derivativeoperator in this case is
to choosea and b to be integers, so that discretisation takes place on the grid-
points. With this choice, it can be shown that the correctionfactor is identical to
that obtained in the previous case. Note however that this isnot the case if the
discretisation of the derivative operator is not adapted tothe gridsize.

Galerkin discretisation. In this case, we approximate∆ andξ by only keeping
those Fourier modes that appear in the approximation by trigonometric polynomi-
als. This corresponds to the choice

f(k) =

{
1, k ∈ [0, π)
+∞, k ∈ [π,∞)

, h = 1[0,π) .

The correction factorΛ is then given by

Λ =
cos(πa) + πaSi(πa)− cos(πb)− πbSi(πb)

2π2ν(a+ b)
,

whereSi t =
∫ t
0

sinx
x dx.

The rest of this paper is structured as follows. In Section 2 we introduce notation,
we give a refined formulation of the main result and present anoutline of the proof
of the main result (Theorem 2.2). In Section 3 we prove several useful bounds
on the approximating semigroups and the approximations of the gradient. Section
4 is devoted to several estimates for stochastic convolutions, the most crucial one
being Proposition 4.6, which is responsible for the correction term appearing in the
limiting equation. Most of the work is performed in Section 5, where convergence
of various approximating equations is proved.
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the Netherlands Organisation for Scientific Research (NWO).
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2. PROOF OF THE MAIN RESULT

In order to shorten notations, we introduce the semigroupsS andSε, defined as
rescaled versions of the heat semigroup and its approximation:

S(t)
def
= e−t(1−ν∂2

x) , Sε(t)
def
= e−t(1−ν∆ε) ,

where we defineSε by Fourier analysis, making use of the conventione−∞ = 0.
Since we will always work with the mild formulation, it will be convenient to have
a notation for the convolution (in time) of a function with one of the semigroups.
We will henceforth write

(S ∗ w)(t) def
=

∫ t

0
S(t− s)w(s) ds .

Let (W (t))t∈R be a two-sided cylindrical Wiener process onH def
= L2([0, 2π],Rn)

(see [DPZ92, Hai09] for precise definitions) and letQε be the bounded operator on
H defined as a Fourier multiplier by

Q̂εu(k) = h(ε|k|)û(k) .
(We assume that it acts independently on each component.) Finally, we define the
H-valued processesψ andψ̃ by

ψ(t) =

∫ t

−∞
S(t− s) dW (s) , ψ̃(t) =

∫ t

−∞
Sε(t− s)Qε dW (s) ,

so that, in the notations of the previous section, they are the stationarysolutions to
the linear equations

∂tψ = (ν∂2x − 1)ψ + ξ , ∂tψ̃ = (ν∆ε − 1)ψ̃ + ξε .

With all of these notations at hand, we can rewrite the equations forū anduε in the
mild form as

ū(t) = S(t)v0 + ψ(t) + S ∗
(
F (ū) +∇G(ū)∂xū

)
(t) , (2.1)

uε(t) = Sε(t)v0 + ψ̃(t) + Sε ∗
(
F (uε) +∇G(uε)Dεuε

)
(t) . (2.2)

Remark2.1. Note that we have used here a common initial conditionv0 for the
differenceū−ψ anduε− ψ̃. As a consequence, the two equationsdo notstart with
the same initial condition! However, asε→ 0, the initial condition ofuε converges
to that ofū. The reason for not starting with the same initial conditionis mostly of
technical nature.

It will be convenient to define for any0 < γ < χ,

ψγ
def
= (I −Πε−γ )ψ , ψγ def

= Πε−γψ , ψχ
γ

def
= (Πε−χ −Πε−γ)ψ .

The expressions̃ψγ , ψ̃γ , and ψ̃χ
γ are defined analogously. HereΠN denotes the

projection onto the low-frequency components of the Fourier expansion, defined

by ΠNen
def
= 1|n|≤Nen, whereen(x) = (2π)−

1

2 einx.
We set

v̄
def
= ū− ψ , ṽ

def
= uε − ψ̃ .

In the proof it will be convenient to work with the functions̄vγ andṽγ defined by

v̄γ
def
= v̄ + ψγ = ū− ψγ , ṽγ

def
= ṽ + ψ̃γ = uε − ψ̃γ .
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It follows from (2.1) and (2.2) that these functions satisfythe following equations:

v̄γ(t) = S(t)v0 + ψγ(t) + S ∗
(
F (v̄γ + ψγ) + ∂x

(
G(v̄γ + ψγ)

))
(t) , (2.3)

ṽγ(t) = Sε(t)v0 + ψ̃γ(t) + Sε ∗
(
F (ṽγ + ψ̃γ) +∇G(ṽγ + ψ̃γ)Dε(ṽ

γ + ψ̃γ)
)
(t).

(2.4)

For large parts of this article, it will be convenient to workin the fractional
Sobolev spaceHα for someα > 1

2 , so thatHα ⊂ L∞. Furthermore, we will need
to use a high-frequency cut-off, which will smoothen out thesolutions at a scaleεχ

for someχ > 1. It turns out that a reasonable choice for these parameters is given
by

α = 3
4 , γ = 1

3 , χ = 3
2 , (2.5)

and we will fix these values from now on. With these notations at hand, the follow-
ing theorem, which is essentially a more precise reformulation of Theorem 1.6, is
a more precise statement of our main result. Here and in the rest of the paper we
write ‖u‖β to denote the norm of an elementu in the fractional Sobolev spaceHβ

for β ∈ R.

Theorem 2.2. Let κ > 0 be an arbitrary (small) exponent and letv0 ∈ Hβ for
all β < 3

2 . There exists a sequence of stopping timesτε satisfyingτε → τ∗ in
probability asε→ 0, such that

lim
ε→0

P

(
sup
t≤τε

‖uε(t)− ū(t)‖L∞ > ε
1

8
−κ

)
= 0 . (2.6)

In fact, we have the bounds

lim
ε→0

P

(
sup
t≤τε

‖ṽγ(t)− v̄γ(t)‖α > ε
1

8
−κ

)
= 0 , (2.7)

lim
ε→0

P

(
sup
t≤τε

‖ψ̃γ(t)− ψγ(t)‖L∞ > ε
1

2
−κ

)
= 0 . (2.8)

Remark2.3. We emphasise again that the initial conditionsū(0) anduε(0) are
slightly different. In fact, one hasuε(0) = ū(0) + ψ̃(0) − ψ(0).

Remark2.4. The rate1
8 is not optimal. By adjusting the parametersα, γ andχ in

an optimal way, and by sharpening some of the arguments in ourproof, one could
achieve a slightly better rate. However, we do not believe that any rate obtained in
this way would reflect the true speed of convergence, so we keep with the values
(2.5) that yield simple fractions.

Remark2.5. From a technical point of view, the general methodology followed in
this section and the subsequent sections is inspired from [Hai10], where a some-
what similar phenomenon was investigated. Besides the structural differences in
the equations considered here and in [Hai10], the main technical difficulties that
need to be overcome for the present work are the following:

(1) In [Hai10], it is possible to simply subtract the stochastic convolutionψ
(or ψ̃) and work with the equation for the remainder. Here, we instead
subtract only the highest Fourier modes ofψ. The reason for this choice
is that it entails that̄vγ → ū asε → 0. This allows us to linearise the
nonlinearity around̄vγ in order to exhibit the desired correction term. As
a consequence, our a priori regularity estimates are much worse than those
in [Hai10] and our convergence rates are worse. The main reason why
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we need this complication is that our approximate derivativeDε does not
satisfy the chain rule.

(2) All of our fixpoint arguments need to be performed in the fractional Sobolev
spaceHα, for someα > 1

2 . This is in contrast to [Hai10] where some of
the arguments could be performed first inL∞, and then lifted toHα by a
standard bootstrapping argument. These bootstrapping arguments fail here,
since the nonlinearity of our approximating equation contains an approxi-
mate derivative, which gives rise to correction terms whichare not easy to
control.

(3) In one crucial step where a Gaussian concentration inequality is employed
in [Hai10], it was necessary that the stochastic convolutions belong toHα

for someα > 1
2 . This is the case in [Hai10] as a consequence of the extra

regularising effect caused by a small fourth-order term present in the linear
part. This additional regularising effect is not always present in the current
work. We therefore perform another truncation in Fourier space, at very
high frequencies. This is the purpose of the exponentχ.

Note also that Proposition 4.6 is the analogue of Proposition 4.1 in [Hai10]. One
difference is that we have a much cleaner separation of the probabilistic and the
analytical aspects of this result.

By a standard Picard fixed point argument (see, e.g. [Hai09])it can be shown
that (2.1) admits a unique mild solution̄u defined on a random time interval[0, τ∗].
Moreover, the spatial regularity ofψ andū equals that of a Brownian path, in the
sense thatψ(t) andū(t) are continuous and belong toHβ for anyβ < 1

2 and any

t > 0, but not toH
1

2 . We shall take advantage of the fact that the processv̄ is much
more regular. In fact,̄v(t) ∈ Hβ almost surely for anyβ < 3

2 and anyt > 0, but

one does not expect it to belong toH
3

2 in general. This follows immediately from
the mild formulation (2.1) combined with a standard bootstrapping argument. It
follows from these considerations that, for every fixed timehorizonT , the stopping
time

τK∗ := T ∧ inf{t : ‖v̄(t)‖α ∨ ‖ū(t)‖L∞ ≥ K}
converges in probability toτ∗ ∧ T asK → ∞.

It will be shown in Section 4 that a number of functionals ofψ andψ̃ scale in
the following way:

‖ψ̃χ
γ (t)‖L∞ . ε

γ
2
−κ , ‖ψ̃γ(t)‖L∞ . ε

γ
2
−κ ,

‖ψγ(t)‖L∞ . ε
γ
2
−κ , ‖ψ̃χ(t)‖L∞ . ε

χ
2
−κ ,

‖ψγ(t)‖α . ε−γ(α− 1

2
)−κ , ‖ψ̃χ

γ (t)‖α . ε−χ(α− 1

2
)−κ ,

‖ψ̃γ(t)− ψγ(t)‖α . ε2−γ(α+ 3

2
)−κ , Θε(ψ̃γ(t)) . ε−1−κ ,

Θε(ψ̃χ(t)) . εχ−2−κ , ‖Λ− Ξε(ψ̃
χ
γ (t))‖−α . ε

1

2
−κ ,

where the quantitiesΘε andΞε are defined by

Θε(u)
def
=

∫

R
y2‖D̂εyu‖2L2 |µ|(dy) , Ξε(u)

def
=

∫

R

εy2

2
D̂εyu⊗ D̂εyuµ(dy) .

Note that all of these relations are of the formΨε
i (t) . εαi−κ for some expression

Ψ
ε
i depending onε and some exponentαi. In the proof it will be convenient to
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impose this behaviour by means of a hard constraint. For thispurpose we introduce
the stopping timeτK , which is defined forK > 0 by

τK
def
= τK∗ ∧ inf{t : ∃i : Ψε

i (t) ≥ εαi−κ} . (2.9)

From now on, we will writeCK to denote a constant which may depend onK
(andT ) and is allowed to change from line to line. Similarly,κ will be a positive
universal constant which is sufficiently small and whose value is allowed to change
from line to line. However, the final value ofκ is independent ofε,K andT .

The remainder of this section is devoted to the proof of Theorem 2.2.

Proof of Theorem 2.2.Most of the work in the proof consists of bounding the dif-
ference betweeñvγ and v̄γ in Hα. This bound will be obtained in several steps,
using the intermediate processesv(i)ε , i = 1, . . . , 4, defined by

v(1)ε (t) = S(t)v0 + ψγ(t) + S ∗
(
F (v(1)ε ) + ∂xG(v

(1)
ε )

)
(t) , (2.10a)

v(2)ε (t) = S(t)v0 + ψγ(t) + S ∗
(
F (v(2)ε ) +DεG(v

(2)
ε )

)
(t) , (2.10b)

v(3)ε (t) = Sε(t)v0 + ψ̃γ(t) + Sε ∗
(
F (v(3)ε ) +DεG(v

(3)
ε )

)
(t) , (2.10c)

v(4)ε (t) = Sε(t)v0 + ψ̃γ(t) (2.10d)

+ Sε ∗
(
F (v(4)ε + ψ̃χ

γ ) +∇G(v(4)ε + ψ̃χ
γ )Dε(v

(4)
ε + ψ̃χ

γ )
)
(t) .

Recall furthermore the definition of the stopping timeτK given in (2.9). With this

definition at hand, we setτK0
def
= τK as well asv(0)ε

def
= v̄γ andv(5)ε

def
= ṽγ , and we

define recursively a sequence of stopping timesτKj with j = 1, . . . , 5 by

τKj = τKj−1 ∧ inf{t : ‖v(j)ε (t)− v(j−1)
ε (t)‖α ≥ K} . (2.11)

With these notations at hand, Propositions 5.1 – 5.7 state that, for every fixed values
K,κ > 0 and everyj = 1, . . . , 5, one has

lim
ε→0

P

(
sup
t≤τKj

‖v(j)ε (t)− v(j−1)
ε (t)‖α > ε

1

8
−κ

)
= 0 , (2.12)

Combining all of these bounds, we conclude immediately that, for every fixed time
horizonT > 0 and every choice of valuesK andκ, we have

lim
ε→0

P

(
sup
t≤τK

5

‖ṽγ(t)− v̄γ(t)‖α > ε
1

8
−κ

)
= 0 .

This is formally very close to (2.7), except that we still have the valuesT,K > 0
appearing in our statement and consider the solutions only up to the stopping time
τK5 .

Sinceτ∗ ∧ T → τ∗ asT → ∞ and since we already argued thatτK∗ → τ∗ ∧ T
asK → ∞, the bound (2.7) follows if we are able to show that, for everyfixed
choice ofK andT ,

lim
ε→0

P(τK5 6= τK∗ ) = 0 . (2.13)

Since the statement of our theorem is stronger, the smaller the value ofκ, we can
assume without loss of generality thatκ < 1

8 . In this case, limε→0 ε
1

8
−κ = 0, so

that (2.12) and (2.11) together imply that

lim
ε→0

P(τKj 6= τKj−1) = 0 ,

for j = 1, . . . , 5, from which we conclude that limε→0 P(τ
K
5 6= τK) = 0.
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In order to finish the proof of (2.7), it now suffices to show that limε→0 P(τ
K 6=

τK∗ ) = 0. Fix an arbitraryT > 0 andκ > 0. It then follows from Propositions 4.3,
4.4 and 4.5 that for each of the termsΨj appearing in (2.9), there exists a constant
Cj > 0 such that

E sup
t∈[0,T ]

Ψ
ε
j(t) ≤ Cjε

αj−
κ
2 ,

uniformly for all ε ≤ 1. It then follows from Chebychev’s inequality that

P(τK 6= τK∗ ) ≤
∑

j

P

(
sup

t∈[0,T ]

Ψ
ε
j(t) ≥ εαj−κ

)
≤

∑

j

Cjε
κ/2 ,

from which the claim follows.
Since (2.6) follows from (2.7) and (2.8), the proof of the theorem is complete if

we show that (2.8) holds. Since it follows from Proposition 4.3 and Chebychev’s
inequality that

lim
ε→0

P

(
sup
t≤T

‖ψ̃γ(t)− ψγ(t)‖L∞ > ε
1

2
−κ

)
= 0 ,

for everyT > 0, this claim follows at once. �

3. ANALYTIC TOOLS

3.1. Products and compositions of functions in Sobolev spaces.In this sub-
section we collect bounds for products and compositions of functions in Sobolev
spaces. As is usual in the analysis literature, we use the notationΦ . Ψ as a short-
hand for ‘there exists a constantC such thatΦ ≤ CΨ’. These estimates will be
useful in order control the various terms that arise in the Taylor expansion of the
nonlinearity that will be performed in Section 5 below.

Lemma 3.1. Letr, s, t ≥ 0 be such thatr ∧ s > t andr + s > 1
2 + t.

(1) For f ∈ Hr andg ∈ Hs we havefg ∈ Ht and

‖fg‖t . ‖f‖r‖g‖s . (3.1)

(2) For f ∈ Hr andg ∈ H−t we havefg ∈ H−s and

‖fg‖−s . ‖f‖r‖g‖−t . (3.2)

Proof. The bound (3.1) is well-known and an elementary proof can be found for
example in [Hai09, Theorem 6.18]. To prove (3.2), we takeϕ ∈ Hs and use (3.1)
to obtain

〈ϕ, fg〉 = 〈ϕf, g〉 ≤ ‖ϕf‖t‖g‖−t . ‖ϕ‖s‖f‖r‖g‖−t ,

which implies the desired result. �

Lemma 3.2. Lets ∈ (12 , 1). There existsC > 0 such that for anyu ∈ Hs and any
G ∈ C1(Rn;Rn) satisfying

‖Gu‖C1 := sup{|G(x)| + |∇G(x)| : |x| ≤ ‖u‖L∞} <∞ ,

we have

‖G ◦ u‖s ≤ C‖Gu‖C1(1 + ‖u‖s) .
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Proof. Let τh be the shift operator defined byτhu(x) := u(x−h). It is well known
(see, e.g., [DS93] or, for functions defined onRn, [AF03, Theorem 7.47]) that the
expression

‖u‖L2 +

(∫ 1

0

[
t−s sup

|h|<t

‖u− τhu‖L2

]2 dt
t

) 1

2

(3.3)

defines an equivalent norm onHs. The result then follows by inserting the esti-
mates

‖G ◦ u‖L2 ≤ ‖G ◦ u‖L∞ ≤ C‖Gu‖C1

‖G ◦ u− τh(G ◦ u)‖L2 ≤ C‖Gu‖C1‖u− τhu‖L2

into (3.3). �

3.2. Semigroup bounds.We will frequently use the fact that forα ≥ β andT >
0, there exists a constantC > 0 such that

‖S(t)u‖α ≤ Ct−
1

2
(α−β)‖u‖β , (3.4)

for anyε ∈ (0, 1], t ∈ [0, T ] andu ∈ Hβ. This is a straightforward consequence
of standard analytic semigroup theory [Lun95, Hai09]. Since the generator ofS is
selfadjoint in all of theHs, it is also straightforward to prove (3.4) by hand. As a
consequence, we have

Lemma 3.3. Letα, β ∈ R be such that0 ≤ α−β < 2 and letT > 0. There exists
C > 0 such that for allt ∈ [0, T ] andu ∈ C([0, t];Hβ) we have

∥∥∥
∫ t

0
S(t− s)u(s) ds

∥∥∥
α
≤ Ct1−

1

2
(α−β) sup

s∈[0,t]

‖u(s)‖β . (3.5)

Proof. It suffices to integrate the bound (3.4). �

The following bounds measure how wellSε approximatesS in these interpola-
tion spaces. The general philosophy is that every power ofε has to be paid with
one spatial derivative worth of regularity. This type of power-counting is a direct
consequence of the fact that the functionf that measures how much∆ε differs
from ∂2x, is evaluated atε|k| in the definition of∆ε. The precise bounds are the
following:

Lemma 3.4. Let κ ∈ [0, 2]. For T > 0 there existsC > 0 such that for any
t ∈ [0, T ], ε ∈ (0, 1], andu ∈ Hβ, we have

‖Sε(t)u− S(t)u‖α ≤ Cεκt−
1

2
(α−β+κ)‖u‖β (β ≤ α+ 2κ) , (3.6)

‖Sε(t)u‖α ≤ Ct−
1

2
(α−β)‖u‖β (β ≤ α) . (3.7)

Proof. We setf̄
def
= f − 1 and assumeν = 1 for notational simplicity, since the

caseν 6= 1 is virtually identical. The assumptions onf imply that|f̄(εn)| ≤ cε2n2

whenevern < δ/ε andδ is some sufficiently small constant. Using the mean value
theorem and the fact that we can assumeδ < 1 without loss of generality, we obtain
for n < δ/ε andκ ∈ [0, 2],

|exp(−tn2f̄(εn))− 1| ≤ (2 ∧ ctε2n4)ectε2n4 ≤ Ct
κ
2 εκn2κectδ

2n2

≤ Cεκt
κ
2 n2κecδ

2t(1+n2) .
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Inserting this bound into the identity

(Sε(t)u− S(t))en = (e−tn2f̄(εn) − 1)e−t(1+n2)en ,

it then follows from (3.4) that

‖Πδ/ε(Sε(t)− S(t))u‖α ≤ Cεκt
κ
2 ‖S((1 − δ2c)t)u‖α+2κ

≤ Cεκt−
1

2
(α−β+κ)‖u‖β ,

(3.8)

provided that we chooseδ sufficiently small so thatδ2c ≤ 1
2 , say.

On the other hand, note that

(I −Πδ/ε)(Sε(t)u− S(t))en = 1{|n|>δ/ε}(e
−tn2f̄(εn) − 1)e−t(1+n2)en .

Recall thatf̄(εn) ≥ q−1 for all n, and thatq ∈ (0, 1]. Then we can find a constant
C such that

|exp(−tn2f̄(εn))− 1|e−t(1+n2) ≤ Ce−q(1+n2)t .

Moreover, for anyκ > 0 we have1{|n|>δ/ε} ≤ |εn/δ|κ. It thus follows, using (3.4)
again, that

‖(I −Πδ/ε)(Sε(t)− S(t))u‖α ≤ Cεκ‖S(qt)u‖α+κ ≤ Cεκt−
1

2
(α−β+κ)‖u‖β .

The bound (3.6) now follows by combining this inequality with (3.8). The inequal-
ity (3.7) follows by combining the special caseκ = 0 with (3.4). �

3.3. Estimates for the gradient term. In this section, we similarly show how well
the operatorDε approximates∂x. Again, the guiding principle is that every power
of ε “costs” the loss of one derivative. However, we are also going to use the fact
thatDε is a bounded operator. In this case, we can gain up to one spatial derivative
with respect to the operator∂x, but we have to “pay” with the same number of
inverse powers ofε. The rigorous statement for the latter fact is the following:

Lemma 3.5. Let β ∈ R and α ∈ [0, 1]. There existsC > 0 such that for all
ε ∈ (0, 1] andu ∈ Hβ the estimate

‖Dεu‖β−α ≤ Cεα−1‖u‖β

holds.

Proof. Using the assumption thatM := |µ|(R) < ∞, together with Jensen’s in-
equality and Fubini’s theorem we obtain

‖Dεu‖2L2 ≤ 1

ε2

∫ (∫

R
|u(x+ εy)| |µ|(dy)

)2

dx

≤ M

ε2

∫ ∫

R
|u(x+ εy)|2 |µ|(dy) dx =

M2

ε2
‖u‖2L2 .

On the other hand, assuming for the moment thatu is smooth, we use the as-
sumption thatµ(R) = 0, and apply Jensen’s inequality and Minkowski’s integral
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inequality to obtain

‖Dεu‖2L2 =
1

ε2

∫ (∫

R
u(x+ εy)µ(dy)

)2

dx

=
1

ε2

∫ (∫

R

∫ εy

0
u′(x+ z) dz µ(dy)

)2

dx

≤ M

ε2

∫ ∫

R

(∫ εy

0
|u′(x+ z)| dz

)2

|µ|(dy) dx

≤ M

ε2

∫

R

(∫ εy

0

(∫
|u′(x+ z)|2 dx

) 1

2

dz

)2

|µ|(dy)

=M‖u′‖2L2

∫

R
y2|µ|(dy) ≤ C‖u‖21 .

Using complex interpolation, it follows that‖Dεu‖L2 ≤ Cεα−1‖u‖α for every
α ∈ [0, 1]. The desired result then follows from the fact thatDε commutes with
every Fourier multiplier. �

The announced approximation result on the other hand is the following:

Lemma 3.6. Let β ∈ R and α ∈ [0, 1]. There existsC > 0 such that for all
ε ∈ (0, 1] andu ∈ Hβ the estimate

‖Dεu− ∂xu‖β−1−α ≤ Cεα‖u‖β
holds.

Proof. In view of (1.3) we have, assuming for the moment thatu is smooth,

(Dε − ∂x)u(x) =
1

ε

∫

R

∫ εy

0

∫ w

0
u′′(x+ z) dz dw µ(dy) .

Integrating against a test functionϕ and applying Fubini’s theorem, we arrive at
∣∣∣∣
∫
ϕ(x)(Dε − ∂x)u(x) dx

∣∣∣∣ ≤
C

ε

∫

R

∫ εy

0

∫ w

0
‖ϕ‖2−β‖u‖β dz dw |µ|(dy)

≤ Cε‖ϕ‖2−β‖u‖β
∫

R
|y|2 |µ|(dy) ,

which implies that

‖(Dε − ∂x)u‖β−2 ≤ Cε‖u‖β .
On the other hand, Lemma 3.5 implies that

‖(Dε − ∂x)u‖β−1 ≤ C‖u‖β ,

and the result then follows as before by interpolating between these estimates.�

As an immediate corollary of these bounds, we obtain the following useful fact:

Corollary 3.7. Letβ ∈ [0, 1). There existsC > 0 such that forε ∈ (0, 1], u ∈ Hβ,
andG ∈ C1(Rn) we have

‖DεG(u)− ∂xG(u)‖−1 ≤ Cεβ‖Gu‖C1(1 + ‖u‖β) ,

where‖Gu‖C1 is defined as in Lemma 3.2.
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Proof. Using Lemmas 3.6 and 3.2 we obtain

‖DεG(u)− ∂xG(u)‖−1 ≤ Cεβ‖G(u)‖β ≤ Cεβ‖Gu‖C1(1 + ‖u‖β) ,

which is the stated claim. �

4. PROBABILISTIC TOOLS

In this section we prove some sharp estimates for certain expressions involving
stochastic convolutions. Our main tool is the following version of Kolmogorov’s
continuity criterion, which follows immediately from the one given for example in
[RY94]. The reason why we state condition (4.1) in this form,is that it is automat-
ically satisfied (by hypercontractivity) for random fields taking values in a Wiener
chaos of fixed (finite) order.

Lemma 4.1. Let (ϕ(t))t∈[0,1]n be a Banach space-valued random field having the
property that for anyq ∈ (2,∞) there exists a constantKq > 0 such that

(
E‖ϕ(t)‖q

) 1

q ≤ Kq

(
E‖ϕ(t)‖2

) 1

2 ,
(
E‖ϕ(s)− ϕ(t)‖q

) 1

q ≤ Kq

(
E‖ϕ(s)− ϕ(t)‖2

) 1

2 ,
(4.1)

for all s, t ∈ [0, 1]n. Furthermore, suppose that the estimate

E‖ϕ(s)− ϕ(t)‖2 ≤ K0|s− t|δ

holds for someK0, δ > 0 and all s, t ∈ [0, 1]n. Then, for everyp > 0 there exists
C > 0 such that

E sup
t∈[0,1]n

‖ϕ(t)‖p ≤ C
(
K0 + E‖ϕ(0)‖2

) p
2 .

Throughout this subsection we shall useθk andθ̃k for the Fourier coefficients of
ψ andψ̃, so that

ψ(t) =
∑

k∈Z

θk(t)ek , ψ̃(t) =
∑

k∈Z

θ̃k(t)ek .

With this notation at hand, we first state the following approximation bound, which
shows that we can again trade powers ofk for powers ofε, provided that we look
at the difference squared:

Lemma 4.2. For t ≥ 0, k ∈ Z andε ∈ (0, 1] we have

E|θ̃k(t)− θk(t)|2 ≤ C(k−2 ∧ ε4k2) . (4.2)

Proof. We write againf̄ = f−1 and assumeν = 1 for simplicity. The Itô isometry
then implies that

E|θ̃k(t)− θk(t)|2 = C

∫ ∞

0
e−2t(1+k2)

(
1− h(ε|k|)e−tk2 f̄(ε|k|)

)2
dt

≤ C

∫ ∞

0
e−2t(1+k2)

(
1− e−tk2f̄(ε|k|)

)2
dt

+ C

∫ ∞

0
e−2t(1+k2)e−2tk2f̄(ε|k|)

(
1− h(ε|k|)

)2
dt

def
= I1 + I2 .

(4.3)



14 MARTIN HAIRER AND JAN MAAS

Let δ > 0 be a (small) constant to be determined later and consider first the termI1
with |εk| ≤ δ. Sincef is twice differentiable near the origin, we can findδ small
enough so that|f̄(|εk|)| ≤ cε2k2 for somec > 0. Therefore, fort ≥ 0,

|1− e−tk2f̄(ε|k|)| ≤ ctε2k4ectε
2k4 ≤ ctε2k4ecδ

2tk2 , (4.4)

so that

|I1| ≤ Cε4k8
∫ ∞

0
t2e−2t(1+k2)+2cδ2k2t dt .

If we ensure thatδ is small enough so that2cδ2 ≤ 1, we obtain

|I1| ≤ Cε4k8
∫ ∞

0
t2e−k2t dt ≤ Cε4k2 ≤ C

(
k−2 ∧ ε4k2

)
,

where the last inequality follows from the fact that|εk| ≤ δ by assumption.
To treat the case|εk| > δ, we use the fact that by assumption there existsq ∈

(0, 1] such thatf ≥ q, so that

|I1| ≤
∫ ∞

0
e−2tk2

(
1− e−tk2(q−1)

)2
dt ≤ C

∫ ∞

0
e−2tqk2 dt (4.5)

≤ Ck−2 ≤ C
(
k−2 ∧ ε4k2

)
.

The bound onI2 works in pretty much the same way, using the fact that the
assumptions onh imply that

|1− h(ε|k|)| ≤ C
(
1 ∧ ε2k2

)
.

Using again the fact thatf ≥ q, we then obtain

I2 ≤ C

∫ ∞

0
e−2tqk2

(
1 ∧ ε4k4

)
dt ≤ C

(
k−2 ∧ ε4k2

)
,

as required. �

We continue with a sequence of propositions, in which the estimates obtained
in the previous lemma are used to establish various bounds for stochastic convolu-
tions.

Proposition 4.3. Let0 < γ < χ. For κ > 0 andε ∈ (0, 1] we have

E sup
t∈[0,T ]

‖ψγ(t)‖L∞ ≤ Cε
γ
2
−κ , E sup

t∈[0,T ]

‖ψ̃γ(t)‖L∞ ≤ Cε
γ
2
−κ ,

E sup
t∈[0,T ]

‖ψ̃χ
γ (t)‖L∞ ≤ Cε

γ
2
−κ , E sup

t∈[0,T ]

‖ψ̃γ(t)− ψγ(t)‖L∞ ≤ Cε
1

2
−κ .

Proof. We start with the proof of the second estimate. Observe thatθ̃k is a complex
one-dimensional stationary Ornstein-Uhlenbeck process with varianceh2/(2(1 +
νk2f)) and characteristic time1 + νk2f . This implies that

E|θ̃k(t)|2 =
h2(ε|k|)

2(1 + νk2f(ε|k|)) ≤ C(1 ∧ k−2) (4.6)

and

E|θ̃k(t)− θ̃k(s)|2 ≤ Ch2(ε|k|)|t − s| ≤ C|t− s| . (4.7)

These bounds imply that, on the one hand,

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2 ≤ CE|θ̃k(t)|2 + CE|θ̃k(s)|2 ≤ C(1 ∧ k−2) ,
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while on the other hand, one has

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2

≤ CE|θ̃k(t)− θ̃k(s)|2 + Ck2|x− y|2E|θ̃k(s)|2

≤ C|t− s|+ C|x− y|2 .
Combining these inequalities we find that, for everyκ ∈ [0, 2],

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2 ≤ C(1 ∧ k−2)1−
1

2
κ(|t− s|+ |x− y|2)κ

2 .

Since thẽθk ’s are independent except for the reality conditionθ̃−k = θ̃k, we infer
that

E|ψ̃γ(t, x)− ψ̃γ(s, y)|2 ≤ C
∑

|k|>ε−γ

E|θ̃k(t)ek(x)− θ̃k(s)ek(y)|2

≤ C(|t− s|+ |x− y|2)κ
2

∑

|k|>ε−γ

(1 ∧ k−2)1−
1

2
κ

≤ Cε(1−κ)γ(|t− s|+ |x− y|2)κ
2 .

Arguing similarly, we obtain

E|ψ̃γ(0, 0)|2 ≤ C
∑

|k|>ε−γ

E|θ̃k(0)|2 ≤ C
∑

|k|>ε−γ

(1 ∧ k−2) ≤ Cεγ .

The result now follows by combining these two bounds with Lemma 4.1.
The proof of the first and third estimates being very similar,we do not reproduce

them here. In order to prove the last estimate, we use Lemma 4.2 to obtain

E|θ̃k(t)− θk(t)|2 ≤ C(k−2)
3

4
+ 1

4
κ(ε4k2)

1

4
− 1

4
κ ≤ Cε1−κk−1−κ .

This bound then replaces (4.6), and the rest of the proof is again analogous to the
proof of the second estimate. �

Proposition 4.4. Letζ > 0. For κ > 0 andε ∈ (0, 1] we have

E sup
t∈[0,T ]

‖ψζ(t)‖α ≤ Cε−ζ(α− 1

2
)−κ , (α > 1

2) , (4.8)

E sup
t∈[0,T ]

‖ψ̃ζ(t)− ψζ(t)‖α ≤ Cε2−ζ(α+ 3

2
)−κ , (α > −3

2) . (4.9)

Proof. In view of the estimates

E|θk(t)|2 ≤ Ck−2 , E|θk(t)− θk(s)|2 ≤ C|t− s| , (4.10)

we obtain

E‖ψζ(t)− ψζ(s)‖2α ≤ C|t− s|κ
∑

|k|≤ε−ζ

(1 + k2)α−1+κ

≤ C|t− s|κε−2ζ(α− 1

2
+κ)

and

E‖ψζ(0)‖2α ≤ Cε−2ζ(α− 1

2
) .

The inequality (4.8) thus follows from Lemma 4.1.
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In order to prove (4.9) we argue similarly, but the estimatesare slightly more
involved. Writeδk := θ̃k − θk so thatψ̃ζ − ψζ =

∑
|k|≤ε−ζ δkek. Using (4.7) and

(4.10) we have fors, t ≥ 0,

E|δk(t)− δk(s)|2 ≤ C|t− s| .

Combining this bound with Lemma 4.2, we infer that forκ ∈ [0, 12 ),

E|δk(t)− δk(s)|2 ≤ C(k−2)κ(ε4k2)1−2κ|t− s|κ = Cε4−8κk2−6κ|t− s|κ .

Forκ ∈ (0, 13α+ 1
2), we thus obtain

E‖
(
ψ̃ζ − ψζ

)
(t)−

(
ψ̃ζ − ψζ

)
(s)‖2α ≤ C|t− s|κε4−8κ

∑

|k|≤ε−ζ

(1 + k2)α+1−3κ

≤ C|t− s|κε4−ζ(2α+3)−8κ

and similarly

E sup
t∈[0,T ]

‖ψ̃ζ(t)− ψζ(t)‖2α ≤ Cε4−ζ(2α+3)−8κ .

The desired estimate (4.9) now follows from Lemma 4.1. �

Proposition 4.5. Letζ > 0. For everyκ > 0 there existsC > 0 such that

E sup
t∈[0,T ]

Θ(ψ̃ζ(t)) ≤ Cε−1+(ζ−1)+−κ ,

for all ε ∈ (0, 1], where we wrote(ζ − 1)+
def
= 0 ∨ (ζ − 1).

Proof. As in the proof of Propositions 4.3 and 4.4, we shall apply Kolmogorov’s
continuity criterion from Lemma 4.1, this time forL2-valued random fields. It
follows from (4.6) that

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 =

∑

|k|>ε−ζ

∣∣∣∣
eikεy − 1

εy

∣∣∣∣
2

E|θ̃k(t)− θ̃k(s)|2

≤ C
∑

k>ε−ζ

1− cos(kεy)
|εky|2 .

Note that, up to a factorε|y|, this sum can be interpreted as a Riemann sum for the

functionH(t)
def
= t−2(1− cos(t)). In fact, sinceH(t) ≤ 2(1 ∧ t−2),

ε|y|
∑

k>ε−ζ

1− cos(kεy)
|kεy|2 =

∑

k>ε−ζ

ε|y|H(kεy) ≤ 2

∫ ∞

ε1−ζ

(1 ∧ t−2) dt ≤ Cε(ζ−1)+ .

(4.11)

It thus follows that

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 ≤ C|εy|−1ε(ζ−1)+ . (4.12)

On the other hand, (4.6) and (4.7) imply that

E|θ̃k(t)− θ̃k(s)|2 ≤ C(1 ∧ k−2)
3

4 |t− s| 14 ,
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and therefore

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 =

∑

|k|>ε−ζ

∣∣∣∣
eikεy − 1

εy

∣∣∣∣
2

E|θ̃k(t)− θ̃k(s)|2

≤ C|εy|−2|t− s| 14
∑

|k|>ε−ζ

(1 ∧ k−2)
3

4

≤ C|εy|−2|t− s| 14 .

(4.13)

Combining (4.12) and (4.13), we find that

E‖D̂εy

(
ψ̃ζ(t)− ψ̃ζ(s)

)
‖2L2 ≤ |εy|−1−κ|t− s| 14κε(1−κ)(ζ−1)+ .

Similarly, we obtain

E‖D̂εyψ̃ζ(0)‖2L2 =
∑

|k|>ε−ζ

∣∣∣∣
eikεy − 1

εy

∣∣∣∣
2

E|θ̃k(0)|2

≤ C
∑

|k|>ε−ζ

1− cos(kεy)
|εky|2 ≤ C|εy|−1ε(ζ−1)+ .

In view of Lemma 4.1, the latter two estimates imply that

E sup
t∈[0,T ]

‖D̂εyψ̃ζ(t)‖2L2 ≤ C|εy|−1−κε(1−κ)(ζ−1)+ .

Using this bound, the desired result forΘ(ψ̃ζ(t)) can be obtained easily, since

E sup
t∈[0,T ]

Θ(ψ̃ζ(t)) = E sup
t∈[0,T ]

∫

R
|y|2‖D̂εyψ̃ζ(t)‖2L2 |µ|(dy)

≤
∫

R
|y|2E sup

t∈[0,T ]

‖D̂εyψ̃ζ(t)‖2L2 |µ|(dy)

≤ Cε−1−κ+(1−κ)(ζ−1)+
∫

R
|y|1−κ |µ|(dy)

≤ Cε−1−κ+(1−κ)(ζ−1)+ .

The result now follows by rescalingκ. �

The next and final result of this section involves the term which gives rise to the
correction term in the limiting equation. Before stating the result, we introduce the
notation

Ξy
ε(u)

def
=
εy2

2
D̂εyu⊗ D̂εyu ,

Λy def
=

1

2πν

∫

R+

h2(t)

t2f(t)

(
1− cos(yt)

)
dt ,

and

Λy
ε

def
=

∑

ε−γ<k<ε−χ

Λy
ε,k

def
=

∑

ε−γ<k<ε−χ

(1− cos(εky))h2(εk)
2πε(1 + νk2f(εk))

.

Note that one has the identities

Ξε(u) =

∫

R
Ξy
ε(u)µ(dy) , Λ =

∫

R
Λy µ(dy) , EΞy

ε(ψ̃
χ
γ ) = Λy

εI ,
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where the constantΛ is given by (1.5).

Proposition 4.6. Letα > 1
2 , γ ≤ 1

2 , andχ ≥ 3
2 . For ε ∈ (0, 1], we then have

E sup
t∈[0,T ]

‖Λ− Ξε(ψ̃
χ
γ (t))‖−α ≤ Cε

1

2 .

Proof. The proof is an application of Lemma 4.1 withξ = Λ−Ξε(ψ̃
χ
γ ). For brevity

we shall writeA := Ξε(ψ̃
χ
γ ) andAy := Ξy

ε(ψ̃
χ
γ ). We divide the proof into several

steps.
Step 1.First we claim thatξ(t) = Λ−A(t) satisfies the condition (4.1) concern-

ing the equivalence of allq-moments.
To see this, note that̃ψχ

γ admits the representatioñψ(t) =
∑

k αk(t)ek where
eachαk(t) is a Gaussian random vector inRn. As a consequence, for everyy ∈ R,
each component ofΛy

ε−Ay is a polynomial of Gaussian random variables of degree
at most two. It thus belongs to the direct sum of Wiener chaoses of order≤ 2 and
the same is true forΛε − A, since each Wiener chaos is a closed subspace of the
space of square integrable random variables. The claim thusfollows from the well-
known equivalence of moments for Hilbert space-valued Wiener chaos (see, e.g.,
[KW92]).

Step 2. In this step, we estimate how wellΛy
ε approximatesΛy. Since|1 −

cosx| ≤ C(1 ∧ x2), we have the bound|Λy
ε,k| ≤ C

(
εy2 ∧ (εk2)−1

)
for some

constantC. As an immediate consequence, we have the bound
∣∣∣Λy

ε −
∑

k≥1

Λy
ε,k

∣∣∣ ≤ C
(
ε1−γy2 + εχ−1

)
. (4.14)

Define now the function

Φy(t) =
(1− cos(yt))h2(t)

2πνt2f(t)
,

so that, sinceh2/f is bounded by assumption, we obtain the bound

|Λy
ε,k − εΦy(εk)| ≤ C

εy2

k2
.

Combining this bound with (4.14), we have
∣∣∣Λy

ε −
∑

k≥1

εΦy(εk)
∣∣∣ ≤ C

(
ε1−γy2 + εχ−1

)
.

At this stage, we recall that for any functionΦ of bounded variation, one has the
approximation ∣∣∣

∑

k≥1

εΦ(εk)−
∫ ∞

0
Φ(t) dt

∣∣∣ ≤ ε‖Φ‖BV ,

where‖Φ‖BV denotes the variation ofΦ overR+. Furthermore, for any pairΦ, Ψ,
we have the bound

‖ΦΨ‖BV ≤ ‖Φ‖L∞‖Ψ‖BV + ‖Ψ‖L∞‖Φ‖BV . (4.15)

If we setΨy(t) = (1− cos(yt))/t2, we have

‖Ψy‖BV =

∫ ∞

0
|Ψ′

y(t)| dt =
∫ ∞

0

|yt sinyt+ 2 cosyt− 2|
t3

dt
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≤ C|y|3
∫ ∞

0

(
1 ∧ 1

y2t2

)
dt ≤ Cy2 .

SinceΨ(0) = y2/2, a similar bound holds for itsL∞ norm, and we conclude from
(4.15) that

‖Φy‖BV ≤ Cy2 .

It follows immediately that we have the bound

|Λy
ε − Λy| ≤ C

(
ε1−γy2 + εy2 + εχ−1

)
. (4.16)

Step 3.We now use these bounds in order to obtain control over‖Λ−A‖2−α for
a fixed timet ≥ 0 (which is often suppressed in the notation).

In order to shorten the notations, note that, we can write

ψ̃(x, t) =
∑

k∈Z

h(ε|k|)√
2
√

1 + νk2f(ε|k|)
ηk(t) ek(x) ,

where theηk are a sequence of i.i.d.Cn-valued Ornstein-Uhlenbeck processes with

E
(
ηk(t)⊗ ηℓ(s)

)
= E t−s

k δk,−ℓI , E t
k = exp(−(1 + νk2f(ε|k|))|t|) ,

and satisfying the reality conditionη−k = η̄k. Here,I denotes the identity matrix.
We will also use the notational shortcut

A
t
k,ℓ

def
= ηk(t)⊗ ηℓ(t) .

Set now

qkε =
eikεy − 1√

2

h(ε|k|)√
1 + νk2f(ε|k|)

,

as a shorthand. With all of these notations in place, it follows from the definition
of Λy

ε that

Ay(t)− Λy
εI =

∑

ε−γ<|k|,|ℓ|≤ε−χ

qkε q
ℓ
ε

(
A

t
k,ℓ − δk,−ℓI

)
ek+ℓ ,

As a consequence, we have the identity

E‖Λy
εI −Ay(t)‖2−α =

∑

k∈Z

(1 + |k|2)−α
∑

ℓ,m

qℓεq
k−ℓ
ε q̄mε q̄

k−m
ε

× E tr
((

A
t
ℓ,k−ℓ − δk,0I

)(
Ā

t
m,k−m − δk,0I

))
,

where the second sum ranges over allℓ,m ∈ Z for whichℓ, k− ℓ,m, k−m belong
to (ε−γ , ε−χ]. A straightforward case analysis allows to check that

E tr
((

A
t
ℓ,k−ℓ − δk,0I

)(
Ā

t
m,k−m − δk,0I

))
= nδℓ,m + n2δℓ,k−m , (4.17)

so that

E‖Λy
εI −Ay(t)‖2−α ≤ C

∑

k∈Z

(1 + |k|2)−α
∑

ℓ∈Z

|qℓε|2|qk−ℓ
ε |2 .

Note now that there exists a constantC such that the bound

|qkε | ≤ C
√
ε
(
|y| ∧ 1

ε|k|
)
≤ Cε

1−β
2 |k|−

β
2 |y|1−

β
2 ,
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is valid for all ε < 1, k ∈ Z, y ∈ R, andβ ∈ [0, 1]. It follows that there exists a
constantC > 0 such that we have the bound

E‖Λy
εI −Ay(t)‖2−α ≤ C

∑

ℓ,m≥1

|qℓε|2|qmε |2
|ℓ+m|2α ≤ C

∑

ℓ,m≥1

|qℓε|2|qmε |2
|ℓ|α|m|α

≤ Cε2−2β
∑

ℓ,m≥1

|y|4−2β

|ℓ|α+β|m|α+β
≤ Cε|y|3 ,

where we made the choiceβ = 1
2 to obtain the last bound, using the fact that

α > 1
2 by assumption. Combining this bound with (4.16), the constraintsγ ≤ 1

2

andχ ≥ 3
2 , and using the fact thatµ has finite fourth moment, we have

E‖ΛI −A(t)‖2−α ≤ C

∫
E‖Λy −Ay(t)‖2−α |µ|(dy)

≤ C

∫
E‖Λy

ε −Ay(t)‖2−α |µ|(dy) + Cε ≤ Cε .

Step 4.Finally we shall estimateE‖A(t) − A(s)‖2−α. Similarly to (4.17), this
involves the identity

E tr
(
A

t
ℓ,k−ℓĀ

s
m,k−m

)
= nδk,0 + (nδl,m + n2δl,k−m)E t−s

ℓ E t−s
k−m .

As a consequence, we infer that

Dkℓm(t, s)
def
= E tr

((
A

t
ℓ,k−ℓ −A

s
ℓ,k−ℓ

)(
Ā

t
m,k−m − Ā

s
m,k−m

))

= 2(nδℓ,m + n2δℓ,k−m)(1− E t−s
ℓ E t−s

k−m) .

It thus follows that for anyδ ∈ [0, 1],

Dkℓm(t, s)

≤ C(δℓ,m + δℓ,k−m)
(
1 ∧

(
2 + νℓ2f(ε|ℓ|) + ν(k −m)2f(ε|k −m|)

)
|t− s|

)

≤ C(δℓ,m + δℓ,k−m)|t− s|δ
(
1 + ℓ2δf(ε|ℓ|)δ + (k −m)2δf(ε|k −m|)δ

)
.

Using this bound we obtain

E
∥∥Ay(t)−Ay(s)

∥∥2
−α

=
∑

k∈Z

(1 + |k|2)−α
∑

ℓ,m

qℓεq
k−ℓ
ε q̄mε q̄

k−m
ε Dkℓm(t, s)

≤
∑

k∈Z

(1 + |k|2)−α
∑

ℓ

|qℓε|2|qk−ℓ
ε |2

(
Dkℓℓ(t, s) +Dk,ℓ,k−ℓ(t, s)

)

≤ C|t− s|δ
∑

k∈Z

(1 + |k|2)−α
∑

ℓ

|qℓε|2|qk−ℓ
ε |2

×
(
1 + ℓ2δf(ε|ℓ|)δ + |k − ℓ|2δf(ε|k − ℓ|)δ

)
.

Note that this expression is almost the same as in Step 3. Using the calculations
done there and taking into account thath andh/f2 are bounded functions, we infer
that

E‖Ay(t)−Ay(s)‖2−α = C|t− s|δ
∑

ℓ,m≥1

|qℓε|2|qmε |2
|ℓ|α−2δ|m|α−2δ

≤ C|t− s|δε|y|3 ,
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and therefore, using Jensen’s inequality (which can be applied since|µ| has finite
mass), and Fubini’s theorem,

E‖A(t)−A(s)‖2−α = E

∥∥∥
∫

R

(
Ay(t)−Ay(s)

)
µ(dy)

∥∥∥
2

−α

≤ C

∫

R
E‖Ay(t)−Ay(s)‖2−α |µ|(dy)

≤ Cε|t− s|δ
∫

R
|y3| |µ|(dy) ≤ Cε|t− s|δ ,

which is the desired bound.
The result follows by combining these steps with Lemma 4.1. �

5. CONVERGENCE OF THE APPROXIMATIONS

This last section is devoted to the convergence result itself. Recall that we are
considering a number of intermediate processesv

(j)
ε with j = 1, . . . , 4 defined in

(2.10). This section is correspondingly broken into five subsections, with thejth
subsection yielding a bound on‖v(j)ε − v

(j−1)
ε ‖α. To prove these bounds, we shall

introduce in each step a stopping time that forces the difference between the pro-
cesses considered in that step to remain bounded. We then show that this difference
actually vanishes asε → 0 with an explicit rate. As a consequence, the process
actually doesn’t “see” the stopping time with high probability.

5.1. From v̄γ to v(1)ε . Define

τK1 := τK ∧ inf{t ≤ T : ‖v(1)ε (t)− v̄γ(t)‖α ≥ K} .

We shall show that fort ≤ τK , theHα-norm of v(1)ε (t) − v̄γ(t) is controlled by
theL∞-norm ofψγ , which is of orderε

γ
2
−κ for anyκ > 0, as shown in Section

4. The proof uses the mild formulations of the equations forv
(1)
ε andv̄γ(t) as well

as the regularising properties of the semigroupS. Note that the next proposition
would still be true if we had replaced theHα-norm in the definition ofτK1 by the
L∞-norm. However, in the proof of Proposition 5.2 below it willbe important to
have a bound onv(1)ε in Hα.

Proposition 5.1. For κ > 0 we have

lim
ε→0

P

(
sup
t≤τK

1

‖v(1)ε (t)− v̄γ(t)‖α > ε
γ
2
−κ

)
= 0 .

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (2.3) and (2.10a) that̺ε := v
(1)
ε − v̄γ

satisfies the equation

̺ε(t) = S(t− s)̺ε(s) +

∫ t

s
S(t− r)(σ1 + ∂xσ

2
ε)(r) dr ,

where

σ1ε := F (v̄γ + ̺ε)− F (v̄γ + ψγ) ,

σ2ε := G(v̄γ + ̺ε)−G(v̄γ + ψγ) .



22 MARTIN HAIRER AND JAN MAAS

Lemma 3.3 yields the estimate

‖̺ε(t)‖α ≤ ‖̺ε(s)‖α + C(t− s)
1

2
(1−α) sup

r∈(s,t)

‖(σ1ε + ∂xσ
2
ε)(r)‖−1

≤ ‖̺ε(s)‖α + C(t− s)
1

2
(1−α) sup

r∈(s,t)

‖σ1ε(r)‖L∞ + ‖σ2ε(r)‖L∞ .

Sincev̄γ , ̺ε, andψγ are bounded inL∞-norm for r ≤ τK1 , andF,G areC3, it
follows that

‖σ1ε(r)‖L∞ + ‖σ2ε(r)‖L∞ ≤ CK‖̺ε(r)‖L∞ +CK‖ψγ(r)‖L∞ ,

from which we infer that

‖̺ε(t)‖α ≤ ‖̺ε(s)‖α + C ′
K(t− s)

1

2
(1−α) sup

r∈(s,t)

(
‖̺ε(r)‖L∞ + ‖ψγ(r)‖L∞

)
.

ChooseδK > 0 so small thatC ′
Kδ

1

2
(1−α)

K ≤ 1
2 , and set fork ≥ 0,

rk := sup
{
‖̺ε(t)‖α : t ∈ [kδK ∧ τK1 , (k + 1)δK ∧ τK1 ]

}
.

Taking into account thatHα ⊆ L∞, we obtain the inequality

rk+1 ≤ rk +
1

2
rk+1 +

1

2
sup

t∈[0,T ]

‖ψγ(t)‖L∞ ,

which reduces to

rk+1 ≤ 2rk + sup
t∈[0,T ]

‖ψγ(t)‖L∞ .

Combined with the estimate

r0 ≤ 2 sup
r≤δK∧τK

1

‖ψγ(r)‖L∞

which can be derived similarly, it then follows that

sup
t∈[0,τK

1
]

‖̺ε(t)‖α ≤ sup
0≤k≤T/δK

rk ≤ CK sup
t∈[0,T ]

‖ψγ(t)‖L∞ ,

which together with Proposition 4.3 implies the desired result. �

5.2. From v
(1)
ε to v(2)ε . For the purpose of this section, we define the stopping time

τK2 := τK1 ∧ inf{t ≤ T : ‖v(2)ε (t)− v(1)ε (t)‖α ≥ K} ,

as well as the exponent

α̃
def
= (1− γ)α+

γ

2
=

2

3
.

Proposition 5.2. For κ > 0 we have

lim
ε→0

P

(
sup
t≤τK

2

‖v(2)ε (t)− v(1)ε (t)‖α > εα̃−κ
)
= 0 .

Proof. Let 0 ≤ s ≤ t ≤ τ∗ and note that̺ ε := v
(2)
ε − v

(1)
ε satisfies

̺ε(t) = S(t− s)̺ε(s) +

∫ t

s
S(t− r)σε(r) dr ,

where

σε := F (v(2)ε )− F (v(1)ε ) +Dε(G(v
(1)
ε + ̺ε))− ∂xG(v

(1)
ε ) .
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From the definition ofτK2 we know thatv(1)ε and̺ε are bounded inL∞ by a con-

stant depending onK. Moreover, we have the bound‖v(1)ε ‖α ≤ CKε
−γ(α− 1

2
)−κ.

Using these facts together with Corollary 3.7 we obtain, forr ≤ τK2 ,

‖σε‖−1 ≤ ‖F (v(2)ε )− F (v(1)ε )‖L∞

+ ‖(Dε − ∂x)G(v
(1)
ε )‖−1 + ‖Dε(G(v(1)ε + ̺ε)−G(v(1)ε ))‖−1

≤ CK‖̺ε‖L∞ + CKε
α(1 + ‖v(1)ε ‖α) + ‖G(v(1)ε + ̺ε)−G(v(1)ε )‖L∞

≤ CK(εα̃−κ + ‖̺ε‖L∞) ,

hence

‖̺ε(t)‖α ≤ ‖̺ε(s)‖α + C(t− s)
1

2
(1−α) sup

r∈(s,t)

‖σε(r)‖−1

≤ ‖̺ε(s)‖α + CK(t− s)
1

2
(1−α) sup

r∈(s,t)

(
εα̃−κ + ‖̺ε(r)‖L∞

)
.

Arguing as in the proof of Proposition 5.1, it follows that

sup
t∈[0,τK

2
]

‖̺ε(t)‖α ≤ CKε
α̃−κ ,

which immediately yields the desired result. �

5.3. From v
(2)
ε to v(3)ε . Define

τK3 := τK2 ∧ inf{t ≤ T : ‖v(3)ε (t)− v(2)ε (t)‖α ≥ K} .

In this case, the singularity(t− s)−
1

2
α which arises in the proof below, prevents

us from arguing as in Proposition 5.1. We nevertheless have:

Proposition 5.3. For κ > 0 we have

lim
ε→0

P

(
sup
t≤τK

3

‖v(3)ε (t)− v(2)ε (t)‖α > εζ−κ
)
= 0 ,

where the exponentζ is given by

ζ
def
= α̃ ∧ (32 − α) ∧

(
2− γ(α+ 3

2 )
)
=

2

3
.

Remark5.4. The exponentζ arises by collecting the bounds (5.2), (5.3), and (5.5).

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (2.10b) and (2.10c) that̺ε :=

v
(3)
ε − v

(2)
ε satisfies

̺ε(t) = Sε(t−s)̺ε(s)+(Sε(t−s)−S(t−s))v(2)ε (s)+R1(s, t)+R2(s, t) , (5.1)

where

R1(s, t)
def
= (ψ̃γ(t)− ψγ(t))−

(
Sε(t− s)ψ̃γ(s)− S(t− s)ψγ(s)

)

and

R2(s, t) :=

∫ t

s
(Sε(t− r)− S(t− r))

(
F (v(3)ε (r)) +DεG(v

(3)
ε (r)

)
dr

+

∫ t

s
S(t− r)

(
F (v(3)ε (r))− F (v(2)ε (r))

+DεG(v
(3)
ε (r))−DεG(v

(2)
ε (r))

)
dr .
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We shall first prove a bound onR1(s, t). Using both inequalities from Lemma
3.4, we obtain

‖
(
Sε(t− s)ψ̃γ(s)− S(t− s)ψγ(s)

)
‖α

≤ ‖Sε(t− s)
(
ψ̃γ(s)− ψγ(s)

)
‖α + ‖

(
Sε(t− s)− S(t− s)

)
ψγ(s)‖α

≤ C‖
(
ψ̃γ(s)− ψγ(s)

)
‖α + Cε2‖ψγ(s)‖α+2 ,

and therefore

‖R1(s, t)‖α ≤ ‖
(
ψ̃γ(t)− ψγ(t)

)
‖α + C‖

(
ψ̃γ(s)− ψγ(s)

)
‖α

+ Cε2‖ψγ(s)‖α+2 .

It thus follows from Proposition 4.4 that

E sup
s,t∈[0,T ]

‖R1(s, t)‖α ≤ Cε2−γ(α+ 3

2
)−κ . (5.2)

We shall now prove a bound onR2(s, t). For this purpose, we note that the

definitions of the various stopping times imply thatv
(2)
ε (t) is bounded inHα-norm

by CKε
−γ(α− 1

2
)−κ. Using this fact, together with Lemmas 3.4, 3.5 and 3.2, we

obtain
∥∥∥∥
∫ t

s
(Sε(t− r)− S(t− r))

(
F (v(3)ε (r)) +DεG(v

(3)
ε (r))

)
dr

∥∥∥∥
α

≤ εα
∫ t

s
(t− r)−

1

2
(1+α)‖F (v(3)ε (r)) +DεG(v

(3)
ε (r))‖α−1 dr

≤ Cεα(t− s)
1

2
(1−α) sup

r∈[s,t]

(
‖F (v(3)ε (r))‖α + ‖G(v(3)ε (r))‖α

)

≤ CKε
α(t− s)

1

2
(1−α)(1 + sup

r∈[s,t]

‖v(3)ε (r)‖α)

≤ CKε
α(t− s)

1

2
(1−α)

(
1 + sup

r∈[s,t]

(‖v(2)ε (r)‖α + ‖̺ε(r)‖α)
)

≤ CKε
α̃−κ(t− s)

1

2
(1−α) .

Furthermore, taking into account theL∞-bounds onv(2)ε and̺ε enforced by the
stopping times, Lemma 3.5 implies that
∥∥∥∥
∫ t

s
S(t− r)

(
F (v(3)ε (r))− F (v(2)ε (r)) +DεG(v

(3)
ε (r))−DεG(v

(2)
ε (r))

)
dr

∥∥∥∥
α

≤ C(t− s)
1

2
(1−α) sup

r∈(s,t)

‖F (v(3)ε (r))− F (v(2)ε (r))

+DεG(v
(3)
ε (r))−DεG(v

(2)
ε (r))‖−1

≤ C(t− s)
1

2
(1−α) sup

r∈(s,t)

(
‖F (v(3)ε (r))− F (v(2)ε (r))‖L∞

+ ‖G(v(3)ε (r))−G(v(2)ε (r))‖L∞

)

≤ CK(t− s)
1

2
(1−α) sup

r∈(s,t)

‖̺ε(r)‖L∞ .
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It thus follows that

‖R2(s, t)‖α ≤ C ′
K(t− s)

1

2
(1−α)

(
εα̃−κ + sup

r∈(s,t)

‖̺ε(r)‖L∞

)
, (5.3)

where we gave the constant a name, since it will be reused below.

ChooseδK ∈ (0, 1) sufficiently small so thatC ′
K

(
δ

1

2
(1−α)

K + δ
1

2
α

K

)
≤ 1

4 . For
k ≥ 0 put ℓk := kδK ∧ τK3 , and fork ≥ 1 set

rk := sup
{
‖̺ε(t)‖α : t ∈ [ℓk−1, ℓk+1]

}
.

Our next aim is to find a bound forr1. Observe that, whens = 0, (5.1) simplifies
to

̺ε(t) = (Sε(t)− S(t))v0 + (ψ̃γ(t)− ψγ(t)) +R2(0, t) , (5.4)

with R2 defined as previously. Using Lemma 3.4 and the definition ofτK , we
obtain

‖(Sε(t)− S(t))v0‖α ≤ Cε
3

2
−α−κ‖v0‖ 3

2
−κ ≤ CKε

3

2
−α−κ . (5.5)

Sincet ≤ 2δK andC ′
Kδ

1

2
(1−α)

K ≤ 1
4 , it follows from (5.3) and (5.4) that

r1 ≤ CKε
3

2
−α−κ + sup

t∈[0,T ]

‖ψ̃γ(t)− ψγ(t)‖α +
1

2
(εα̃−κ + r1) ,

hence, by definition ofτK ,

r1 ≤ CKε
( 3
2
−α)∧(2−γ(α+ 3

2
))∧α̃ε−κ = CKε

ζ−κ , (5.6)

whereζ is defined as in the statement of the result.
Next we shall prove a recursive bound forrk. Note that the nonnegativity of the

functionf in the definition ofSε implies that

‖Sε(t− s)̺ε(s)‖α ≤ ‖̺ε(s)‖α .

Furthermore, by Lemma 3.4 and the fact that‖v(2)ε ‖α ≤ CKε
−γ(α− 1

2
)−κ before

time τK3 , we have

‖(Sε(t− s)− S(t− s))v(2)ε (s)‖α ≤ Cεα(t− s)−
1

2
α‖v(2)ε (s)‖α

≤ CK(t− s)−
1

2
αεα̃−κ .

Combining these bounds with (5.1) and (5.3), we find that

‖̺ε(t)‖α ≤ ‖̺ε(s)‖α + CK(t− s)−
1

2
αεα̃−κ + ‖R1(s, t)‖α

+ C ′
K(t− s)

1

2
(1−α)

(
εα̃−κ + sup

r∈(s,t)

‖̺ε(r)‖α
)
.

Taking k ≥ 1, s = ℓk−1, and t ∈ [ℓk, ℓk+2], it then follows, since|t − s| ∈
[δK , 3δK ] andC ′

Kδ
1

2
(1−α) ≤ 1

2 , that

‖̺ε(t)‖α ≤ ‖̺ε(ℓk−1)‖α + CKε
α̃−κ + ‖R1(ℓk−1, t)‖α + 1

2ε
α̃−κ + 1

2rk+1 .

Taking the supremum overt ∈ [ℓk, ℓk+2], we obtain

rk+1 ≤ rk + CKε
α̃−κ + sup

s,t∈[0,T ]

‖R1(s, t)‖α + 1
2rk+1 ,

hence

rk+1 ≤ 2rk + CKε
α̃−κ + 2 sup

s,t∈[0,T ]

‖R1(s, t)‖α . (5.7)
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It readily follows from (5.6) and (5.7) that

sup
t∈[0,τK

3
]

‖̺ε(t)‖α = sup
1≤k≤⌈T/δK⌉

rk ≤ CK

(
εζ−κ + εα̃−κ + sup

s,t∈[0,T ]

‖R1(s, t)‖α
)

,

hence the result follows in view of the bound onR1(s, t). �

5.4. From v
(3)
ε to v(4)ε . Define

τK4 := τK3 ∧ inf{t ≤ T : ‖v(4)ε (t)− v(3)ε (t)‖α ≥ K} .

Proposition 5.5. For κ > 0 we have

lim
ε→0

P

(
sup
t≤τK

4

‖v(4)ε (t)− v(3)ε (t)‖α > εξ−κ
)
= 0 ,

where

ξ
def
= γ

2 ∧
(
α̃− 1

2

)
∧
(
1
2 − χ(α− 1

2 )
)
=

1

8
.

Remark5.6. Similarly to above, the exponentξ arises from the bounds (5.9)–
(5.14).

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (2.10d) and (2.10c) that̺ε :=

v
(4)
ε − v

(3)
ε satisfies

̺ε(t) = Sε(t− s)̺ε(s) +

∫ t

s
Sε(t− r)σε(r) dr ,

where

σε := F (v(4)ε + ψ̃χ
γ )− F (v(3)ε )

+∇G(v(4)ε + ψ̃χ
γ )Dε(v

(4)
ε + ψ̃χ

γ )−DεG(v
(3)
ε ) + Λ∆G(v(3)ε ) .

The definition ofDε together with (1.3) imply that for any functionu the following
identity holds:

DεG(u)(x) = ∇G(u(x))Dεu(x)

+

∫

R

εy2

2
D2G(u(x))[D̂εyu(x), D̂εyu(x)]µ(dy)

+

∫

R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1− r)u(x) + ru(x+ εy)

)

[D̂εyu(x), D̂εyu(x), D̂εyu(x)] dr ds dt µ(dy) ,

(5.8)

where the operator̂Dε is defined by takingµ := δ1 − δ0 in the definition ofDε,
i.e.,D̂εu(x) = ε−1(u(x+ ε)− u(x)). As a consequence, we may write

σε = F (v(4)ε + ψ̃χ
γ )− F (v(3)ε ) +Dε(G(v

(4)
ε + ψ̃χ

γ )−G(v(3)ε ))

+ (Λ∆G(v(3)ε )−A(u(4)ε , u(4)ε ))−B

= F (v(4)ε + ψ̃χ
γ )− F (v(3)ε ) +Dε(G(v

(4)
ε + ψ̃χ

γ )−G(v(3)ε ))

−A(v(4)ε , v(4)ε )− 2A(v(4)ε , ψ̃χ
γ ) + (Λ∆G(v(3)ε )−A(ψ̃χ

γ , ψ̃
χ
γ ))−B ,



A SPATIAL VERSION OF THE ITÔ-STRATONOVICH CORRECTION 27

where we have used

A(v,w)(x)
def
=

∫

R

εy2

2
D2G(u(4)ε (x))[D̂εyv(x), D̂εyw(x)]µ(dy) ,

B(x)
def
=

∫

R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G

(
(1− r)u(4)ε (x) + ru(4)ε (x+ εy)

)

[D̂εyu
(4)
ε (x), D̂εyu

(4)
ε (x), D̂εyu

(4)
ε (x)] dr ds dt µ(dy) ,

andu(4)ε := v
(4)
ε + ψ̃χ

γ .
Our next aim is to prove the estimates (5.9)–(5.14) below in order to bound

‖σε‖−1.

First term.Sincev(4)ε , ψ̃χ
γ and̺ε are bounded inL∞ by definition ofτK4 , it follows

that

‖F (v(4)ε + ψ̃χ
γ )− F (v(3)ε )‖−1 ≤ C‖F (v(4)ε + ψ̃χ

γ )− F (v(4)ε − ̺ε)‖L∞

≤ CK(‖ψ̃χ
γ ‖L∞ + ‖̺ε‖L∞)

≤ CK(ε
γ
2
−κ + ‖̺ε‖α) . (5.9)

Second term.We use Lemma 3.5 and the fact thatv
(4)
ε , ψ̃χ

γ and̺ε are bounded in
L∞ by definition ofτK4 , to estimate

‖Dε(G(v
(4)
ε + ψ̃χ

γ )−G(v(3)ε ))‖−1 ≤ C‖G(v(4)ε + ψ̃χ
γ )−G(v(4)ε − ̺ε)‖L∞

≤ CK(‖ψ̃χ
γ ‖L∞ + ‖̺ε‖L∞)

≤ CK(ε
γ
2
−κ + ‖̺ε‖α) . (5.10)

Third and fourth term.First we note that for arbitrary functionsv,w, one has

‖A(v,w)‖−1 ≤ C‖A(v,w)‖L1 ≤ Cε‖D2G(u(4)ε )‖L∞

√
Θε(v)Θε(w) .

Since‖u(4)ε (t)‖L∞ ≤ CK for t ≤ τK4 , we have

‖D2G(u(4)ε )‖L∞ ≤ CK .

Furthermore, we observe that‖v(4)ε ‖α ≤ CKε
−γ(α− 1

2
)−κ before timeτK4 . Using

this bound together with Lemma 3.5 and (1.3), we estimate

Θε(v
(4)
ε ) =

∫

R
y2‖D̂εyv

(4)
ε ‖2L2 |µ|(dy)

≤ CK

∫

R
y2|εy|2(α−1)‖v(4)ε ‖2α |µ|(dy)

≤ CK

∫

R
y2|εy|2(α−1)ε−2γ(α− 1

2
)−2κ |µ|(dy)

≤ CKε
2α̃−2−κ .

Moreover, by definition of the stopping timeτK we have

Θε(ψ̃
χ
γ ) ≤ Θε(ψ̃γ) ≤ CKε

−1−κ.

Putting everything together, we obtain

‖A(v(4)ε , v(4)ε )‖−1 ≤ CKε
2α̃−1−2κ (5.11)
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and

‖A(v(4)ε , ψ̃χ
γ )‖−1 ≤ CKε

α̃− 1

2
−2κ . (5.12)

Fifth term.Finally we estimateΛ∆G(v(3)ε )−A(ψ̃χ
γ , ψ̃

χ
γ ). By definition ofτKε , we

have‖ψ̃χ
γ ‖α ≤ CKε

−χ(α− 1

2
)−κ before timeτK4 . Since‖v(4)ε ‖α ≤ CKε

−γ(α− 1

2
)−κ

as observed before, we thus have

‖u(4)ε ‖α ≤ CKε
−χ(α− 1

2
)−κ .

Furthermore, sinceα > 1
2 , there exists a constantC > 0 such that we have the

bound

‖Λ∆G(u(4)ε )−A(ψ̃χ
γ , ψ̃

χ
γ )‖−α =

∥∥∥ tr
(
D2G(u(4)ε )

(
ΛI − Ξε(ψ̃

χ
γ )
))∥∥∥

−α

≤ C‖D2G(u(4)ε )‖α‖ΛI − Ξε(ψ̃
χ
γ )‖−α .

Since the stopping timeτK enforces that‖ΛI − Ξε(ψ̃
χ
γ )‖−α ≤ CKε

1

2 , we infer
that

‖Λ∆G(u(4)ε )−A(ψ̃χ
γ , ψ̃

χ
γ )‖−α ≤ CKε

1

2
−χ(α− 1

2
)−κ .

Sinceu(4)ε − v
(3)
ε = ̺ε + ψ̃χ

γ , we have by definition ofτK ,

‖∆G(u4ε)−∆G(v(3)ε )‖−α ≤ ‖∆G(u4ε)−∆G(v(3)ε )‖L∞

≤ CK‖̺ε‖L∞ + CK‖ψ̃χ
γ ‖L∞

≤ CK‖̺ε‖α + CKε
γ
2
−κ .

Putting these bounds together, we obtain

‖Λ∆G(v(3)ε )−A(ψ̃χ
γ , ψ̃

χ
γ )‖−α ≤ CK

(
ε

1

2
−χ(α− 1

2
)−κ + ε

γ
2
−κ + ‖̺ε‖α

)
. (5.13)

Sixth term.To estimateB, we use the fact that‖u(4)ε (t)‖L∞ ≤ CK for t ≤ τK4 , so
that one has the bound

‖B‖L1 ≤ CK

∫ ∫

R
ε2y3|D̂εyu

(4)
ε (x)|3 |µ|(dy) dx.

We will split this expression into two parts, using the fact thatu(4)ε = ψ̃χ
γ + v

(4)
ε .

First, using the fact thatΘ(ψ̃χ
γ ) ≤ CKε

1−κ before timeτK4 by definition of the
stopping timeτK , we find that

∫ ∫

R
ε2y3|D̂εyψ̃

χ
γ (x)|3 |µ|(dy) dx

≤ 2‖ψ̃χ
γ ‖L∞

∫ ∫

R
εy2|D̂εyψ̃

χ
γ (x)|2 |µ|(dy) dx

= 2ε‖ψ̃χ
γ ‖L∞Θ(ψ̃χ

γ ) ≤ CKε
−2κ‖ψ̃χ

γ ‖L∞ ≤ CKε
γ
2
−3κ .

Second, using the fact thatH
1

6 ⊆ L3, Lemma 3.5 and the fact that‖v(4)ε ‖α ≤
CKε

−γ(α− 1

2
)−κ, we obtain∫ ∫

R
ε2y3|D̂εyv

(4)
ε (x)|3 |µ|(dy) dx ≤ Cε2

∫

R
|y|3‖D̂εyv

(4)
ε ‖31

6

|µ|(dy)

≤ Cε3α−
3

2

∫

R
|y|3α− 1

2 |µ|(dy) ‖v(4)ε ‖3α



A SPATIAL VERSION OF THE ITÔ-STRATONOVICH CORRECTION 29

≤ CKε
3α̃− 3

2
−3κ .

It thus follows that

‖B‖L1 ≤ CKε
γ
2
−3κ + CKε

3(α̃− 1

2
)−3κ . (5.14)

Combining the inequalities (5.9)–(5.13), we find that

sup
r∈(s,t)

‖σε(r)‖−1 ≤ CK

(
ε

γ
2
−3κ + εα̃−

1

2
−2κ + ε

1

2
−χ(α− 1

2
)−κ + sup

r∈(s,t)

‖̺ε(r)‖α
)

,

and the result now follows as in Proposition 5.2. �

5.5. From v
(4)
ε to ṽγ . Define

τK5 := τK4 ∧ inf{t ≤ T : ‖ṽγ(t)− v(4)ε (t)‖α ≥ K} .

Proposition 5.7. For κ > 0 we have

lim
ε→0

P

(
sup
t≤τK

5

‖ṽγ(t)− v(4)ε (t)‖α > ε
1

2
χ− 1

2
−κ

)
= 0 .

Proof. Let 0 ≤ s ≤ t ≤ τ∗. It follows from (2.4) and (2.10d) that̺ε := ṽγ − v
(4)
ε

satisfies

̺ε(t) =

∫ t

s
Sε(t− r)σε(r) dr ,

where

σε := ∇G(ṽγ + ψ̃γ)Dε(ṽ
γ + ψ̃γ)−∇G(ṽγ + ψ̃χ

γ − ̺ε)Dε(ṽ
γ + ψ̃χ

γ − ̺ε)

+ F (ṽγ + ψ̃γ)− F (ṽγ + ψ̃χ
γ − ̺ε) .

In order to estimateσε we use (5.8) to write

σε = DεG(ṽ
γ + ψ̃γ)−DεG(ṽ

γ + ψ̃χ
γ − ̺ε)

−
∫

R

εy2

2

(
D2G(uε)−D2G(u(4)ε )

)
[D̂εyuε, D̂εyuε]µ(dy)

−
∫

R

εy2

2
D2G(u(4)ε )[D̂εy(uε + u(4)ε ), D̂εy(uε − u(4)ε )]µ(dy)

− ε2
(
Rε(uε, uε)−Rε(u

(4)
ε , u(4)ε )

)

+ F (ṽγ + ψ̃γ)− F (ṽγ + ψ̃χ
γ − ̺ε)

=: σε,1 + . . .+ σε,5 .

whereuε := ṽγ + ψ̃γ , u(4)ε := v
(4)
ε + ψ̃χ

γ , and

Rε(u
1, u2)(x) :=

∫

R
ε2y3

∫ 1

0

∫ t

0

∫ s

0
D3G((1− r)u1(x) + ru1(x+ εy))

[D̂εyu
2, D̂εyu

2, D̂εyu
2] dr ds dt dµ(y) .

We shall now estimateσε,1, . . . ,σε,5 individually.
First term. First we observe that̃vγ , ψ̃γ , ψ̃χ

γ , and̺ε are bounded inL∞ before
time τK5 . Using Lemma 3.5, the embeddingHα ⊆ L∞, and the definition of the
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stopping time to bound‖ψ̃χ‖L∞ , we obtain

‖σε,1‖−1 = ‖Dε(G(ṽ
γ + ψ̃γ)−G(ṽγ + ψ̃χ

γ − ̺ε))‖−1

≤ C‖G(ṽγ + ψ̃γ)−G(ṽγ + ψ̃χ
γ − ̺ε)‖L∞

≤ CK(‖ψ̃χ‖L∞ + ‖̺ε‖L∞)

≤ CK(ε
1

2
χ−κ + ‖̺ε‖α) .

(5.15)

Second term.Using Lemma 3.5 and the fact thatεγ(α−
1

2
)+κ‖ṽγ‖α is bounded

before timeτK5 , we estimate

Θε(ṽ
γ) =

∫

R
y2‖D̂εy ṽ

γ‖2L2 |µ|(dy)

≤ CK

∫

R
y2|εy|2(α−1)‖ṽγ‖2α |µ|(dy)

≤ CK

∫

R
y2|εy|2(α−1)ε−2γ(α− 1

2
)−2κ |µ|(dy)

≤ CKε
2α̃−2−κ ,

and by the definition of the stopping timeτK ,

Θε(ψ̃γ) ≤ CKε
−1−κ .

As a consequence,

Θε(uε) ≤ 2
(
Θε(ṽ

γ) + Θε(ψ̃γ)
)
≤ CK

(
ε2α̃−2−κ + ε−1−κ

)
≤ ε−1−κ . (5.16)

Note that‖uε‖L∞ and‖u(4)ε ‖L∞ are bounded before timeτK5 . Using thatL1 ⊆
H−1 we obtain

‖σε,2‖−1 ≤ ‖σε,2‖L1 ≤ ε‖D2G(uε)−D2G(u(4)ε )‖L∞Θε(uε)

≤ CKε
−2κ‖uε − u(4)ε ‖L∞

≤ CKε
−2κ

(
‖̺ε‖L∞ + ‖ψ̃χ‖L∞

)

≤ CKε
−2κ

(
‖̺ε‖α + ε

1

2
χ−κ

)
.

(5.17)

Third term.By Lemma 3.5 we have

Θε(̺ε) =

∫

R
y2‖D̂εy̺ε‖2L2 |µ|(dy)

≤ C

∫

R
y2|εy|2(α−1)‖̺ε‖2α |µ|(dy) ≤ Cε2α−2‖̺ε‖2α .

(5.18)

Observe thatuε + u
(4)
ε = 2ṽγ − ̺ε + ψ̃γ + ψ̃χ

γ anduε − u
(4)
ε = ψ̃χ + ̺ε. Taking

into account that

ε1+κΘε(ψ̃γ), ε1+κΘε(ψ̃γ), ε2−χ+κΘε(ψ̃χ), ‖̺ε‖α
are all bounded before timeτK5 , we obtain

Θε(uε + u(4)ε ) ≤ C
(
Θε(ṽ

γ) + Θε(̺ε) + Θε(ψ̃γ) + Θε(ψ̃
χ
γ )
)

≤ CK

(
ε2α̃−2−κ + ε2α−1 + ε−1−κ

)
≤ CKε

−1−κ ,
(5.19)
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and
Θε(uε − u(4)ε ) ≤ C

(
Θε(ψ̃χ) + Θε(̺ε)

)

≤ CKε
χ−2−κ + Cε2α−2‖̺ε‖2α .

(5.20)

Using that‖u(4)ε ‖L∞ ≤ CK before timeτK5 , we obtain

‖σε,3‖−1 ≤ ‖σε,3‖L1 ≤ ε‖D2G(u(4)ε )‖L∞

√
Θε(uε + u

(4)
ε )Θε(uε − u

(4)
ε )

≤ CK

(
ε

1

2
χ− 1

2
−2κ + εα−

1

2
−κ‖̺ε‖α

)
.

Fourth term.We shall show that

‖σε,4‖−1 ≤ CK

(
ε−2κ‖̺ε‖α + ε

1

2
χ− 1

2
−2κ

)
. (5.21)

First we use theL∞-bound onu(4)ε enforced by the stoppping time, to obtain the
pointwise bound

|Rε(uε, uε)−Rε(uε, u
(4)
ε )|

≤ CK

∫

R
ε2y3

(
|D̂εyuε|2 + |D̂εyuε||D̂εyu

(4)
ε |+ |D̂εyu

(4)
ε |2

)

× |D̂εy(uε − u(4)ε )| |µ|(dy)

≤ CK

∫

R
εy2

(
|D̂εyuε|+ |D̂εyu

(4)
ε |

)
|D̂εy(uε − u(4)ε )| |µ|(dy) .

In view of (5.20) it thus follows that

‖Rε(uε, uε)−Rε(uε, u
(4)
ε )‖L1

≤ CKε

∫

R
y2‖

(
|D̂εyuε|+ |D̂εyu

(4)
ε |

)
|D̂εy(uε − u(4)ε )| ‖L1 |µ|(dy)

≤ CKε

∫

R
y2
(
‖D̂εyuε‖L2 + ‖D̂εyu

(4)
ε ‖L2

)
‖D̂εy(uε − u(4)ε )‖L2 |µ|(dy)

≤ CKε

√(
Θε(uε) + Θε(u

(4)
ε )

)
Θε(uε − u

(4)
ε ) .

Using (5.16), (5.18), and the definition of the stopping timeto boundΘε(ψ̃χ), we
find that

Θε(uε) + Θε(u
(4)
ε ) ≤ C

(
Θε(uε) + Θε(̺ε) + Θε(ψ̃χ)

)

≤ CK

(
ε−1−κ + ε2α−2 + εχ−1−κ

)
≤ ε−1−κ .

Using (5.20), we thus obtain

‖Rε(uε, uε)−Rε(uε, u
(4)
ε )‖L1 ≤ CK

(
ε

1

2
χ− 1

2
−2κ + εα−

1

2
−κ‖̺ε‖α

)
. (5.22)

Furthermore, taking into account that

‖uε − u(4)ε ‖L∞ ≤ CK(‖ψ̃χ‖L∞ + ‖̺ε‖L∞) ≤ CK(ε
1

2
χ−κ + ‖̺ε‖α) ,

we have by (5.16),

‖Rε(uε, u
(4)
ε )−Rε(u

(4)
ε , u(4)ε )‖L1 (5.23)

≤ CKε
2‖uε − u(4)ε ‖L∞

∫

R
y3‖|D̂εyu

(4)
ε |3‖L1 |µ|(dy)

≤ CKε‖uε − u(4)ε ‖L∞

∫

R
y2‖D̂εyu

(4)
ε ‖2L2 |µ|(dy)
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= CKε‖uε − u(4)ε ‖L∞Θ2
ε(u

(4)
ε )

≤ CK(ε
1

2
χ−3κ + ε−2κ‖̺ε‖α) .

The claim follows by adding (5.22) and (5.23) and using the embeddingL1 ⊆
H−1.
Fifth term.As in the first step, we have

‖σε,4‖−1 = ‖F (ṽγ + ψ̃γ)− F (ṽγ + ψ̃χ
γ − ̺ε)‖−1

≤ CK

(
‖ψ̃χ‖L∞ + ‖̺ε‖L∞

)

≤ CK

(
ε

1

2
χ−κ + ‖̺ε‖α

)
.

(5.24)

Combining the five estimates, we obtain

‖̺ε(t)‖α ≤ C(t− s)
1

2
(1−α) sup

r∈(s,t)

‖σε(r)‖−1

≤ C(t− s)
1

2
(1−α) sup

r∈(s,t)

(
ε−2κ‖̺ε(r)‖α + ε

1

2
χ− 1

2
−2κ

)
.

The result now follows as in the proof of Proposition 5.1. �
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