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Abstract

We give a short review of a number of different models for treating magnetization effects in plasmas.
In particular, the transition between kinetic models and fluid models is discussed. We also give examples
of applications of such theories. Some future aspects are discussed.

1 Introduction

The field of quantum plasmas has been rapidly growing over thelast decade. In particular, studies regarding
the nonlinear properties of systems in which quantum and collective effects play an important role have
been in focus (for a review, see [1]). However, there are alsonumerous studies of quantum plasmas where
magnetization effects are of interest. Here, the intrinsicmagnetic moment of the plasma constituents
give rise to new collective dynamical properties due to indirect spin interactions (through effective field
excitations) as well as spin-velocity couplings.

The above physical systems can be described in a multitude ofways. Here we will give a short overview
of part of such descriptions. We start with the "heuristic" approach of Madelung, for which a decomposi-
tion of the system wave function into phase and amplitude leads to the definition of macroscopic density,
velocity, and spin variables. We then go on to describe the more detailed effective field quantum kinetic
theory, through which the relevant fluid moments may be defined and the concomitant fluid equations de-
rived, as well as giving the opportunity to analyse proper kinetic effects in quantum plasma systems. We
give a brief account of possible applications and results ofthe quantum fluid/kinetic models.

2 The Madelung Approach to Quantum Dynamics

A rather generic approach to quantum fluids is the use of a Madelung decomposition of the system wave
function, in which the amplitude is translated into a density and the gradient of the phase determines the
velocity variable. Such a decomposition will below be reviewed, and the results obtained will be compared
later with the moment hierarchy obtained through a more rigorous quantum kinetics approach.

2.1 The Schrödinger equation

The basic equation of nonrelativistic quantum mechanics isthe Schrödinger equation. The dynamics of an
electron, represented by its wave functionψ , in an external electromagnetic potentialφ is governed by

ih̄
∂ψ
∂ t

+
h̄

2me
∇2ψ +eφψ = 0, (1)

whereh̄ is Planck’s constant,me is the electron mass, ande is the magnitude of the electron charge. This
complex equation may be written as two real equations, writingψ =

√
n expiS/h̄, wheren is the amplitude

andS the phase of the wave function, respectively [2]. Such a decomposition was presented by de Broglie
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and Bohm in order to understand the dynamics of the electron wave packet in terms of classical variables.
Using this decomposition in Eq. (1), we obtain

dn
dt

=−n∇ ·v, (2)

and

me
dv
dt

= e∇φ +
h̄2

2me
∇
(

∇2√n√
n

)
, (3)

where the velocity is defined byv = ∇S/me andd/dt = ∂t + v ·∇. The last term of Eq. (3) is the gradient
of the Bohm–de Broglie potential, and is due to the effect of wave function spreading, giving rise to
a dispersive-like term. We also note the striking resemblance of Eqs. (2) and (3) to the classical fluid
equations.

2.2 The Pauli equation

The non-relativistic evolution of spin-1/2 particles, as described by the two-component spinorΨ(α), is given
by the Pauli equation (see,e.g., [2])

ih̄
∂ψ
∂ t

+

[
h̄2

2me

(
∇+

ie
h̄

A
)2

− µBB ·σ +eφ

]
ψ = 0, (4)

whereA is the vector potential,µB = eh̄/2me is the Bohr magneton, andσ = (σ1,σ2,σ3) is the Pauli spin
vector.

Now, in the same way as in the Schrödinger case, we may decompose the electron wave functionψ
into its amplitude and phase. However, as the electron has spin, the wave function is now represented by
a 2-spinor instead of a c-number. Thus, we may useψ =

√
n exp(iS/h̄)ϕ , whereϕ , normalized such that

ϕ†ϕ = 1, now gives the spin part of the wave function. Multiplying the Pauli equation (4) byψ†, inserting
the above wave function decomposition and taking the gradient of the resulting phase evolution equation,
we obtain the conservation equations

dn
dt

=−n∇ ·v (5)

and

dvi

dt
= − e

me
(Ei + εi jkv jBk+

h̄2

2m2
e

∂
∂xi

(
∇2√n√

n

)

−µB

me
sj

∂B j

∂xi
− h̄2

4m2
en

∂
∂x j

(nΓi j ) (6)

respectively, whereεi jk is the fully antisymmetric (pseudo-)tensor and we have usedEinstein’s sum con-
vention so that a sum over indices occurring twice in a term isimplied, wherei, j,k, · · · = 1,2,3. The spin
contribution to Eq. (6) is consistent with the results of Ref. [15]. Here the velocity is defined by

v =
1

me

(
∇S− ih̄ϕ†∇ϕ

)
+

eA
mec

, (7)

the spin density vector is
s= ϕ†σϕ , (8)

which is normalized according to1

|s|= 1, (9)

and we have defined the symmetric gradient spin tensor

Γi j =
∂sk

∂xi

∂sk

∂x j
. (10)

1An alternative choice for the normalization would be to choose|s|= h̄/2.
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Moreover, contracting Eq. (4) byψ†σ , we obtain the spin evolution equation

dsi

dt
= εi jk

{
2µB

h̄
B j −

h̄
2men

[
∂

∂xl

(
n

∂sj

∂xl

)]}
sk. (11)

We note that the last equation allows for the introduction ofan effective magnetic fieldBeff ≡ (2µB/h̄)B−
h̄/ [∂ j(n∂ js)]/(2men). However, this will not pursued further here (for a discussion, see Ref. [2]).

Comparing the effects due to spin from the Pauli dynamics with the Schrödinger theory, we see a
significant increase in the complexity of the fluid like equations due the presence of spin. The fact that the
spin couples linearly to the magnetic field makes the dynamical aspects of such Pauli systems very rich.
Moreover, when going over to the collective regime, the backreaction through Maxwell’s equation can
yield interesting new properties of such spin plasmas. In fact, the introduction of an intrinsic magnetization
can give rise to linear instability regimes, much like the Jeans instability.

2.3 Collective plasma dynamics

As pointed out in the previous section, the route from singlewavefunction dynamics to collective effects
introduces a new complexity into the system. At the classical level, the ordinary pressure is such an effect.
In the quantum case, a similar term, based on the thermal distribution of spins, will be introduced.

2.3.1 Multistream model

The multistream model of classical plasmas was successfully introduced by Dawson [3]. Here we will focus
on the electrostatic interaction between a multistream quantum plasma described within the Schrödiner
model, a system first investigated in Ref. [5] (where also thestationary regime was probed). Thus, we have
the governing equations (2) and (3) but forN beams of electrons on a stationary ion background,i.e., Using
this decomposition in Eq. (1), we obtain

dnα
dt

=−nα∇ ·vα , (12)

and
dvα
dt

=
e

me
∇φ +

h̄2

2m2
e

∇
(

∇2√nα√
nα

)
, (13)

now coupled through the self-consistent electrostatic potential governed by

∇2φ =
e
ε0

N

∑
α=1

(nα −n0). (14)

Heren0 is the density of the stationary ion background.
In the one-stream case (α = 1), we have the equilibrium solutionv = v0 (a constant drift relative

the stationary ion background) and the constant electron density n = n0 (such thatφ = 0). Perturbing
this system a Fourier decomposing the perturbations, such that n = n0+ δnexp[i(k · x−ωt)]), v = v0+
δvexp[i(k ·x−ωt)], andφ = δφ exp[i(k ·x−ωt)], we obtain [4, 5]

(ω− k ·v0)
2 = ω2

p +
h̄2k4

4m2
e
, (15)

where the last term is the Bohm–de Broglie correction to the dispersion relation. Here we have the electron
plasma frequencyωp = (e2n0/ε0me)

1/2.
Similarly to the one-stream case, we obtain the dispersion relation [5, 6]

1 =
ω2

p1

(ω− v01 ·k)2− h̄2k4/4m2
e

+
ω2

p2

(ω− v02 ·k)2− h̄2k4/4m2
e

, (16)
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for two propagating electron beams (with velocitiesv01 andv02) with background densitiesn01 andn02. The
quantum effect has a subtle influence on the stability of the perturbed plasma. For the casen01= n02= n0/2
andv01=−v02= v0, we have the instability condition

4
K2

(
1− 1

K2

)
< H2 <

4
K2 , (17)

in terms of the normalized wavenumberK = kv0/ωp and the quantum parameterH = h̄ωp/mev2
0 (see Fig.

1) [5, 6]. We see that whenH = 0, we have unstable perturbations for 0< K < 1, but whenH 6= 0 a
considerably more complex instability region develops.

A model for treating partial coherence in such systems, based on the Wigner transform technique [7, 8,
9, 10], can also be developed [6] (see also Ref. [11]). Moreover, using the equations (5) and (6), a similar
framework may be set up for electron streams with spin properties.

2.4 Fluid model

2.4.1 Plasmas based on the Schrödinger model

Suppose that we haveN electron wavefunctions, and that the total system wave function can be described
by the factorizationψ(x1,x2, . . .xN) = ψ1ψ2 . . .ψN. For each wave functionψα , we have a corresponding
probabilityPα . From this, we first defineψα = nα exp(iSα/h̄) and follow the steps leading to Eqs. (2) and
(3). We now haveN such equations the wave functions{ψα}. Defining [12]

n≡
N

∑
α=1

Pαnα (18)

and

v≡ 〈vα〉=
N

∑
α=1

Pαnαvα
n

, (19)

we can define the deviation from the mean flow according to

wα = vα − v. (20)

Taking the average, as defined by (19), of Eqs. (2) and (3) and using the above variables, we obtain the
quantum fluid equation

dn
dt

=−n∇ ·v (21)

and
dv
dt

=
e

me
∇φ − 1

nme
∇p+

h̄2

2m2
e

∇
〈(

∇2√nα√
nα

)〉
, (22)

where we have assumed that the average produces an isotropicpressurep= men〈|wα |2〉We note that the
above equations still contain an explicit sum over the electron wave functions. For typical scale lengths
larger than the Fermi wavelengthλF , we may approximate the last term by the Bohm–de Broglie potential
[12] 〈

∇2√nα√
nα

〉
≈ ∇2√n√

n
. (23)

Using a classical or quantum model for the pressure term, we finally have a quantum fluid system of
equations. For a self-consistent potentialφ we furthermore have

∇2φ =
e
ε0
(n−ni). (24)
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2.4.2 Spin plasmas

The collective dynamics of electrons with spin and some of the spin modifications of the classical dispersion
relation was presented in Ref. [13]. Here we will follow Refs. [13] and [14] for the derivation of the
governing equations. Suppose that we haveN wave functions for the electrons with magnetic moment
µe = −µB, and that, as in the case of the Schrödinger description, thetotal system wave function can be
described by the factorizationψ = ψ1ψ2 . . .ψN. Then the density is defined as in Eq. (18) and the average
fluid velocity defined by (19). However, we now have one further fluid variable, the spin vector, and
accordingly we letS= 〈sα 〉. From this we can define the microscopic microscopic spin density S α =
sα −S, such that〈S α〉= 0.

Taking the ensemble average of Eqs. (5) we obtain the continuity equation (21), while we the the
ensemble average applied to (6) yield

dvi

dt
=− e

me

(
Ei + εi jkv jBk

)
− 1

nme

∂ p
∂xi

+
h̄2

2m2
e

∂
∂xi

(
∇2√n√

n

)
+

1
nme

Fspin
i (25)

and the average of Eq. (11) gives

dSi

dt
=

2µB

h̄
εi jkB jSk−

1
nme

∂Σi j

∂x j
+

1
nme

Ωspin
i (26)

respectively. Here the force density due to the electron spin is

Fspin
i = −µBnSj

∂B j

∂xi
− h̄2

4me

∂
∂x j

[
n
(
Γi j + Γ̃i j

)]

− h̄2

4me

∂
∂x j

[
n

(
∂Sk

∂xi

)〈
Sαk

∂x j

〉
+n

〈
∂Sαk

∂xi

〉
∂Sk

∂x j

]
, (27)

consistent with the results in Ref. [15], while the asymmetric thermal-spin coupling is

Σi j = nme〈Sα iwα j〉 (28)

and the nonlinear spin fluid correction is

Ωspin
i =

h̄
2

εi jkSj

[
∂

∂xa

(
n

∂Sk

∂xa

)]
+

h̄
2

εi jkSj

[
∂

∂xa

(
n

〈
∂Sαk

∂xa

〉)]

+
nh̄
2

εi jk

〈
Sα j

nα

{
∂

∂xa

[
nα

∂
∂xa

(Sk+Sαk)

]}〉
(29)

whereΓi j = (∂iSa)(∂ jSa) is the nonlinear spin correction to the classical momentum equation, Γ̃i j =
〈(∂iS(α)a)(∂ jS

a
(α))〉 is a pressure like spin term (which may be decomposed into trace-free part and trace).

We note that, apart from the additional spin density evolution equation (26), the momentum conservation
equation (25) is considerably more complicated compared tothe Schrödinger case represented by (22).
Moreover, Eqs. (25) and (26) still contains the explicit sumover theN states, and has to be approximated
using insights from quantum kinetic theory or some effective theory.

The coupling between the quantum plasma species is mediatedby the electromagnetic field. By defini-
tion, we letH = B/µ0−M whereM =−2nµBS/h̄ is the magnetization due to the spin sources. Ampère’s
law ∇×H = j + ε0∂tE takes the form

∇×B = µ0(j +∇×M)+
1
c2

∂E
∂ t

, (30)

wherej is the free current contribution The system is closed by Faraday’s law

∇×E =−∂B
∂ t

. (31)
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2.5 The magnetohydrodynamic limit

The concept of a magnetoplasma was first introduced in the pioneering work [16] by Alfvén, who showed
the existence of waves in magnetized plasmas. Since then, magnetohydrodynamics (MHD) has found
applications in a vast range of fields, from solar physics andastrophysical dynamos, to fusion plasmas and
dusty laboratory plasmas.

Magnetic fields, an essential component in the MHD description of plasmas, also couples directly to
the spin of the electron. Thus, the presence of spin alters the single electron dynamics, introducing a
correction to the Lorentz force term. Indeed, from the experimental perspective, a certain interest has
been directed towards the relation of spin properties to theclassical theory of motion (see, e.g., Refs.
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]). In particular, the effects of strong fields on single
particles with spin has attracted experimental interest inthe laser community [19, 20, 21, 22, 23, 25].
However, the main objective of these studies was single particle dynamics, relevant for dilute laboratory
systems, whereas our focus will be on collective effects.

We will now include if the ion species, which are assumed to bedescribed by the classical equations
and have chargeZe, we may derive a set of one- fluid equations [14]. The ion equations read

dnI

dt
=−nI ∇ ·vI , (32)

and

mInI
dvIi

dt
= ZenI

(
Ei + εi jkvI j Bk

)
− ∂ pI

∂xi
, (33)

Next we define the total mass densityρ ≡ (men+ mI nI ), the centre-of-mass fluid flow velocityV ≡
(menve+mInI vI )/ρ , and the current densityj = −enve+ ZenIvI . Using these denfinitions, we imme-
diately obtain

dρ
dt

=−ρ∇ ·V, (34)

from Eqs. (21) and (32). Assuming quasi-neutrality, i.e.n≈ ZnI , the momentum conservation equations
(25) and (33) give

ρ
dVi

dt
= εi jk j j Bk−

∂Πi j

∂x j
− ∂ p

∂xi
+

Zh̄2ρ
2memI

∂
∂xi

(
∇2√ρ
√ρ

)
+Fspin

i , (35)

whereΠ is the tracefree pressure tensor in the centre-of-mass frame, andP is the scalar pressure in the
centre-of-mass frame. We also note that due to quasi-neutrality, we havene≈Zρ/mI andv=V−mI j/Zeρ ,
and we can thus express the quantum terms in terms of the totalmass densityρ , the centre-of-mass fluid
velocityV, and the currentj . With this, the spin transport equation (26) reads

ρ
dSi

dt
=

me

Ze
j j

∂Si

∂x j
+

2µBρ
h̄

εi jkB jSk−
mI

Z

∂Σi j

∂x j
+

mI

Z
Ωspin. (36)

In the momentum equation (35), neglecting the pressure and the Bohm–de Broglie potential for the sake
of clarity, we have the force densityj ×B+Fspin. In general, for a magnetized medium with magnetization
densityM , Ampère’s law gives the free current in a finite volumeV according to

j =
1
µ0

∇×B−∇×M , (37)

where we have neglected the displacement current. The surface current is an important part of the total
current when we are interested in the forces on a finite volume, as was demonstrated in Ref. [14] and will
be shown below.

It it worth noting that the expression of the force density inthe momentum conservation equation can,
to lowest order in the spin, be derived on general macroscopic grounds. Formally, the total force density
on a volume elementV is defined asF = limV→0(∑α fα/V), wherefα are the different forces acting on
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the volume element, and might include surface forces as well. For magnetized matter, the total force on an
element of volumeV is then

ftot =
∫

V
j tot×BdV+

∮

∂V
(M × n̂)×BdS (38)

where (neglecting the displacement current)j tot = j +∇×M . Inserting the expression for the total current
into the volume integral and using the divergence theorem onthe surface integral, we obtain the force
density

Ftot = j ×B+Mk∇Bk, (39)

identical to the lowest order description from the Pauli equation (see Eq. (35)). Inserting the free current
expression (37), due to Ampère’s law, we can write the total force density according to

F i =−∂ i
(

B2

2µ0
−M ·B

)
+ ∂k(H

iBk). (40)

The first gradient term in Eq. (40) can be interpreted as the force due to a potential (the energy of the mag-
netic field and the magnetization vector in that field), whilethe second divergence term is the anisotropic
magnetic pressure effect. Noting that the spatial part of the stress tensor takes the form [15]

T ik =−H iBk+(B2/2µ0−M ·B)δ ik, (41)

we see that the total force density on the magnetized fluid element can be writtenF i = −∂kT ik, as ex-
pected. Thus, the Pauli theory results in the same type of conservation laws as the macroscopic theory. The
momentum conservation equation (35) then reads

ρ
(

∂
∂ t

+V ·∇
)

V =−∇
(

B2

2µ0
−M ·B

)
+Bk∂kH−∇p, (42)

where for the sake of clarity we have assumed an isotropic pressure, dropped the displacement current term
in accordance with the nonrelativistic assumption, and neglected the Bohm potential (these terms can of
course simply be added to (42)). This concludes the discussion of the spin-MHD plasma case. Next, we
will look at some applications of the derived equations. However, it should be noted that in many cases the
spins are close to thermodynamic equilibrium, and we can thus write the paramagnetic electron response
in terms of the magnetization [14]

M =
µBρ
mI

tanh

(
µBB
kBT

)
B̂, (43)

instead of using the full spin dynamics. HereB denotes the magnitude of the magnetic field andB̂ is a unit
vector in the direction of the magnetic field,kB is Boltzmann’s constant, andT is the electron temperature.

3 Spin Quantum Kinetics

Quantum mechanics in terms of quasi-distribution functions is perhaps the formulation with the closest
resemblance to classical statistical mechanics. The formulation started with Wigner’s paper [7] together
with Weyls correspondence principle [30]. In terms of this formulation the state of the system is no longer
described by a density matrix but instead a phase-space distribution function. Similarly operators are trans-
lated into phase functions. Calculating the expectation value of an operator is then a matter of calculating a
phase space integral a corresponding function weighted by the distribution function. The method has been
applied to a wide range of problems. For example it has been applied in optics [31, 32], collision theory
[33, 34], nonlinear theory [35] and transport problems in solid state physics, see for example [36, 37] and
references therein.

There are many different ways to define a quasi distribution function in quantum mechanics. The most
known examples are probably the Glauber-Sudarshan p-distribution [38, 39], the q-distribution [40] and
the related Husimi distribution [41]. The many different definitions basically comes from the fact that
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the position and momentum operators do not commute, so the transformation between an operator and a
phase space function is not unique. See for example [42] for areview of the different phase space distri-
bution functions. The Wigner distribution corresponds to ordering the position andcanonicalmomentum
operators symmetrically.

When considering a particle in a magnetic field gauge invariance has to be assured. This can be done by
adding a phase factor to the definition of the Wigner function[43]. The phase factor will then compensate
for the change of phase that occurs in the density matrix whenperforming a gauge transformation. When
dealing with the gauge invariant Wigner-Stratonovich the Weyl correspondence is modified [44]. The
natural variables to use are the position andkineticmomentum.

The formulation of quantum mechanics in terms of phase spacedistributions has also been generalized
for spin particles [45, 46, 47, 48]. Also in this case the definition is not unique and one can find analogs to
the different definitions in the phase space case [45].

3.1 Scalar quasi-distribution theory for a spin plasma

The distribution function which we will work with here is thecombination of the Wigner distribution
function [7] for the phase-space variables and the q-function for the spin degree of freedom [47]. This
combination of distribution functions was used in [49] and it turns out to yield a intuitive description of
spin-1/2 particles in an extended phase space.

Given a 2-by-2 density matrix (in the Schrödinger prictureρ(x,y, t) for a spin particle the extended
phase-space distribution function is defined by

f (x,p,s, t) =
1

4π
Tr [(1+ s·σ)W(x,p, t)] , (44)

where Tr denotes that the trace is to be calculated of the resulting 2-by-2 matrix and whereσ is a vector
with the Pauli matrices as components,s is a vector on the unit sphere. The Wigner distribution matrix
function is given by

W(x,p, t) =
∫

d3y
(2π h̄)3 e

− i
h̄y·

[
p+iq

∫ 1/2
−1/2dsA(x+sy,t)

]

ρ
(

x+
y
2

;x− y
2
, t
)
, (45)

whereq is the charge of the particle andA is the vector potential. The integral over the vector potential
is there to ensure gauge invariance. The momentum variablep is the gauge invariant kinetic momentum
related to the canonical momentumpc by p = pc−qA(x, t). This distribution function is defined on an
extended phase-space(x,p,s) and can in principle be used to calculate the expectation value of any observ-
able defined by an operatorÔ= O(x̂, p̂,σ). The way to do this is to use the modified Weyl correspondence
[44] together with a transformation for the spin variable toobtain a phase-space function, and subsequently
take the average of this function weighted by the distribution function. For an operator depending onx̂, p̂
the corresponding phase-space function is obtained by

O(x,p) =
∫

d3ye
− i

h̄y·
[
p+q

∫ 1/2
−1/2dsA(x+sy,t)

]〈
x+

y
2

∣∣∣Ô
∣∣∣x− y

2

〉
(46)

It can sometimes be found more easily by first putting the position and kinetic momentum operators of the
operatorÔ in symmetric order using the commutation relation and then make the substitution̂x→ x and
p̂→ p. For example the pressure tensor which just contains the kinetic momentum operator is obtained
by P̂i j = p̂i p̂ j → pi p j . Note that the gauge dependent Wigner distribution this correspondence is not so
simple anymore, since we are then dealing with the position and canonical momentum operators which has
to be ordered symmetrically using the commutation relation. So for the moment above, for example we
have to put the combination̂Pi j = [p̂ci− qAi(x̂)][p̂c j − qAj(x̂)] in symmetric ordering and then make the
substitution ˆxi → xi and p̂i → pi . This is a quite difficult task for a general operator since the form of the
vector potential is not necessarily known.

The spin space function corresponding an operatorÔ depending onσ is obtained by transformation

O(s) =
1

4π
Tr

[
(1+ s·σ)Ô

]
. (47)
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If the operator in question depends on both the position and momentum operators and the spin, both of
these transformations have to be made, see Ref. []. Sinceσ

2 = 1 the only possible spin operators we may
have is the identity operator 1 andσ. The transformation (47) above yields

Ô= σ→O(s) = 3s. (48)

The momentum variable in the Wigner function above is the canonical momentum. In the presence of
a magnetic field it is often more convenient to work with the gauge invariant kinetic momentum.

3.2 Evolution and the long scale length limit

The Hamiltonian for a spin-1/2 particle in a magnetic field isgiven by

Ĥ =
[p̂c−A(x̂, t)]2

2m
+qV+ µBσ ·B(x̂, t), (49)

whereV andA are the electromagnetic potentials,B = ∇×A is the magnetic induction andµB is the
magnetic moment of the particle. Specifically, for an electron, the magnetic moment is given byµB =
qgh̄/(4m) whereg≈ 2.001 is a correction factor deduced from quantum electrodynamics [50]. Note that
we have usedq = −|e| so that the magnetic moment is negative. The evolution equation for the density
operator is given by the von Neumann equation

ih̄∂tρ = [ρ , Ĥ]. (50)

Taking the transform (44) of this equation, it is possible toderive an evolution equation for the extended
phase space Wigner functionf (x,p,s, t), see Ref. [49] and it is given by

∂ f
∂ t

+(v+∆ṽ) ·∇x f +
q
m

[
Ẽ+(v+ ṽ)× B̃)

]
·∇v f

+
µB

m
∇x

[
(s+∇s) · B̃

]
·∇v f +

2µB

h̄
(s× B̃) ·∇s f = 0. (51)

wherev = p/m is the velocity and we have defined the operators

Ẽ = E(x)
∫ 1/2

−1/2
dscos

(
h̄s
m

←−
∇ x ·
−→
∇ v

)
(52)

B̃ = B(x)
∫ 1/2

−1/2
dscos

(
h̄s
m

←−
∇ x ·
−→
∇ v

)
(53)

∆ṽ =
qh̄
m2 B(x)

∫ 1/2

−1/2
dsssin

(
h̄s
m

←−
∇ x ·
−→
∇ v

)
·∇v. (54)

Note the similarity of the equation above with the classicalVlasov equation. In order to compare it further
we may consider the semiclassical limit which is applicablewhen the typical length scale is much shorter
than the de Broglie wave length̄h/(mv), wherev is the typical velocity of the system. We may then expand
the sine and cosine operators above. Keeping terms up to order h̄2 the resulting equation is

∂ f
∂ t

+ v ·∇x f +
q
m
[E+ v×B]+

µB

m
∇x [(s+∇s) ·B] ·∇v f +

2µB

h̄
(s×B) ·∇s f = 0. (55)

The first term proportional to the spins is the dipole force of a magnetic moment in an inhomogeneous
magnetic field and the last term is accounts for the spin precession. Both of these can be understood from a
classical analog, however, there is also aquantum dipoleterm given by(µB/m)∇x(B ·∇s) ·∇v f . This term
accounts for the fact that the spin is not a classical dipole and we can for example not have a distribution
function proportional toδ (s− ẑ), whereẑ is a unit vector in the z-direction. The corresponding distribution
function in the quantum mechanical case is proportional to 1+ cosθs whereθs is the angle between the
spin direction and the z-axis. The macroscopic magnetization the classical and quantum cases are still the
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same which is ensured by the factor 3 in the transformation (48) above. This factor occurs in the quantum
case

Mq(x) = 3µB

∫
dΩ f (x,v,s), (56)

but is absent in the corresponding classical equation

Mcl(x) = µB

∫
dΩsfcl(x,v,s), (57)

where fcl is the classical distribution function and we in both cases havedΩ = d3vd2s.
A semi classical version of Eq. (55) (where the quantum dipole term is missing) has been applied to

find a new type of resonance due to radiative corrections to the electrong-factor [51]. A related kinetic
equation has also been applied in the context of thermonuclear fusion [52]. In this model, however, both
the dipole and the quantum dipole terms are missing. This equation can formally be retained from our
result above by neglecting all terms of orderh̄ or higher.

3.3 Thermal equilibrium

The scalar spin distribution does also have some other important differences compared to the distribution
for a classical dipole. An important example is the thermal equilibrium distribution. For in the classical
case it would be given by

f T
cl (v,s) = n0 fM(v)

1
4π

µBB0

kBT

[
sinh

(
µBB0

kBT

)]−1

exp

[
−µBB0 ·s

kBT

]
, (58)

wheren0 is the equilibrium density,fM is a normalized Maxwellian velocity distribution,kB is Boltzmann’s
constant,T is the temperature andB0 is the external magnetic field. This distribution gives riseto a
magnetization

MT
cl = n0µBη

(
µBB0

kBT

)
, (59)

whereη is the Langevin function. In the quantum mechanical case thecorresponding distribution function
becomes (assuming that the chemical potential is sufficiently large so that Landau quantization can be
neglected, see Ref. [49])

f T
q (v,s) = n0 fM(v)

1
4π

[
1+ tanh

(
µBB0

kBT

)
cosθs

]
, (60)

wherefM it the usual Maxwell-Boltzmann distribution. The zeroth order magnetization in this case is given
by

MT
q = 3µB

∫
dΩsfq = n0µB tanh

(
µBB0

kBT

)
, (61)

as expected. The dynamics of the magnetization can be treated by the use of a fluid moment hierarchy and
we now go on to consider this.

4 Spin Fluid Moments

Many problems do not require the full machinery of the kinetic approach and calculations can be greatly
simplified if executed in a macroscopic fluid model instead (see for example [53] and references therein).
In particular when dealing with nonlinear problems the kinetic approach soon becomes very cumbersome
[refs?] and the need for a simplified theory cannot be understated.

In this section such a theory will be presented, derived fromthe kinetic theory by taking moments of
the quantum kinetic equation [49] in a way analogous to what is done in classical plasma theory (see for
example [53]). The theory presented here was derived in [57]. As in the classical approach all intrinsically
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kinetic features such as Landau damping will be lost, and oneis faced with a closure problem, since the
fluid hierarchy is an infinite series of equations that needs to be truncated at some point.

Quantum fluid moments derived from the Wigner formalism havebeen applied before, see for example
Refs. [54, 55], and also in the case of gauge invariant Wigner-Stratonovich formalism[56]. In the spin-1/2
case the moments have also been calculated [59] starting from a quantum kinetic equation [58]. In their
treatment they use a matrix form of the kinetic equation and they also retain the collision terms which we
here will neglect. However, their fluid hierarchy is only discussed shortly and also it is derived to orderh̄
and hence, for example the effect of the dipole term on the dynamics was not retained.

Since we are working with a quasi distribution function in a phase space extended to also include
the microscopic spin variable, the classical approach mustbe slightly modified. Firstly we also need to
integrate over the microscopic spin variable, and furthermore a new macroscopic spin variable is defined,
leading to a new hierarchy of spin-dependent macroscopic objects [57]. Thus we define the moments as

n =

∫
dΩ f , (62)

u =
1
n

∫
dΩv f , (63)

Pi j = m
∫

dΩ(vi−ui)(v j −u j) f , (64)

Qi jk = m
∫

dΩ(vi−ui)(v j −u j)(vk−uk) f (65)

S =
3
n

∫
dΩsf , (66)

Σi j = m
∫

dΩ(3si−Si)(v j −u j) f , (67)

Λi jk = m
∫

dΩ(si−Si)(v j −u j)(vk−uk) f . (68)

Here the first four moments are respectively the density, thefluid velocity, the pressure density and the
energy flux density. The equation moment above (66) defines the spin densityS= S(x, t) which yields the
average spin density at positionx and timet. The factor 3 in this definition occurs due to the correspondence
(48). The sixth moment (67) is a mixed moment of the velocity and the spin which will act as some kind of
spin-pressure. Finally, we have a mixed spin-velocity-velocity moment which could perhaps be termed the
spin-pressure correlation. Similarly we could go on to define even higher order moments like the energy
flux or a higher order mixed moment. Note that there is no need to include higher order moments in the
spin variable since we have that

∫
dΩŝi ŝj ∝ δi j .

Using the evolution equation for the extended phase space distribution function (55) we may now
calculate the evolution equation of the different moments

dn
dt

= −n∇ ·u, (69)

dui

dt
=

q
m
(Ei + εi jku jBk)+

µ
m

Sj
∂B j

∂xi
− 1

nm

∂Pi j

∂x j
, (70)

dPi j

dt
= −Pik

∂U j

∂xk
−Pjk

∂Ui

∂xk
−Pi j

∂uk

∂xk
+

q
m

εimnPjmBn+
q
m

ε jmnPimBn+
µ
m

Σik
∂Bk

∂x j

+
µ
m

Σ jk
∂Bk

∂xi
− ∂Qi jk

∂xk
, (71)

dSi

dt
=

2µ
h̄

εi jkSjBk−
1

nm

∂Σi j

∂x j
(72)

dΣi j

dt
= −Σi j

∂Uk

∂xk
−Σik

∂U j

∂xk
−Pjk

∂Si

∂xk
+

q
m

ε jkl ΣikBl +
2µ
h̄

εikl Σk jBl + µn
∂Bi

∂x j

−µnSiSk
∂Bk

∂x j
− ∂Λi jk

∂xk
, (73)
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whered/dt = ∂t + v ·∇. It is possible to derive the evolution equation for theQi jk , see [55] andΛi jk ,
however, these moments will then couple to even higher ordermoments. Instead some approximation is
needed. In our paper [57] we used the closureQi jk = 0 andΛi jk = 0, which is perhaps the easiest one to
deal with.

As can be seen in Eq. (72), the spin-velocity momentΣi j acts as a pressure term in the evolution
equation for the spin density. By including this moment, it is possible to capture some kinetic effects in
a fluid theory. Some problems which might be difficult or tedious to solve in a kinetic theory may be
reachable within a fluid theory. However, the exact role of the spin-velocity moment is a subject of further
research.

4.1 Two-fluid model

It is shown in the previous section treating the kinetic equation that the distribution function can be divided
in two parts, one for each spin direction along the magnetic field. Each fluid is seen to obey the same
hierarchy as above [57], and we will just have two sets of these equations, one for each species. Of course
we will have separate macroscopic quantitiesnα , vα , Sα andΣα for each species. Here the subscriptα
indicates which species the quantities refer to. This approach adds a bit of complexity but can capture
some kinetic effects due to a the different dynamics of the two spin states, and is therefore worth pursuing
in problems were such physics is expected to play a role[68].

5 Applications of fluid and kinetic models

The various quantum models developed cover several physical effects. Effects of the Fermi pressure and
particle dispersion has been described in some detail in Refs. [12, 1] both within fluid theories and within
a kinetic approach. The fluid approach uses the so called Bohm-de Broglie potential to get an effective
quantum force in the momentum equation, and the equation of state is chosen such as to get the Fermi
pressure. Several modifications of classical behavior due to such models has been described in the litera-
ture, see the references in Ref. [1] for an up-to-date list. Many papers using kinetic approaches cover the
effects of particle dispersion and Fermi pressure, but using a Wigner function derived without the magnetic
dipole coupling of the Pauli Hamiltonian. In this way all effects due to the magnetic dipole force and spin
magnetization is left out. In contrast to the these works, wewill here focus on physical effects directly
associated with the spin-coupling in the Pauli-Hamiltonian, which give raise to the magnetic dipole force,
the spin precession and the spin magnetization in the above presented models. Most of the recent results
along these lines has been derived from models similar to those presented here.

5.1 Results from spin-fluid theories

The most basic question to ask concerning the electron spin-properties in a plasma is "when are they im-
portant?". For spin effects due to the Fermi-pressure this is straightforward to answer. The Fermi-pressure
becomes important when the Fermi temperature approaches the thermodynamic temperature, which give a
simple condition on the temperature and density of a plasma.For the effects due to the direct spin-coupling
in the Pauli-Hamiltonian the answer is less straightforward, as it depends on the full parameter regime
(involving also the magnetic field strength) but also on the specific geometry of the fields. During certain
geometric configurations, the spin effects can be importantin regimes of modest density and modest tem-
perature, which traditionally has been thought to be completely classical [60]. A specific example of this
kind can be found in the MHD-regime. In Ref. [60] fluid equations of the type (25)-(26) was adopted to
MHD-regime, in order to study the physics of nonlinear spin-modified Alfvén waves. Within linear theory,
the Alfvén waves was almost unaffected by the spin terms, provided the Zeeman energy associated with the
unperturbed magnetic fieldB0 was much smaller than the thermal energy, i.e.µBB0≪ kBT. This condition
holds for most plasmas except close to pulsars and/or magnetars. However, nonlinearly the situation is
different. Ref. [60] used a two-fluid spin-model based on (25)-(26), where spin-up and spin-down popula-
tions were formally treated as different species, as a meansto capture certain kinetic effects within a more
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Figure 1:A figure illustrating regions of importance in parameter space for various quantum plasma ef-
fects. The lines are defined by different dimensionless quantum parameters being equal to unity. The effects

included in the figure are: (i) Fermi pressure effects, described by the parameter TF/Te ∝ h̄2n2/3
0 /mkBTe;

(ii) Effects due to the Bohm–de Broglie potential, described by the parameter̄hωpe/kBTe; (iii) Spin single-
fluid Alfvénic effects, described by the parameterh̄2ω2

pe/mc2kBTe; (iv) Spin single fluid acoustic effects,
described by the parameterµBB0/kBTe. Here lines for three different magnetic field strengths aredrawn.
The quantum regime correspond to lower temperatures, i.e. it exists below each of the three horizontal
lines; (v) Spin two-fluid nonlinear effects, described by the parameterµBB0/mic2

A. The quantum regime
corresponds to higher densities, i.e. it exists to the rightof each of the three vertical lines.

simple fluid theory. From this theory a nonlinear Schrödinger equation

i∂tB1+
v′g
2

∂ 2
ζ B1+Q

|B1|2
B2

0

B1 = 0 (74)

for Alfvén waves propagating parallel to the magnetic field was derived, whereB1 is the slowly varying
magnetic field amplitude,v′g = dvg/dk is the group dispersion,ζ = z−vgt is the comoving coordinate and
vg is the group velocity. These quantities are determined fromthe Alfvén wave dispersion relation, which
readsω2 = k2c2

A(1± kcA/ωci), when weakly dispersive effects due to the Hall current is included [61].
HerecA is the Alfvén velocity andωci is the ion-cyclotron frequency. The upper (lower) sign corresponds
to right (left) hand circular polarization. The nonlinear coefficient isQ = Qc[1− (2µBB0/mic2

A)
2], where

the classical coefficient isQc = kc3
A/4(c2

A− c2
s) ≃ −kc3

A/4c2
s, wherecs is the ion-sound speed. Although

linearly the modification of the Alfvén waves can be neglected (for modest temperature and densities),
the nonlinear coefficientQ could be significantly affected by the spin terms. Illustration of the parameters
needed to make the different quantum plasma effects significant, is shown in Fig. 1. In particular we note
that the two-fluid nonlinear spin effects are important for high plasma densities and/or a weak (external)
magnetic fields. For comparison, both the Fermi pressure andthe Bohm–de Broglie potential need a low-
temperature or a very high density to be significant.. A somewhat surprising result is that here nonlinear
spin effects tend to be more important for a lower magnetic field, whereas the opposite is true for linear
spin effects.

As a second example of spin fluid effects we will consider the ponderomotive force of an electromag-
netic wave propagating along an external magnetic field . Classically, the density fluctuations induced by
the ponderomotive force of an electromagnetic (EM) wave lead to an electrostatic wake field [62], as used
in advanced particle accelerator schemes [63]. In other regimes, the back-reaction on the EM-wave due
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to the density fluctuations leads to phenomena such as soliton formation, self-focusing or wave collapse
[64, 65]. When spin effects based on Eqs. (25)-(26) are included, the spin-contribution to the pondero-
motive force, resulting from the combined effect of the magnetic dipole force and spin-precession, leads
to a separation of spin-up and -down populations. The expression for the ponderomotive force density for
electromagnetic waves propagating along the unperturbed magnetic fieldB0 = B0z can be divided into its
classical part

Fcz =−
e2

2m2ω (ω±ωc)

[
∂
∂z
± kωc

ω (ω±ωc)

∂
∂ t

]
|E|2. (75)

where+(−) correspond to right (left) hand circular polarization, andthe spin part

Fαz =∓
2µ2

mh̄
S0α

(ω±ωg)

[
∂
∂z
− k

(ω±ωg)

∂
∂ t

]
|B|2. (76)

[68]. HereE andB are the electric and magnetic field amplitude, respectively, ωc = eB0/m is the cyclotron
frequency,ωg = 2µB0/h̄= gωc/2. The indexα = (u,d) refers to the up- and down populations, respec-
tively. In particular the up- and down spin vector components areS0u = 1, andS0d = −1. Thus it is clear
that the spin-part of the ponderomotive force induces a separation of the up- and down-populations. This
effect survives also in the absence of an external magnetic field, and it turns out that the magnitude of
the relative up-and down density perturbations can be larger than the classical density perturbations in an
unmagnetized plasma, provided

1<
h̄ω
mc2

ω2
pL2

c2 (77)

whereL is the pulse length of the high-frequency pulse. The first factor of the right hand side of (77) is
smaller than unity for frequencies below the Compton frequency, but the second factor can be large for
long pulse lengths, and hence large spin-polarization can be induced by a sufficiently long EM-pulse in an
unmagnetized plasma for optical frequencies and higher. Once the plasma is spin-polarized, the spin terms
in the evolution equations can be important for the dynamics. For further studies of results from spin-fluid
theories, see e.g. Refs. [66, 67].

5.2 Results from spin-kinetic theories

The full kinetic theory (51) is accurate, but cumbersome formany purposes. As seen from the full (51),
the effects separates quite naturally into particle dispersive effects (which are insignificant for spatial scale
lengths much longer than the characteristic de Broglie wavelength), and effects due to the electron spin. The
particle dispersive effects has been studied in some detailin e.g. Refs. [12, 1]. Focusing on the spin effects
rather than particle effects, we can therefore consider thelong scale-length equation (55). An interesting
effect of spin-kinetic theory is the appearance of new wave-particle resonances. Linearized theory in a
magnetized plasma can be solved in much the same way as in a classical plasma (see e.g. Ref. [51] for
technical details). However, due to the fact that the spin-precession frequencyωg and the Larmor gyration
occursωc are slightly different (i.e.ωg = (g/2)ωc ≈ 1.001ωc) new resonances appear. In particular the
denominators of of the perturbed distribution function in kinetic theory are replaced as

1
(ω− kzvz−nωc)

→ 1
(ω− kzvz−nωc−mωg)

(78)

when spin-kinetic effects are included, where the integern covers±∞ and m= ±1. Thus for a fixed
parallel phase velocity, resonant wave-particle interaction can occur at a much lower temperature when
spin effects are taken into account, since

∣∣ωc−ωg
∣∣≪ |ωc|. This aspect has been discussed in some detail

in Ref. [49]. Furthermore, for perpendicular propagation to the external magnetic field, new Bernstein-
like modes appear with frequencies close to the resonant value ω = ∆ωc =

∣∣ωc−ωg
∣∣. Specifically the

dispersion relation for perpendicular propagation, reads

ω2 = k2c2+ω2
p

∫ {
J2

0 (k⊥v⊥/ωc)

+
k2h̄2∆ωc sin2 θs

4me(ω−∆ωc)kBT

[
J2

1 (k⊥v⊥/ωc)
]}

f0 dΩ. (79)
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whereJ0 andJ1 are zero and first order Bessel functions, respectively. Here we have assumed the clas-
sical terms involving higher order Bessel-functions are negligible, which is accurate forω ≪ |ωc|. The
numerical solutions of (79) reveals that the wave frequencyonly deviates slightly from the resonance∆ωc

for most parameters [51]. It should be noted that a Madelung approach (c.f. Eqs (25)-(26)) cannot capture
the physics of the resonances atω ≈ ∆ωc. However, the moment theory (69)-(73) correctly recovers the
dispersion relation in the low temperature limit [57]. Due to the higher order moments, however, it should
be noted that this theory is computationally somewhat more demanding than Eqs. (25)-(26), at least if the
higher order spin effects are omitted in that theory. Other works on spin kinetic theory includes Ref. [70],
where the general linear theory based on (55) was studied in amagnetized plasma, Refs. [52], where a
simpler version of (55) (a semiclassical correspondence without the magnetic dipole force term) was stud-
ied with regard to fusion applications, and Ref. [69] where asemiclassical version of (55) was adopted to
consider spin induced damping of electron plasma oscillations.

6 Summary and Discussion

A rapid development of spin-models for plasmas has taken place during the last few years, using different
types of methods. The most accurate are the kinetic approach, based on the combined Wigner and q-
transforms of the density matrix. This theory captures not only the spin effects, but also the particle
dispersive effects. However, for scale lengths longer thanthe characteristic de Broglie wavelengths only
the spin effects remain, as described by (55). While the kinetic approach is accurate, and contains much
interesting physics, as for example the resonances displayed in Eq. (78), there is a simultaneous need for
models that are simple enough to be applied also for more complicated problems, involving inhomogenities
and nonlinearities. Various fluid approaches have been adopted for this purpose. Those based on the
Madelung approach capture most of the spin-physics in the physically intuitive effects of a magnetic dipole
force and spin precession, together with a spin magnetization current. Such approaches has been used
in several recent works, see e.g. [66, 67, 68]. However, higher order quantum terms also appear in this
context, which either must be modelled or omitted, in order to form a closed set for the fluid variables.
Another approach to obtain fluid theories is by computing moments of the kinetic theory. The basic terms
(i.e. spin-precession and the magnetic dipole force) are the same as in the Madelung approach, but now a
spin-velocity correlation tensor appears in the evolutionequation for the spin. This has a correspondence in
the tensor of (28) in the Madelung approach, but here things are complicated by the presence of other terms
such as given by (29). Thus an advantage with the moment approach is that it is straightforward to model
the spin-velocity tensor by computing the corresponding moment. As always when taking moments, the
coupling to a higher moment appear, but truncating the moment expansion in the next step (i.e. dropping
higher order moments in the evolution equation for the spin-velocity tensor) seem to capture most basic
spin physics, and leave out only thermal effects [57]. However, even when one is interested in the low
temperature limit, certain effects of a nonzero temperature should be kept to address the behavior in the
more common plasma regimes. This has to do with the fact that the Zeeman energy is typically much
smaller than the thermal energy (i.e.µBB0≪ kBT), such that in thermodynamic equilibrium the two spin
states are almost equally populated. As a consequence, evenif the temperature is small in all other respects
(i.e. all characteristic velocities of a system is larger than the thermal (or Fermi) velocity), there is a
large spread in the spin distribution. As a means to capture some of the physics associated with this large
spread, two-fluid theories of electrons has been developed where up- and down states with respect to the
(unperturbed) magnetic field are described as different species, as described briefly in section 3.1. To some
extent the fluid theories including the spin-velocity tensor seem able to account for some of the effects of
the spread in the spin distribution, but it is too early to make a definitive evaluation of the various models
strengths and weaknesses. Thus the final conclusion is that more research on the physics of electron spin
in plasmas is needed.
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