
ar
X

iv
:1

01
0.

06
20

v1
  [

m
at

h-
ph

] 
 4

 O
ct

 2
01

0

CUQM-137

Generalized quantum isotonic nonlinear oscillator in d dimensions

Richard L. Hall1, Nasser Saad2, and Özlem Yeşiltaş3

1Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Boulevard West,
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1. Introduction

Recently, Cariñena et al. [1] studied Schrödinger’s equation with a quantum nonlinear oscillator potential of the
form

[

− d2

dx2
+ x2 + 8

2x2 − 1

(2x2 + 1)2

]

ψn(x) = Enψn(x). (1)

Their interest in this study came from the fact that Eq.(1), is exactly solvable, in a sense that the eigenenergies
and eigenfunctions can be obtained explicitly; they were able to show that [1]







ψn(x) =
Pn(x)

(2x2+1)e
−x2/2,

En = −3 + 2n, n = 0, 3, 4, 5, . . . ,

(2)

where the polynomial factors Pn(x) are related to the Hermite polynomials by

Pn(x) =







1 if n = 0

Hn(x) + 4nHn−2(x) + 4n(n− 3)Hn−4(x) if n = 3, 4, 5, . . .
(3)

Soon afterwards, Fellows and Smith [2] considered another interesting case and, in particular, they showed that
for certain values of the parameters w and g, the potential in the Schrödinger equation

[

− d2

dx2
+ w2x2 + 2g

x2 − a2

(x2 + a2)2

]

ψn(x) = 2Enψn(x) (4)

is indeed a supersymmetric partner of the harmonic oscillator potential. By means of the supersymmetric
approach, Fellows and Smith [2] were able to construct an infinite set of exactly soluble partner potentials,
along with their eigenfunctions and eigenvalues. Very recently, Sesma [3], using a Möbius transformation, was
able to transform Eq.(4) into a confluent Heun equation and thereby obtain a simple and efficient algorithm to
solve the Schrödinger equation (4) numerically, no matter what values are chosen for the parameters w and g.
Furthermore, using suitable mass distributions, the position-dependent effective mass Schrödinger equation has
been solved for a new nonlinear oscillator [4]. We note that the term 2(x2 − a2)/(x2 + a2)2 in Eq.(4) can be
written as the sum of two centripetal barriers in the complex plane

2(x2 − a2)

(x2 + a2)2
=

1

(x+ ıa)2
+

1

(x− ıa)2
, ı =

√
−1,

that is to say, a rational potential with two imaginary poles symmetrically placed with respect to the origin [1].

The purpose of the present work is to use the supersymmetric approach to analyze the exact analytic solutions
for the more general potential class (4). We consider the d−dimensional Schrödinger eigenvalue problem

HΨ(r) = EΨ(r), H = −∆+ V, (5)

where ∆ is the d−dimensional Laplacian operator, d ≥ 2, and V (r) is the central potential given by

V (r) =
B2

r2
+ ω2r2 + 2g

(r2 − a2)

(r2 + a2)2
, B2 ≥ 0. (6)

We show, through the factorization method, that the eigenequation for this potential, Eq.(5), is indeed exactly
solvable provided g = 2 and (ωa2)2 = B2 + (ℓ + (d − 2)/2)2. The article is organized as follows. In section
2, we consider the d-dimensional Schrödinger equation with the nonlinear oscillator potential (6). In section
3, we briefly review the factorization method and the basic fomulae from supersymmetric theory that we need
for our investigation [5, 6]. In section 4, we show that the isotonic nonlinear-oscillator potential [1, 2] and
the Gol’dman and Krivchenkov potential are isospectral supersymmetric partner potentials. In section 6, the
explicit construction of all the exact solutions of Schrödinger’s equation (5) with V (r) given by (6) is presented.
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2. Schrödinger’s equation in d dimensions

By considering the action of the Laplacian operator on a wavefunction of the form Ψ(r) = u(r)Yl(θ1, θ2, . . . , θd−1)
with a spherically symmetric factor u(r) and a generalized spherical harmonic factor Yl, we obtain the radial
Schrödinger equation in d dimensions for a spherically symmetric potential V (r) as [7, 8]:

− d2u

dr2
− d− 1

r

du

dr
+
ℓ(ℓ+ d− 2)

r2
u+ V (r)u = Eu, (7)

where, if r ∈ ℜd, then r = ‖r‖, and
u(r) ∈ L2([0,∞), rd−1dr).

The first-order derivative term can be removed by using the new radial function ψ(r) given by

ψ(r) = r
d−1

2 u(r), d ≥ 2, ψ(0) = 0, ψ(r) ∈ L2([0,∞), dr).

Thus, we find

− d2ψ

dr2
+ U(r)ψ = Eψ (8)

where

U(r) = V (r) +
(2ℓ+ d− 1)(2ℓ+ d− 3)

4r2
. (9)

We now recall the definition of V (r) in (6) and combine the terms in 1/r2 to obtain,

U(r) =
k(k + 1)

r2
+ ω2r2 + 2g

(r2 − a2)

(r2 + a2)2
, (10)

where k is defined so that

B2 +
1

4
(2ℓ+ d− 1)(2ℓ+ d− 3) = k(k + 1),

that is to say,

k =

[

B2 +

(

ℓ+
d− 2

2

)2
]

1

2

− 1

2
. (11)

We shall find it convenient to label energy eigenstates ψnk ≡ ψnγd
, where n = 0, 1, 2, . . . is the number of radial

nodes, and γd = k + 1
2 .

3. The factorization method

In this section we give a brief review of some concepts of supersymmetric quantum mechanics (SUSY QM)
that we shall need in the following sections, namely the factorization method, and supersymmetric partner
potentials. We start with Schrödinger’s time-independent equation for a one-dimensional radial problem (in the
units h̄ = 2m = 1)

Hψ(r) =

[

− d2

dr2
+ U(r)

]

ψ(r) = Eψ(r) (12)

where the potential U(r) is real and possibly singular at r = 0. The wave function ψ(r) must be square-integrable
and normalized in a sense that

∫

|ψ(r)|2dr = 1. The main idea of the factorization method, as introduced in this
context by Schrödinger and Dirac, is to write the second order differential operator H in (12) as the product of
two first order differential operators A† and A, such that H = A†A and

A† = − d

dr
+W (r), A =

d

dr
+W (r) (13)
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where the functionW (r) is a real function of r and is known as the superpotential of the problem. The operators
A and A† are Hermitian conjugates of each other: (A†)† = A. Let us define

H1 = A†A = − d2

dr2
+ U1(r), H2 = AA† = − d2

dr2
+ U2(r). (14)

In general H1 ≡ H and H2 are two different Hamiltonians. They are known as partner Hamiltonians in SUSY
QM and are given explicitly by:

H1 = A†A =

(

− d

dr
+W (r)

)(

d

dr
+W (r)

)

= − d2

dr2
+W 2(r) − dW (r)

dr
= − d2

dr2
+ U1(r) (15)

and

H2 = AA† =

(

d

dr
+W (r)

)(

− d

dr
+W (r)

)

= − d2

dr2
+W 2(r) +

dW (r)

dr
= − d2

dr2
+ U2(r) (16)

where the potentials U1 and U2 are known as supersymmetric partner potentials defined by:

U1(r) =W 2(r) − dW (r)

dr
, and U2(r) =W 2(r) +

dW (r)

dr
. (17)

Suppose that ψ
(1)
n (r) and ψ

(2)
n (r) are the eigenfunctions of H1 and H2, respectively. In the unbroken SUSY

case, the ground state is not degenerate with a vanishing energy E0 = 0 and it is usually expressed in terms of
the superpotential W (r) as:

A ψ
(1)
0 (r) =

(

d

dr
+W (r)

)

ψ
(1)
0 (r) = 0 ⇒ ψ

(1)
0 (r) = C exp

(

−
∫ r

W (τ)dτ

)

, (18)

where C is the normalization constant. The key result is the iso-spectrality between the two Hamiltonians H1

and H2 for all but the ground state (n = 0), which can be shown as follows. Since the energy eigenvalues of

H1 and H2 are positive semi-definite E1,2
n ≥ 0, we have for H2ψ

(2)
n = AA†ψ

(2)
n = E

(2)
n ψ

(2)
n and by multiplying

through by A† we see that

H1(A†ψ(2)
n ) = A†A(A†ψ(2)

n ) = A†H2ψ
(2)
n = E(2)

n (A†ψ(2)
n ). (19)

Thus A†ψ
(2)
n is an eigenstate of H1 with same energy eigenvalue E

(2)
n , and there must be ψ

(1)
n (r) such that

ψ(1)
n (r) = cnA†ψ(2)

n (r) (20)

where cn are constants for n = 1, 2, . . . Similarly, for H1ψ
(1)
n = A†Aψ(1)

n = E
(1)
n ψ

(1)
n and, multiplying through

by A, we find

H2(Aψ(1)
n ) = AA†(Aψ(1)

n ) = AH1ψ
(1)
n = E(1)

n (Aψ(1)
n ). (21)

Thus Aψ
(1)
n is an eigenstate of H2 with the same eigenvalue E

(1)
n , and there must be ψ

(2)
n (r) such that

ψ(2)
n (r) = c′nAψ(1)

n (r). (22)

Furthermore, since

1 = 〈ψ(2)
n (r)|ψ(2)

n (r)〉 = |c′n|2〈Aψ(1)
n (r)|Aψ(1)

n (r)〉 = |c′n|2〈ψ(1)
n (r)|A†Aψ(1)

n (r)〉 = E1
n|c′n|2〈ψ(1)

n (r)|ψ(1)
n (r)〉,

we have

ψ(2)
n (r) = (E(1)

n )−1/2Aψ(1)
n (r) = (E(1)

n )−1/2

(

d

dx
+W (r)

)

ψ(1)
n (r). (23)

Similarly, we find

ψ(1)
n (r) = (E(2)

n )−1/2A†ψ(2)
n (r) = (E(2)

n )−1/2

(

− d

dx
+W (r)

)

ψ(2)
n (r). (24)

Thus, if we knew the eigenvalues and eigenfunctions of either of the two partner potentials, we could immediately
derive the spectrum of the other. However, the above relations only give the relationship between the eigenvalues
and eigenfunctions of the two partner Hamiltonians, but do not allow us to determine their spectra. In the
next, we are guided by the idea of finding pairs of (essentially) isospectral Hamiltonians, one of which has a
known soluble Hamiltonian.
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4. Supersymmetric partner of the Isotonic potential

A key step in this work was the idea to consider a candidate for a superpotentialW (r) by means of the following
Ansatz:

W (r) =
k′

r
+ ω′ r +

sr

r2 + a2
, (25)

where k′, ω′ and s are real parameters to be determine shortly, and a is a fixed potential parameter. The
potential U1, then reads

U1(r) = ω′2r2 +
k′(k′ + 1)

r2
+
s(−2a2ω′ + s+ 2k′ + 1)r2 − a2s(2ω′a2 − 2k′ + 1)

(r2 + a2)2
+ (2s+ 2k′ − 1)ω′

(26)

and the potential U2 is given by

U2(r) = ω′2r2 +
k′(k′ − 1)

r2
+
s(s− 1 + 2k′ − 2a2ω′)r2 + a2s(1 + 2k′ − 2a2ω′)

(r2 + a2)2
+ (2s+ 2k′ + 1)ω′

(27)

If we now compare the potential U1(r) with

V1(r) =
k(k + 1)

r2
+ ω2r2 + 2g

(r2 − a2)

(r2 + a2)2
(28)

we have for k′ = k, ω′ = ω, s(−2a2ω′ + s+ 2k + 1) = 2g, and s(2ω′a2 − 2k′ + 1) = 2g, that






s = 4(ωa2 − k),

g = 2(wa2 − k)(2wa2 + 1− 2k).
(29)

With these values of s and g we may reduce U2 by the assumption that s(s − 1 + 2k − 2a2ω) = 0 and
a2s(1 + 2k − 2a2ω) = 0 to

V2(r) = ω2r2 +
k(k − 1)

r2
+ (8(ωa2 − k) + 2k + 1)ω. (30)

These assumptions are valid under the following conditions:

ωa2 = k +
1

2
, g = 2 and s = 2.

In summary, we have two partner potentials

V(1)(r) =
k(k + 1)

r2
+ ω2r2 +

4(r2 − a2)

(r2 + a2)2
+ ω(2k + 3) (31)

V2(r) =
k(k − 1)

r2
+ ω2r2 + ω(2k + 5). (32)

provided the parameters ω and a satisfy

ωa2 = k +
1

2
=

√

B2 +

(

ℓ+
(d− 2)

2

)2

. (33)
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5. Gol’dman and Krivchenkov potential in d-dimensional

Schrödinger’s equation with the Gol’dman and Krivchenkov potential [9] in d-dimensions is given by
(

− d2

dr2
+

Λ(Λ + 1)

r2
+ βr2 +

α

r2

)

ψnγd
(r) = Enγd

ψnγd
(r), Λ = l +

1

2
(d− 3), d ≥ 2, (34)

and has exact eigenvalues given by [9]

Enγd
= 2

√

β (2n+ γd) , n, l = 0, 1, 2, . . . , (35)

where

γd = 1 +

√

α+ (Λ +
1

2
)2.

Meanwhile, the exact eigenfunctions are given by [9]

ψnγd
(r) = (−1)n

√

2βγd/2(γd)n
n!Γ(γd)

rγd−1/2e−
1

2

√
βr2

1F1(−n; γd;
√

βr2). (36)

Here, we use the Pochhammer symbol (γ)n, where

(γ)n = γ(γ + 1)(γ + 2) . . . (γ + n− 1) =
Γ(γ + n)

Γ(γ)
,

and 1F1 is the confluent hypergeometric function defined by ( [10], chapter 7)

1F1(−n; b;x) =
n
∑

k=0

(−n)k
(b)k k!

xk. (37)

Using these exact solutions for the Gol’dman and Krivchenkov potential, we can show that the Schrödinger
equation

(

− d2

dr2
+
k(k − 1)

r2
+ w2r2 + ω(2k + 5)

)

ψnk(r) = ǫnkψnk(r) (38)

has exact solutions given by

ǫnk = 2ω(2n+ 2k + 3), (39)

and

ψnk(r) = (−1)n

√

2ωk+1/2(k + 1/2)n
n!Γ(k + 1/2)

rke−
1

2
ωr2

1F1(−n; k +
1

2
;ωr2), (40)

where

k +
1

2
= γd = ωa2 =

[

B2 +

(

ℓ +
d− 2

2

)2
]

1

2

. (41)

It is clear from these relations that states having the same value for the combination 2ℓ+ d are degenerate.
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6. Exact solutions for isotonic nonlinear-oscillator potentials

The supersymmetric approach, briefly discussed in section 3, along with exact solution of the Gol’dman and
Krivchenkov potential allow us to obtain the exact solutions of Schrödinger’s equation

(

− d2

dr2
+
k(k + 1)

r2
+ ω2r2 +

4(r2 − a2)

(r2 + a2)2
+ ω(2k + 3)

)

φnk(r) = ǫnkφk(r), (42)

namely,

ǫnk = 2ω(2n+ 2k + 3), (43)

and the corresponding wavefunctions are given by

φnk(r) = C′
n

(

− d

dr
+
k

r
+ ωr +

2r

r2 + a2

)

rke−
1

2
ωr2L

k− 1

2

n (ωr2) (44)

where

C′ = (−1)n

√

2ωk+1/2(k + 1/2)n
2ω(2n+ 2k + 3) n!Γ(k + 1/2)

. (45)

Here we have used the well-known relation between the confluent hypergeometric function (37) and Laguerre
polynomials ( [10], page 203)

1F1(−n;α+ 1; z) =
n!

(α+ 1)n
Lα
n(z).

A straightforward computation, aided by the differential identity of Laguerre polynomials ( [10], page 203,
formula (11)), namely

d

dz
Lα
n(z) = −Lα+1

n−1(z), (46)

yields

φnk(r) =
C′

nr
k+1e−ωr2/2

r2 + a2

[

(2k + 2n+ 3)Lk−1/2
n (ωr2)− 2(n+ 1)L

k−1/2
n+1 (ωr2) + 2ωa2Lk+1/2

n (ωr2)

]

,

(47)

where we have used the identity ( [10], page 203, formula (8))

Lα
n(z) = Lα

n−1(z) + Lα−1
n (z). (48)

Since wa2 = k + 1/2, we may write Eq.(47) as

φnk(r) =
C′

nr
k+1e−ωr2/2

r2 + a2

[

(2k + 2n+ 3)Lk−1/2
n (ωr2)− 2(n+ 1)L

k−1/2
n+1 (ωr2) + (2k + 1)Lk+1/2

n (ωr2)

]

.

(49)

This may be compared with the results of Fellow and Smith [2] by use of the well-known relations between
Hermite and Laguerre polynomials ( [10], page 216, problem (1))

L−1/2
n (ωr2) =

(−1)n

22nn!
H2n(

√
ωr) (50)

and

L1/2
n (ωr2) =

(−1)n

22n+1n!
√
ω r

H2n+1(
√
ωr). (51)

For k = 0, ω = 1 using the identity ( [10], page 188, formulas (4) and (6))

2zHk(z) = Hk+1(z) + 2kHk−1(z). (52)
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we obtain

φnk(r) =
(−1)nC′

ne
−r2/2

22n+2 n! (r2 + a2)

[

4(2n+ 3)H2n+1(r) + 8n(2n+ 3)H2n−1(r) +H2n+3(r)

]

, (53)

where

C′ = (−1)n

√

Γ(n+ 1
2 )

(2n+ 3) n! π
. (54)

These general results agree with the results discussed by Cariñena et al [1], and Fellows et al. [2] for the
comparable odd solutions n = 3, 5, 7, . . . in Eq.(2).

7. Conclusion

In this paper, we have studied a family of generalized quantum nonlinear oscillators in d-dimensions. These
isotonic oscillator problems have potentials V (r) of the form

V (r) =
B2

r2
+ ω2r2 + 2g

(r2 − a2)

(r2 + a2)2
. (55)

We show that if g = 2 and (ωa2)2 = B2+(ℓ+(d−2)/2)2, then this potential can be regarded as a supersymmetric
partner of the Gol’dman and Krivchenkov potential, for which exact solutions can be constructed. Thus, under
these conditions, we are able to solve the eigenproblem Hψ = (−∆+ V )ψ = Eψ exactly in d dimensions, and
provide formulae for all the discrete eigenvalues and corresponding normalized wave functions. We have shown
that our solutions to the general problem agree with the results reported earlier in Refs. [1] and [2] for the
comparable odd states n = 3, 5, 7, . . . in d = 1 dimension with B = 0.
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