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Abstract

We consider a conforming finite element approximation of the Reissner-Mindlin
system. We propose a new robust a posteriori error estimator based on H (div ) con-
forming finite elements and equilibrated fluxes. It is shown that this estimator gives
rise to an upper bound where the constant is one up to higher order terms. Lower
bounds can also be established with constants depending on the shape regularity of
the mesh. The reliability and efficiency of the proposed estimator are confirmed by
some numerical tests.
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1 Introduction

The finite element method is often used for the numerical approximation of partial differ-
ential equations, see, e.g., [7, 8, [13]. In many engineering applications, adaptive techniques
based on a posteriori error estimators have become an indispensable tool to obtain reliable
results. Nowadays there exists a vast amount of literature on locally defined a posteri-
ori error estimators for problems in structural mechanics. We refer to the monographs
[T, 2, 29, B2] for a good overview on this topic. In general, upper and lower bounds are es-
tablished in order to guarantee the reliability and the efficiency of the proposed estimator.
Most of the existing approaches involve constants depending on the shape regularity of the

*Université des Sciences et Technologies de Lille, Laboratoire Paul Painlevé UMR 8524, and
EPI SIMPAF - INRIA Lille Nord Europe, Cité Scientifique, 59655 Villeneuve d’Ascq Cedex email:
creuse@math.univ-lillel.fr

"Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sci-
ences et Techniques de Valenciennes, F-59313 - Valenciennes Cedex 9 France, email: Serge.Nicaise@Quniv-
valenciennes.fr

tUniversité des Sciences et Technologies de Lille, Laboratoire Paul Painlevé UMR 8524, Cité Scien-
tifique, 59655 Villeneuve d’Ascq Cedex email: verhille@math.univ-lillel.fr


http://arxiv.org/abs/1011.0974v1

elements; but these dependencies are often not given. Only a small number of approaches
gives rise to estimates with explicit constants, see, e.g., [II [6, 15, 20, 211, 25 28, 29] [30].
However in practical applications the knowledge of such constants is of great importance,
especially for adaptivity.

The finite element approximation of the Reissner-Mindlin system recently became an
active subject of research due to its practical importance and its non trivial challenges to
overcome. In particular, appropriated finite elements have to be used in order to avoid shear
locking. Such elements are in our days well known and different a priori error estimates
are available in the literature. On the contrary for a posteriori error analysis only a small
number of results exists, we refer to [5, O] 111, [12] 21, 26, 27, 24]. Most of these papers enter
in the first category mentioned before and to our knowledge only the paper [21] proposes
an estimator where an upper bound is proved with a constant 1. Hence our goal is to
give an estimator that is robust with respect to the thickness parameter ¢, with an explicit
constant in the upper bound, that is also efficient and that is explicitly computable. For
these purposes we use an approach based on equilibrated fluxes and H(div )—conforming
elements. Similar ideas can be found, e.g., in [6, 15, 21 28, 30]. For an overview on
equilibration techniques, we refer to [I], 25].

The outline of the paper is as follows: We recall, in Section 2, the Reissner-Mindlin
system, its numerical approximation and introduce some useful quantities. Section 3 is
devoted to some preliminary results in order to prove the upper bound. This one directly
follows from these considerations and is given in full details in section 4. The lower bound
developped in section [O] relies on suitable norm equivalences and by using appropriated
H(div) approximations of the solutions. Finally some numerical tests are presented in
section [6] that confirm the reliability and the efficiency of our error estimator.

2 The boundary value problem and its discretization
Let Q be a bounded open domain of R? with a Lipschitz boundary I' that we suppose to be
polygonal. We consider the following Reissner-Mindlin problem : Given g € L?(2) defined

as the scaled transverse loading function and t a fixed positive real number that represents
the thickness of the plate, find (w, ¢) € H}(Q) x Hj(Q)? such that

a(e, V) + (v, Vo — ) = (g,v) for all (v,9) € Hy(Q) x Hy(Q)?, (1)

where

Y = A (Vo — ¢) and a(é, ) / Ce(d)e () 2)

Here, (-, -) stands for the usual inner product in (any power of) L*(Q), the operator :
denotes the usual term-by term tensor product and

(6) = 5(Vo + (Vo))
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C is the usual elasticity tensor given by
Ce() = 2 pe(9) + Atr(e(¢)) T.

The parameters pu, X and A are some Lamé coefficients defined according to the Young
modulus £ and the Poisson coefficient v of the material. In the following, for shortness the
L?(D)-norm is denoted by || || p. The usual norm and seminorm of H*(D) are respectively
denoted by || - ||1.p and | - |1.p and the usual norm on H~!(D) is denoted || - ||_1 p. For all
these norms, in the case D = (2, the index 2 is dropped. The usual Poincaré-Friedrichs
constant in €2 is the smallest positive constant cp such that

|8]] < cr ol Vo € Hy(Q)2

By Korn’s inequality [22], a is an inner product on H}(Q)? equivalent to the usual one.
Indeed, defining the energy norm || - ||¢ by

10[Ie = a(,v) Vi € Hy(Q)?,

it can be shown (see annex [[.T]) that
1
vl < ;WH%Wﬁ € Hy(Q)". (3)

Consequently, the continuous problem ([I)-(2]) is well-posed.
Lemma 2.1 The problem ([1)-(3) has a unique solution (w,$) € H () x H} ().

Proof: Defining the functional F((w, ®), (v,v)) = a(¢, )+ (v, Vo—1) with vy = A t72 (Vw—
®), let us establish its coerciveness, namely that there exists & > 0 such that

F((w, ), [w,0]) > k (|w]i +[0[),¥(w, ¢) € Hy () x Hy(2)*. (4)

Fix an arbitrary pair (w,¢) € H}(Q) x H}(Q)?. First of all, (3) and the standard Cauchy-
Schwarz inequality lead to

Fl(,6),@.6)) = uléf+ At ((1 e (1 - %) ||¢||2) > 0.

Then we directly obtain

P((,6). (00 2 B0 + X721 = kol + (5 + 00 (1= 1) ) Il w0 > 0. (9
F n
202\ 2

Choosing now 17 = M—'—TW

< 11in (@), we have

2

F((w0), (@ 0)) 2 GIofi + =55l
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-2

This shows that () holds with & = min H, # . The conclusion follows from
27 p+2ci A2

the Lax-Milgram lemma for which the other assumptions to fulfill are obvious. |

Let us now consider a discretization of ({l)-(2) based on a conforming triangulation 7y,
of 2 composed of triangles. We assume that this triangulation is regular, i.e., for any
element T € Tp, the ratio hr/pr is bounded by a constant ¢ > 0 independent of 7" and
of the mesh size h = rTnez% hr, where hr is the diameter of 7" and pr the diameter of its

largest inscribed ball. We consider on this triangulation the classical conforming IP; finite
element spaces W), x ©,, defined by

Wy, = {vn € C°(Q);v, = 0 on 9Q and vy € Py(T) VT € Ty} C Hy (),

@h =W, xW, C Hé(Q) X Hé(Q)

The discrete formulation of the Reissner-Mindlin problem is now to find (wp,, ¢5) € W), x Oy,
such that

a(@n; Vn) + (vh, Vor, — Rpthn) = (g, vp) for all (vp, ) € Wi X Oy, (6)

with
Y = M2 (Vw, — Rygy). (7)

Here, R;, denotes the reduction integration operator in the context of shear-locking with
values in the so-called discrete shear force space I';, which depends on the finite element
involved [3| [4] I8, 19, B1]. We assume moreover that

For all ¢y, € O, Ry, € HO(TOT,, Q),

where Hy(rot,Q) = {v € L2(Q)% rot v € L*(Q) and v -7 = 0 on 9}, equipped with the
norm
101l oty = vl + ot vllg.

Here, for any v = (vy,v9)" € L3()?, rotv = Ovy/dz — dvy /Dy and 7 is the unit tangent
vector along 0f2. In this work, Ry, is defined as the interpolation operator from ©, on the
Hy(rot, Q) conforming lower-order Nedelec finite element space [22].

By the usual Helmholtz decomposition of any Hy(rot,2) vector field [8, p. 299], there
exists w € H} () and 8 € HJ()? such that :

(Ry — I)¢pp, = Vw — B, (8)
as well as a constant C > 0 such that
Jwlls + 18] < C [[(Rr — D@nll (ot
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More precisely, we introduce the constant ci such that

|8l1 < cr[lrot(Ry, — I)énll,

which can be evaluated by [22]

» -1
cR:< inf sup M) .

a€L2(Q) e m} Q)2 |l vl

Given the exact solution (w,¢) € Hi(Q) x HL(Q)? as well as the approximated one
(wh, dn) € W), x Oy, the usual error e is defined as

(er”)? = lw —wnl? + [¢ — duls + Ay =l + A2 [rot (v — ) 1> + 1y — ll21- (9)
The residuals are also defined as follows

Resi(v) = (g,v) — (9, Vo) forallv e H}(R), (10)
Resy()) = —a(¢n,9)) + (y,0) for all v € Hi(2)" (11)

Finally, let us now introduce, in the spirit of [21]], the spaces N, (€2) and Hg;, (€2) respec-
tively defined by

Hyi(Q) = {y € L*(Q,R?)|divy € L*(Q)},
Nyiv(Q) = {z € L*(Q, M2)| divr € L*(Q,R?)},

where M?% is the space of symmetric tensors of second rank. We now fix an arbitrary
y* € Hy,(Q) such that divy* = —II,g, where II; is the projection operator from L?*(£2) to
the piecewise constant fonctions on the triangulation. Let us also fix 2* € Ny, (€2) such
that div x* = —~,,. Their existence and construction will be explained later on.

We finally need to introduce the following mesh-dependent norm. For all (¢,v) €
H}(Q) x HY(Q)?, we define

1
1@, I, = VeI + ) muw—wn% (12)

TeTy,

For all functional F' defined on HJ(2) x H}(2)?, the dual norm associated with (I2) is
classically defined by

F(y,v
N1 = sup )

. (13)
(1b,0)EHE (Q)x HE (2)2\{0} I (0y ) [ll1.n



3 Preliminary results

The aim of this section is to prove four lemmas which will be used in the following of the
paper.

Lemma 3.1 Let us consider («,¢) € (R})?. Then we have

At = )|V (w = wn) = (¢ = Rudn) > + Aa®(1 — 2€) ||V (w — wp)|I*

< X2l =l =30 (1= 2) 1, - Rionl? 20 (1= 2 =< ) o - .

Proof: We first write

IV (w —wn) = (¢ — 6n) — (¢n — Rasn)|®

= [[V(w = wn)|* + ¢ — onll* + |6 — Radn) |I?

—2(V(w—wn), ¢ — on) — 2(V(w —wp), on — Rudn) +2(¢ — dn, o — Rugn).
Consequently, we have

ATy = mllP = A=) V(w —wh) = (¢ — Ragn)|?

AP (||V (w = wp) I + |6 — énll” + [[én — Rugnll?)
200%(¢ — b, ¢ — Rudn) — 200*(V(w — wh), ¢ — o)
— 2Xa*3(V(w — wy), dn — Rudn).

Using the three following Young inequalities

1
—2(¢ — én, on — Rpopp) < 5H¢_¢h||2+g||¢h_Rh¢hH2v

AVW-wi)b= ) < <Vl —w)l?+ o - ol

_l_
_l_

p

2V(w — ) 6n—Radn) < e|Viw =)+ llon — Rudul”

\

we get
At = a?)||V(w — wp) — (¢ — Rudp)||?
<Ay =l = Ao (9w = wn) |2 + 16— 6l + lén — Ragull?)
1 1
#3a (el = nll + 2lon — RadulP + €9 = ) + 20— ol
1
+el|V(w — wn)lI” + g||¢h — Rionl”
) 1
= A2y — 2 = Ao <1 - g) [6n — Raon|* — Aa? <1 o 5) I — ¢nll”

—a?(1 —28)||V(w — wp)|)?.

This proves the lemma. [



Lemma 3.2 we have
Iy =2y <4+ 16— onllé + 2[ Ress |12, (14)
Proof: First, it can be shown that for any ¢ € (H}(Q))?,

ol < 2 (u+ MWL,

so that
(Y =,v) = a(¢— én, V) + al(dn, V) — (W, V)

= a(¢ — ¢n,1P) — Resy (1)
< ¢ = dnllell¥llc + [[Resa||-1]P]:

(2 e+ 20) 206 = dnlle + [ Ressll 1 ) [l

IN

Hence we get

~ 2
Iy =l2y < (@ G+ 2)2116 = dnlle + | Resall 1 )
<A+ X) 16— onll2 +2 | Ressf2.

Lemma 3.3

16 = nlle + A7 1y — Wl = Resi(w — wp + w) + Resz (¢ — dp + B) — al¢ — ¢, B),

where w and [ are given by the Helmholtz decomposition (8).
Proof: This result is similar to the one given in [I1]. First, () and (&) lead to

(v = (R = Don) = (v =, Vw = j)
= (7, Vw) = (v, 8) = (v, Vw — B)
= (g, w) — a(o, B) — (n, Vw — B)
= —a(¢ — ¢n, B) + (9, w) — a(¢n, B) — (v, Vw — B).

A simple calculation shows that

o — onlle + 2"y — wll?
=a(¢ — én, & — én) + (v — Y, (Vw = V) — (¢ — ¢n)) + (v — 7, (R — 1))
= (9,w — wn) — a(dn, ¢ — dn) — (Yn, V(w — wy))
+(Vh, & — 1) — alg — én, B) + (9, w) — a(én, B) — (yn, Vw — B)
= Resy(¢p — on + B) + (9,w — wi + w) — (Y, V(W — wp + w)) — al(¢ — ¢p, B)
= Resy(¢p — ¢p + B) + Resy(w — wp, +w) — ale — ép, B).
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So we get

16 = nlle + A7 1y — Wl = Resi(w — wp + w) + Resa (¢ — dp + B) — al¢ — ¢, B).

n
Lemma 3.4
1 2 1 2 1 —142 2
§||¢—¢h+5“c+§||¢—¢h||c+§>\ Iy = ]
1 A )
+§T; m||v(w—wh+w)—(¢—¢h+5)||cr
h

< Resi(w — wp +w) + Resa (¢ — o + B) + %Hﬁ”g

Proof: The proof is once again similar to the one in [11]. Because of (§]), we first remark
that
V= =M (Vw = Vwy, — ¢+ ¢y, + Vw = B),

so that we have for all T € T;,
IV(w —wp +w) — (¢ — dn+ B)I7 < A2 |y — 7l
Then,
1 5, 1 o 1 i 2
§||¢ —on+ Blle + §||¢ — dnlle + 5)\ =y =l
| A )
+5 > m”v(w —wp+w) — (¢ —dn+B)7

TeTy,

1 1
|6 = én + Blle + 510 = dulle + 5

2

_ 1. _
ATy =l + A7 > v = wllE
TETH

<Xy =l 56— 5.6 — bn+ ) + (6 — 6n. 6 — )
1
= Xy =l + 5 (16 = onll2 + 2a(6 = 6n, 6) + 1812) + 510 — 6l

1
=16 = @ulle + A7 Elly = Wl + 5118lle + al@ — 61, ).

From lemma [3.3, we get

<

N —

1 1 I._
Slé =+ Blié + Sllo— onllé + % Py =l

1 A 2
+§ Z m“v(w —wp +w)— (o —én+P)|7
TeTh

< Resy(w — wh +w) + Resy(¢ — dn + B) — a(¢ — én, B) + %IIBH% + a(¢ — on, )
= Resi(w — wy +w) + Resy(¢p — ¢ + ) + %HBH?:-



4 Reliability of the estimator

Theorem 4.1 Let us consider 0 < € < 1/2, as well as two parameters vy > 0 and vy > 0.
Moreover, let us define

3 +e—1 < t2
A(e) = max +02€7+4,u—|—)\;1—|—7).
(@ =max (24 2T e )

Then,

(ex)? < Aull|Resull|? ) ), + Aol|Resa||* ) + Asllé — o + B2

+Adllén — Rudnlfrgorey — Y AL IV(w — wn +w) = (6 — ¢n + )|
TeT
(15)
with
Al = l/lA(E)2;

A2 = VQA(€)2 + 27

2 _ -
Ay = max (f = 2+ 2A(e)(p + )\)cé) ;

o AA(e) 1

= — , VT €T,
2R n(t2+h2) T

Proof: First of all, by using lemma [B.] and the fact that 0 < e < 1/2, we get

(e < (Lie e —‘* o — dnll% + P P ATy — 2
T\ (1 — 2¢) TT—29)
2
21
= |on — Rugnll* + A2 rot(y — )2 + |7 — 7l
1—2¢

Then, because of lemma as well as

2
At [rot(y — w)lI* < u l¢ = onlle + 2 lIrot(dn — Ragn)|*,

we obtain
3 l4+e—1 <
rolN2 | Z 2 e 4 b _ 2 2 t - R 2
9 < (DG Ios 1t D) 16— anlt + 2lrorton - Ruon)|
Y CRPL YR Y Sk P N
M1 — 2¢) T 19z ) IPn T Fn@n
—|—2||R€82H2_1.



By the definition of A(e) as well as lemma [B.4] we get
() < A(E) (2Resa(w — wh + ) + 2Resa( — b+ B) + 1]

A
o= on+ 82 = - IV —en+w) = (0= 6+ D)

TeTy,

21
+ (f_ 25) [6n — Radn||* + 2| Resal|” ) + 2[|rot(¢n — Radn)||.

We notice that

Resy(w — wy +w) < |[|[Rest| ||~ pl[|(¥, w — wp +w)|[[1,0 V¢ € Hy(Q)?,

Ress(¢p — o + B) < ||Resa|| -1 — on + Bl1-

Introducing now the parameters 14, > 0 and v, > 0 and using two times Young’s inequality
lead to

1
(er")? < A% Resul2,, + V—1|||<w, w—wn +w)|[l7,

FnA2(2) || Resa2 + Vizw — o+ B2
—AE)|6 — dn + BI% + A©) 18I

1—
-3 (t2+h2) IV (w —wn +w) = (6 — ¢n+ B) |7

TeTh

2
; ( : ) 166 = Radnl? + 20| Ress |2, + 2]rot(én — Racn)

Finally, choosing ¢ = ¢ — ¢, + 3, we get

11, 0 —wn +w)llF = IV(@—n+ B+ D

TeT

and so (3] holds. [

IV -t — (o= ot A,

Corollary 4.2 Let us assume that t < \/3Xc¢%/u, and let us define :

(= max{ L 21>\} (16)
Then,

3 ~
7 <2 (24 F e ovB) 4 ) s
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2
+ <2g G + C;F(?) +2v/3) +4(pu + X)) + 2) | Resal|%,

3 2 - -
+ max (7 +4V3; 2+ (; + %F(B +2V3) +4(u+ A)) 2(p + /\)c%) 160 — Runll7r(ror.0)-

Proof: Assuming 1 — 2¢ > 0, the parameters v; and 15 arising in the values of Az and
AT in (I5) are first chosen such that A3 < 0 and AL > 0 VI € T,. Namely we take
vy = vy = 2(/A(e). Consequently, we obtain

(e3)? < Ayl[|[Resa||% ), + Asl|Resa||21 + Asllon — RudnllFrronys (17)

with ~

Ay = 2CA() + 2;

2
€

A, = max ( 24 2A(e) (u + X)cg) .

1—2¢
Now, in order to provide a result as sharp as possible, it remains to choose appropriately
the parameter € to make the coefficients A;, Ay and A4 arising in (I7) as small as possible.

Since we always have 1 < 3/u+ 4(p + ), the assumption ¢ < \/3Ac%/u leads to

21
£

At this stage we remark that the two functions A(e) as well as reach their minimum

1-2¢
value for the same value of the argument e, namely for ¢ = 2 — v/3. So, by a simple
calculation, corollary .2 holds. n

Now, it remains to bound each of the two residuals.

Lemma 4.3 Let N € N* be such that maxY (T) < N, with Y (T) = #{T" € T, | T" C wr}

TeTh

and wp = {K € T,|KNT # 0} is the patch of elements surrounding T (consequence of the
mesh reqularity). Then there ezists ko > 0 only depending on the mesh regularity such that

1Resll21 < 2N &5 D> (8 + 1)y —y7[I7 + 0sc(g), (18)
TeTy,

where osc(g) corresponds to an oscillating term.

Proof: For any v € HJ (), let us consider v, = Jv where J : H}(Q) — W), is defined such
that (see, for example [I4], known as the Clément operator)

Tk > 0: YT €T, |[Vuullr < 61V |uy- (19)
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Moreover, it can be shown [I1] that there exists ko > 0 and k3 > 0 such that for all T € Ty,
and for any v € HJ(Q2)?,

V(v = wn)llr < k2 (VU = Yllor + hr |V lor)

hr'llv = vallr < w3 (V0 = Yy + hr[ V) -

Then for all v € HJ(Q), we get

Resi(v) = Resi(v —wy)
= (9,0 —vn) = (9, V(v = vn))
= (g +divy*,v —vn) = (3 — ", V(v — )

- Z ((g + divy™,v —vp)r — (v — ¥*, V(v = w4))7)

TeT,
—1

. h
< hpyft2 4+ W2 g + divy*||r x —=E—v — viI7

2 NEyr
D DRVAE A BT P IV (= wn)llz-

1
ter. N

So, we can write

Resy(v) < Z hry/t? + hZ|lg + divy™||r

TeT o
3

R

+> P+ =y
TETh

IV = Pllor + hrl[Vllr)

K2
Xi
V12 + h

< (z R+ )+ divy
TET,

Vo = Pllor + hrl[Vller)

1/2
+ > K3+ b3y — sz%)
TET,

1/2

| e
25" (90— VI, + VU2, )

TeT
A

J/

~~

=S

12



Now recalling that max Y (7') < N we have

TETy,
1 ) h?p )
S5 =N Z 212 Vo =47 + Pz INE P
TET, T T
<1
1
S N Z <t2 + h2 HVU - wH% + ||v¢||%)
TET, T
1
<N (HV@DH?NL Z m”vv —¢||?r)
T
TET,

S < NI, )l 5

So we get

Resy(v) < (mg Z R (2 + h3)||g + divy*||3
TeTh

1/2
+h3 > (4 h) | — yﬂl%) X V2NI|[ (4, v)|[|1,n-

TeTh
Consequently
[|[Resi[l|2y,, <2N (%:2:, D 0 + 1)l + divy|[7
TeTh
+r3 (7 +h7) v — y*IIQT) :
TETh
Since divy* = —1II, g, we get ||g + divy*||7 < C h7||gl|2, and (I8) holds. ]

Lemma 4.4 For ¥ € Hy(Q)?, we have
Resy(v) < [[C12(z* = Ce(on)) [¥lle- (20)

Proof: Using standard Green formula, we easily obtain
Resa(0) = [ (a" = Celon) s =(u) do+ [ (3 + div) v,
Q Q

Since C is a symmetric positive definite operator, we can define C'/? and C~'/? such that
CY/2 o CY? =C and CY? 0 C~%/2 = Z. Then the definition of z* directly yields

Resy (V) = /QC_l/z(x* —Ce(¢p)) : CY2e(y) da,

and the Cauchy-Schwarz inequality finally leads to (20). [ |
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Theorem 4.5 (Reliability of the estimator) Under the assumption of corollary [{.3,
we have

3 2 ~ .
(€112 < 4C N &2 (; + (34 2v8) + 4+ A)) S (@ 4 W) — o2
TeT,

3 % 1 -2 — 2
4 (c (M + 2 <3+2¢§>+4<u+x>) +1) (1 + N2 — Ceén)]

2
4 max ((7 B2 42 (g + E e 2vE) + 4+ X)) (u+ X)c%) 16n = Badnlsorcn
+0sc*(g).

Proof: The theorem is a direct consequence of corollary .2 lemma and lemma [4.4]
[

Remark 4.6 In theorem 5] all constants are explicitly given. Indeed, even if ¢ and cp
depend on the domain €2 whereas ko and N depend on the used mesh, they can be evaluated
or at least bounded, see [10] and section [@l below devoted to the numerical validations.

Remark 4.7 The assumption t < \/3\c%/p needed in corollary [L.2]is not restrictive since,
in the Reissner-Mindlin model, t is expected to be a very small parameter, so that this
property is naturally obtained.

5 Efficiency of the estimator

In order to prove the efficiency of the estimator, each part of it has now to be bounded

by the error €} up to a multiplicative constant. In the following, the notation a < b and

a ~ b means the existence of positive constants ¢; and ¢y, which are independent of the
mesh size, of the plate thickness parameter ¢, of the quantities a and b under consideration
and of the coefficients of the operators such that a < cob and ¢1 b < a < ¢ b, respectively.
The constants may in particular depend on the aspect ratio o of the mesh.

Lemma 5.1
(R — Donllirgorey S A2 Y — lld + lw — wal?
+]¢ — ult + A2 [rot(y — ) I

Proof: Since

Ry — D)o = X 2(y =) — V(w — wp) + (¢ — ),
we have

IRn — Donll < ATy = ynll + |w — wnly + 16 — ¢ul,

and with the Poincaré-Friedrichs inequality, we get
I(Re = Dnll> S A2y = wll® + | — wilf + & — uli-

14



Moreover, we have

Irot(¢n — Radn) > S A2t [rot(y — m)|I* + | — énli,

so that lemma [B.1] holds. m

Lemma 5.2 There exists a relevant choice of x* such that

IC712(@* = Ce(or)II® S llvn — Y21 + [én — @17 (21)
Proof: First, there exists only one pair (¢}, ¢1*) € H}(Q)? x Oy, solution of

{a(gb;,@b) = —(mv) Ve Hj(Q)?
a(@rvn) = —(yn,n) Y Up € Oy

Then, by Theorem 3.9 of [30] and a relevant construction of z*, for all 7" in 7, we have
IC=2 (@ = Ce(eiNllr S N0k — 65 lewr-
Because of the mesh regularity, we also get the global estimate
IC=12(@* = Ce(@p DI < Nldh — o3 lle- (22)

Clearly
C2(a* — Celgn)) = C7V2(a" = Ce(9}7)) + CH2e(9}" — o).

By (22) and the triangular inequality, we arrive at
IC™1 2 (2" — Ce(gn))l - S NICT2 (2" = Ce(d )l + 1677 — onlle

S 9k = ot lle + 107" — énlle- (23)

Now, it remains to bound each of the two terms of the right-hand side of (23)). To begin
with, let us consider 1, € ©,. Thanks to the definition of ¢;*, we get

a(én — O3, ) = (Yn, b — Rathp)

= (Y, ¥n) = (v, Rnton)

= (Y — 7 ¥n) + aln — ¢, )
S (v = ll=1 + 1on = Sl1)[¥nl1-
By taking vn = ¢ — 41", we obtain

165" = dnlle S llvm = All-1 + |on — 1. (24)

15



Then, by the triangular inequality, we get

161, = dnlle < llon = dllc + ¢ — dnlle,
and by the definition of ¢}, we have for all ¢ € H}(Q)?

a(dp, — &, 0) = (v =, ),

so that
lon — olle S Iy — vall-1-
We then obtain

l6r = @nlle < llv = mll-1x + ¢ = @nlle S Iy = mll-2 + [ = dnlr. (25)

Using (24]) and 23]) in ([23)), we get (21)). u
Lemma 5.3 There exists a relevant choice of y* such that

S E+ ) =yl S 2y =l + Iy =l + osc*(g), (26)
TeT,

where 0sc*(g) is an oscillating term.

Proof: Because of lemma 3.1 of [15], we have for any 7" € T}, the equivalence

* 1/2 *
e =yl ~ 22 D" N — o) - vrlle,
EcoT

where vr is the outward unit normal vector to T. Now we define y* as in [I5], by noticing
that (@) implies that
(v, Vou) = (g, vn) Yoy, € Wh,

hence there exist fluxes gg € Pi(E), for all edges E such that

/%-Vvh:/gvth/ gron Vv € Pi(T),
T T T

where gr = ggvpvr, Vg being a fixed normal vector to E. According to the definition of
the BDM; elements there then exists a unique y5 € P;(T)? such that

yr-ve=gg VE CT.

Hence we define y* such that its restriction to each triangle 7" is equal to y;. According to
its definition y* belongs to Hy;,(§2) and moreover according to [15], we have

divy* = —Ilg.

16



Then by the use of theorem 6.2 from [I] and the mesh regularity we get
I = v'lle Sha® Y Mbw - velele + Y helldivn + gl
ECOT\0Q T'Cwr

where [v]g denotes the jump of the quantity v through the edge E. Consequently

Z(t2+h%)||7h—y*||% S Z hr (£ + h7) Z Ilvn - velEllE

tor TeT, ECOT\dQ
+ DY W+ h)lldivy, + gl
TET, T'Cwr (27)
< Z hie( + )| - velellE
ECOT\dQ
+ 3 B+ 13| divy + g3
TET;

Using the classical edge bubble functions as well as elementwise inverse estimates, it is
proved in [I1], section 4.3 that :

> e+ )l velely S YRR+ h)llg — Tagll7
E€E(Q)\0Q TET, (28)
= yllZ s+l =l

Moreover, with the use of classical element bubble functions as well as elementwise inverse
estimates, it is also proved in [I1], section 4.1 that :

Db + ) divy + Tagllz S Elly =l + 1y = 72

TeTn (29)
+ Y bR+ ))lg — g7
TET,

Now, from (27)) associated to the standard triangular inequality :
|divyn + gl < [|divyn +pgllz + [|g — agllr,
the use of (28)) and (29) leads to (20)).

Theorem 5.4 (Efficiency of the estimator) There exists a relevant choice of x* and
of y* such that

3 2 ~
ACNK =+ LB+2v3) +4(p+ A) &+ h3) v — v 117
(o2 ) S
+ <2g(% + %(3 +2V3) +4(u+N) + 2) 2p+ N||C2 (x* — Ce(gn))||?

+ max ((7 FavB2s G %(3 £ 2V3) + A+ N2+ x)c%) 16n = Radnlsorcn

S (€7 + osc*(g).

17



Proof: The proof is a direct consequence of lemma [5.1], and [5.3] n

6 Numerical validation

Here we illustrate and validate our theoretical results by a simple computational example.
Let © be the unit square ]0, 1[>. We consider the exact solution (w, ¢) in  of the Reissner-
Mindlin problem (dI)-([) given by

1 -2
| 22(1—x)? 1 1
o I exp< (1 —z) y(l—y))’
y*(1—y)?
and . .
w:(1—2,u+5\)\_1t2ax —l—ay)e:cp(— — ),
241+ DA (ala) + aly)) e
with
621 — 1223 + 1222 — 62 + 1
a(z) = :
24(1 — 2)*
The corresponding scaled transverse loading function g is given by
- 1 1
g=2u+A) (c(z)+cly)+2a(z)aly emp(— — )
20+ ) (e(w) +efy) + 2a(a) ) eaxp (s — s
with
() = 1202"% — 6002” + 16202° — 288027 + 35042° — 29522
¢ B 28(1—2)8
17082% — 65623 + 15622 — 202 + 1
28(1 — 2)8 '

This analytical solution is extended by 0 on 9 to obtain (w,¢) € Hy(Q2) x Hy(Q2)*. Here
we take ¢ = 1/1024, A = 1, p = 1 and A = 1. The meshes we use are uniform ones
composed of n? squares, each of them being cut into 8 triangles as displayed on Figure [
for n = 4. The refinement strategy is an uniform one so that the value of the mesh size h
between two consecutive meshes is twice smaller. In order to validate the reliability of the
estimator, we consider the ”discrete error” given by

s = (ko —wilf 16— Galt + A1y — ll2 + A2t oty — w2+ 1Py — 1l

where P,v stands for the piecewise P;-discontinuous interpolation of v on the mesh 7.

This discrete error is defined by approximating the H () norm of v — v, arising in €}

(see ([@)) by its discrete locally computable version defined by

[1Piy = ml[Z1 0 = sup (30)



Figure 1: Mesh level corresponding to n = 4 and h = v/2/8.

The computation of ||Pyy — 74|[*,, is now an easy task and simply corresponds to the
determination of the largest eigenvalue of a classical generalized finite dimensional eigen-
value problem. In order to validate the reliability of the estimator according to theorem
[1.0 the error estimator is defined by

3 2 .
()? = 4C N2 (; + E (3 2v8) + 4+ A)) S (@ 4 W) — o2
TET,

+4 (C (% + %(3 +2V3) +4(pu + X)) + 1) (4 N ||C7V2 (" = Ce(on))]?
+ max (<7+ 1/3):2 42 (% + (3278 + 4+ X)) (u+ X)cé) 160 — RudnlBroncn

and we plot on Figure B the evolution of the computed effectivity index 7, /e}%;, versus

h. Here, the values of x* as well as y* are respectively computed in the same manner as
in [15] and [30], in order to obtain relevant choices as required by theorem [5.4] to ensure
the efficiency of the estimator. Practically, some fluxes gr through the edges E of each
triangle of the mesh are needed, and have to be computed by solving local linear problems.
In fact, in our tests, these values are explicitely defined. For y*, we use gg = {{v - vr}},
where {{v;, - vg}} denotes the averaged value on the triangles on each side of E of 7, - vg
evaluated at the middle of E. For z*, we use gr = >_, cn(r){{Ce(dn)}}(x)vpAs. Here,
{{Ce(¢p)}}(x) is the averaged value over the triangles surrouding the node z of the piece-
wise constant function on each triangle Ce(¢y,), and A, stands for the classical P;-Lagrange
basis function associated with the node x. Moreoever, for the construction of z*, the Ar-
gyris basis functions have to be used (see section 4 of [30] as well as [17] for the practical
implementation).

From (I6) we have ¢ = 1. The Poincaré-Friedrichs constant cz is here equal to 1/(v/27)

since € is the unit square. Because of the kind of meshes used (see Figure [Il), we have

12
N =8 and ky = 1 + —— (see annex [T.2)). Finally, it can be proved [23] that on the unit

V2

square, cg < 2 2_—1\/5, hence below we take this upper bound for cg (while it is conjec-
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tured that cp = | /Wz—fz, see [16]). As expected by the theory, it can be observed that the

10 T
O estimator / error

Figure 2: n,/e}°,.. versus h.

computed effectivity index is larger than one. Moreover, it converges towards a constant

close to one when h goes towards zero, so that the proposed estimator is asymptotically
exact.
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7 Annexes

7.1 Proof of (3)

Let us consider v € C°(Q)%. Two integrations by parts yield :
2/|5(v)|2da: :/|Vv|2dx+/Vv(Vv)Tda:
Q Q Q
= / |Vv|2dx—|—/ |divv|*dx
Q Q

> / |Vo|?dx.
0

Hence by a density argument we obtain
IVoll < V2 le()]l Vo€ Hy(2)%,

Then, we recall
Ce(¢) = 2ue(p) + NT'r(e(9))T,
so that
lollz = [ cet@)etos
Q

Y / c(6)(d)da + A / Tr(e(9))Ze(d)dz

Q

=2 [ ()Pde+ 3 [ (Tre(o)a

> Vol
This proves ().

7.2 Evaluation of x; for the triangulation of section 6

With the definitions given above, let us consider z an affine function on wr, so that Jz = z
on T'. With v and v, defined in the proof of lemma and the triangular inequality, we
get

IV =w)llr < [V =2)z +[IVJI(v = 2)llz

From (I9), we get
IV =w)llr < (1+£)[V(© = 2)]lwr-
Defining A = Vz and considering 1 € H}(Q)?, we have

V(v —wn)llr < (1+ £1)[[Vo = Allor < (1+51) (VO = Pl + 19 = Allur) -
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Now, z is chosen such that

A= L/ Ydx.
|WT| wr

By Poincaré inequality, there exists C,, > 0, depending on the patch wy, such that

1 — Alloy < Coop hr [V oy ¥ ¢ € Hy ()%

So,

IV =w)llz < (1+r)[Vo = llur + (1 + K1) Cop hr [V ]|r

-

< (L s)max{l; Cop ) (V0 = Ylwr + hrl[ Vi) -

(31)

Now, it remains to evaluate s, as well as C,,,.. Let 7, be the nodal basis associated to W,.

We have

Jv = sznz,‘v’v € Hy(Q),
zeN

from what we deduce

VJv=> (v.-v)Vn., Vv € H}(Q).

zeN
Let us define N = N NT. We have

IVJollr = (I Y (0= 0) Villr
ZGNT

IN

ZGNT

IN

ZENT

But
IV n:llz < p7',
and from [10, (5.12)], we get

[0: = vl < c(w:,2)[[VY

With the triangulation involved, we have

V2 hr

272 S 9
cfwn,2) < =
and
3v2 h
IVIolr < == |Vole.,
Pr

22

> vz =ollz |V el
> vz = vllo, 1V el



so that

3v/2 hr

K1 < —— —
T pPr

For the involved triangulation hr/pr = 2 and hence

KJ1<

12

3
Since from [10], we have C,,,. = - B1) and ([B2) lead to

12
kg <1+ ——

V2T
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