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We show that a one dimensional device supporting a pair of Majorana bound states at its ends
can produce remarkable Hanbury-Brown Twiss like interference effects between well separated Dirac
fermions of pertinent energies. We find that the simultaneous scattering of two incoming electrons or
two incoming holes from the Majorana bound states leads exclusively to an electron-hole final state.
This “anti-bunching” in electron-hole internal pseudospin space can be detected through current-
current correlations. Further, we show that, by scattering appropriate spin polarized electrons from
the Majorana bound states, one can engineer a non-local entangler of electronic spins for quantum
information applications. Both the above phenomena should be observable in diverse physical
systems enabling to detect the presence of low energy Majorana modes.

Quantum Indistinguishability has striking manifesta-
tions when two identical particles are brought together
at a beam splitter. For example, two bosons in identi-
cal states would “bunch” together when exiting a beam-
splitter purely due to interference effects [1]. Two
fermions, on the other hand, would exit separately or
“anti-bunch” [2]. These effects are indeed an instance of
the celebrated Hanbury Brown-Twiss effect, which has
recently also been tested with Helium atoms [3]. The
same quantum indistinguishability is exploited for the
production of entangled photons [4], and can also be
used to entangle generic massive particles [5]. Of course,
all these effects can occur only when the particles are
brought together spatially, for instance, at a beam split-
ter. It is thereby interesting to look for settings where
rather well separated identical particles could manifest
such phenomena.
Here we report on the possibility of engineering a non-

local beam splitter enabling the above class of phenomena
for distant charged fermions. Here, by “non-local” we
mean spatially extended. Going beyond the usual two
particle interference in orbital/momentum space, here
one finds a Hanbury Brown-Twiss effect in the electron-

hole internal pseudospin space . This is enabled by Majo-
rana mid-gap low energy modes which transform between
electrons and holes [6], effectively making them indis-
tinguishable in a scattering experiment. This Hanbury
Brown-Twiss effect is thereby a detector of the Majorana
modes.
Recently, low energy Majorana (neutral charge self-

conjugated fermion) modes located at the edges of linear
devices have been shown to induce non-local phenomena
[7–9]. Indeed there are a variety of platforms to real-
ize such devices such as a quantum wire immersed in a
p-wave superconductor [7, 10], cold-atomic systems mim-
icking p-wave superconductors [11], topological insulator-
superconductor-magnet structures [8, 12, 13] and poten-

FIG. 1: Non-local beam splitter and electron spin entangler.
The MBS are shown as empty ellipses 1 and 2. One specific
realization where MBS occur at boundaries between magnets
(M) and superconductors (SC) deposited on quantum spin-
Hall insulators is depicted, though our results hold more gen-
erally. Incoming and outgoing particles are shown by arrows,
and may, in practice, be tunneled in/out by STM tips or elec-
tron pumps acting as leads.

tially also semiconductor systems [14, 15]. The evidences
of their non-local nature are distance independent tunnel-
ing [7], crossed Andreev reflection [8] and teleportation-
like coherent transfer of a fermion [9]. Finally, they may
be easily manipulated [6] and are relevant excitations also
in conventional superconductors [16]. So far, the primary
application envisaged for these fermions has been topo-
logical quantum computation [17]. As the second key
result of this paper we will show another use of these
modes, namely that Majorana bound-states (MBS) could
be used to engineer entanglement between the spins of
well separated particles, a pivotal resource in quantum
information.
We consider a one dimensional device supporting two

weakly coupled MBS at its ends as shown in Fig.1. The
MBS are labeled as 1 and 2 and schematically shown
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as empty ellipses in the figure. For the sake of clarity,
we will first show how this device produces Handbury-
Brown Twiss like interference effects between spatially
separated Dirac fermions in the spinless models investi-
gated in [7, 10]; later, we show how all the results are valid
for more realistic spinfull physical settings [12, 14, 15].
The Hamiltonian describing the weak coupling between
the MBS γ1 and γ2 is given by

HM = iEMγ1γ2, (1)

where γj are Majorana operators defined by γj = γ†
j and

satisfying γjγk + γkγj = 2δij. Leads, also labeled as 1
and 2, are connected to the system as shown in Fig.1,
allowing for the scattering of Dirac fermions (electrons
or holes) from each of the MBS. The unitary scattering
matrix S in a model independent form is given by [8]
S(E) = 1 + 2πiW †(HM − E − iπWW †)−1W where W
describes the coupling of the scatterer (HM ) to the leads
and E is the energy of the incident electrons/holes. The
entries wj of the W matrix are related to the couplings
to the leads Γj = 2πw2

j [8].
For our purposes, it is convenient to assume that E >>

Γj , as well as E ≈ EM (i.e., the energies of the incoming
Dirac fermions are tuned to be nearly resonant with the
Majorana coupling energy). Under these circumstances,
the S matrix simplifies to

S =
1

2









1 −i −1 −i
i 1 i −1

−1 −i 1 −i
i −1 i 1









(2)

where the basis is {|e1〉, |e2〉, |h1〉, |h2〉}, with |ej〉 and |hj〉
representing an electron and a hole in the lead j. Note
that this regime is different from the one considered by
Akhmerov et. al. [8], where only the terms corresponding
to crossed Andreev reflection (i.e 〈h2|S|e1〉 and 〈h1|S|e2〉)
are maximized. Here we work in a regime where all the
entries of S have the same magnitude.
If, at time t, a single electron tunnels into the Majorana

mode located at site 1, i.e., the incoming state is c†1|0〉, it
transforms, under S, to

c†1|0〉
MBS−−−→ 1

2
(c†1 + ic†2 − d†1 + id†2)|0〉, (3)

where c†j (d†j) creates an electron (hole) at site j. In
Eq.(3), we have used MBS above the arrow to indicate
that Majorana bound states are responsible for the pro-
cess. Since the transformation (3) is equivalent to a four
port beam splitter, with MBS inducing the beam split-
ting process, one can equally well take MBS to stand
for “Majorana Beam-Splitter”. Eq.(3) implies that an
incoming electron has 1

4 th probability of coming out of
each site as an electron or a hole. If another electron
scatters at a different time t′ on the Majorana mode lo-
cated at position 2, it will also scatter with exactly the

same probabilities for the four possible outcomes. The
joint probability for two incoming electrons to exit as two
electrons or two holes (whichever the output port) would
thus be 1

2 . Next, we will show that when t = t′, i.e., si-
multaneous scattering, two particle interference can take
place so that the probability of two electrons or two holes
exiting is completely suppressed. By t = t′ we mean that
the wavepackets of the two incoming electrons (holes) are
large enough so that their time of arrival cannot be dis-
tinguished when one observes them after the scattering.
When two electrons scatter simultaneously, one at site

1 and the other at site 2, one has

c†1c
†
2|0〉

MBS−−−→ 1

2
(c†1 + ic†2 − d†1

+id†2)
1

2
(−ic†1 + c†2 − id†1 − d†2)|0〉

=
1

2
(ic†1d

†
1 − c†1d

†
2 + c†2d

†
1 + ic†2d

†
2)|0〉. (4)

In the last step of Eq.(4), we have used d†j(E) = cj(−E)
(which effectively embodies the indistinguishability be-
tween an electron and a hole), where E is energy. From
Eq.(4) one sees that the probability for two outgoing
electrons (holes) after the scattering is zero. Exactly
the same holds when two holes scatter simultaneously at
leads 1 and 2. This is an interference effect in the same
sense as the anti-bunching of fermions at a normal two
port beam splitter, where fermions cannot exit through
the same port. Instead of being in the spatial channels,
here the anti-bunching is in the internal pseudospin space
which has particle and hole as its two states. The uni-
tary conversion of an electron to a hole, is, per se, not
surprising in view of Refs.[6].
Of course, in a practical realization, the condition

E ∼ EM required for obtaining the scattering matrix
S of Eq.(2) may not be exactly met. To see the effect
of an energy mismatch, we denote by δE the amount by
which E deviates (either positively or negatively) from
EM ; this deviation is, however, assumed to be much lower
than EM itself (i.e., δE << EM ). Without assuming
δE << EM , one may end up in qualitatively different
regimes: e.g., for δE comparable to −EM , one reaches
the regime of Ref.[8] of only crossed transmission. For
δE << EM , the scattering matrix as a function of δE is
given by

SδE =
iΓ

δE + iΓ
S +

δE

δE + iΓ
I (5)

where Γ = Γ1 ∼ Γ2 and I is the 4 × 4 identity matrix.
In deriving Eq.(5), one ignores the second and higher
powers of both δE/EM and Γ/EM as EM >> ∆E,Γ. It
is easy to check that, despite the above approximation,
SδE is unitary; furthermore, Eq.(5) holds for any value
of the ratio δE/Γ as long as EM >> ∆E,Γ. Using SδE ,
one readily obtains that the probability of observing an
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electron-electron output state becomes finite and equal

to (δE)2

(δE)2+Γ2 , which, of course, vanishes when E ∼ EM .

So far, we have described the scattering as a process
where one sends particles one by one through the leads
at specific times. However, in practice, rather than con-
trolling times, one could control the energies ǫ1 and ǫ2 of
the particles in their respective leads, so as to make them
behave indistinguishably when ǫ1 ∼ ǫ2. Then, the stan-
dard way to observe the predicted fermion anti-bunching
is through a measure of the correlations between the cur-
rents in leads 1 and 2. We assume the leads to support
a discrete set of electronic energy states of density ν, so
that the current in lead j is given by [18, 19]

Ij(t) =
e

hν

∑

ǫ,ǫ
′

ei(ǫ−ǫ
′

)t{a†j(ǫ)aj(ǫ
′

)− b†j(ǫ)bj(ǫ
′

)} (6)

where aj and bj denote the incoming and outgoing par-

ticles and ǫ and ǫ
′

are the energies of the particles. The
spectral density of the current fluctuations δIj = Ij−〈Ij〉
between the leads at zero frequency is [19]

Pij = lim T→∞
hν

T

∫ T

0

dt Re〈δI1(t)δI2(0)〉. (7)

Using SδE of Eq.(5) and considering an incoming two

electron state c†1(ǫ1)c
†
2(ǫ2)|0〉, where c†j(ǫj) denotes an

electron of energy ǫj in lead j, one finds

Pij =
e2

hν

Γ2

{(δE)2 + Γ2}2 {(δE)2 − Γ2}δǫ1,ǫ2, (8)

where δǫ1,ǫ2 is the Kronecker delta function. Note that,
when the incident electrons are distinguishable i.e., ǫ1 6=
ǫ2, then, as expected, Pij = 0 since for an electron
exiting one lead there could equally well be an elec-
tron or a hole exiting the other lead. When, instead,
ǫ1 = ǫ2 (i.e., the particles are indistinguishable), then for
|δE| < |Γ|, the domination of the electron-hole final state
(as in Eq.(4)) makes Pij < 0, which allows to the detect
the predicted “anti-bunching” in pseudospin space. For
|δE| > |Γ| a process of amplitude ΓδE in which only one
of the electrons scatter, while the other remains in its
lead, dominates; Fermi statistics now makes the electrons
anti-bunch spatially (the more conventional antibunch-
ing [2, 19]), contributing to a positive Pij . As in Ref.[8],
our results are not inconsistent with those of Bolech and
Demler [20], since their results apply when the energy of
the incoming electrons is much higher than EM .

So far our discussion has been confined to a spinless
model, while for the promising implementations [12–15],
the Majorana modes should involve superpositions of op-
erators of different spins. For example, for a realization in
a ferromagnet-s-wave superconductor-ferromagnet struc-

ture on a quantum spin-Hall edge [13], one has

γ1 =
1√
2
(c1,↑ − ic1,↓ + ic†1,↓ + c†1,↓)

γ2 =
1√
2
(c2,↑ + ic2,↓ − ic†2,↓ + c†2,↓), (9)

where cj,σ creates an electron with spin
σ in lead j. Defining the spin states
| ± y〉 = 1√

2
(| ↑〉 ± i| ↓〉), and using the basis

{|e1,+y〉, |e2,−y〉, |h1,+y〉, |h2,−y〉, |e1,−y〉, |e2,+y〉, |h1,−y〉,
|h2,+y〉}, the scattering matrix is found to be

Sspinfull =

(

I 0

0 S

)

, (10)

where in (10), I and 0 are the 4 × 4 Identity and null
matrices, while S is the scattering matrix given by Eq.(2).
When one uses Sspinfull to study the scattering of the

incident state c†1,−yc
†
2,+y|0〉, one only needs the lower-

right 4 × 4 block of Sspinfull. Thus, precisely the same
electron-hole output state as in Eq.(4) is obtained, apart
from the fact that, now, the spin indices −y and +y
are pinned to the sites 1 and 2 respectively. Thus, by
choosing the spin polarizations of the incoming electrons
pertinently, one can observe all the effects described
till now. This should be possible in a variety of sys-
tems as Majorana modes of the form given by Eq.(9)
are quite generic, e.g., also realizable in semiconductor-
superconductor-magnet structures [15].
As a brief aside, we point out that, when one elec-

tron and one hole scatter at sites 1 and 2 respectively,
for δE << Γ, the incoming state c†1d

†
2|0〉 evolves to

1
2 (−c†1c

†
2 − ic†1d

†
1 + ic†2d

†
2 − d†1d

†
2)|0〉, implying the inter-

ferometric vanishing of the probability of one outgoing
electron and one outgoing hole in separate leads.
Next, we propose a protocol for the generation of en-

tanglement between spins of well separated particles in-
coming at site 1 and at site 2. For this purpose, we choose
the realization of Majorana fermions given by Eq.(9) and
make two electrons with parallel spins in the ↑ direc-
tion come in simultaneously i.e., choose the initial state
c†1,↑c

†
2,↑|0〉. Then, using Sspinfull, one gets

c†1,↑c
†
2,↑|0〉

MBS−−−→ 1

4
(c†1,↑c

†
2,↑ − c†1,↓c

†
2,↓ + 2c†1,↑c

†
2,↓

+ ...)|0〉, (11)

where ... denotes terms such as
c†1,σc

†
1,σ′ , c

†
2,σc

†
2,σ′ , c

†
j,σd

†
k,σ

′ and d†j,σd
†
k,σ

′ , which

are not relevant to our discussion. Eq.(11) im-
plies that, when two outgoing electrons are ob-
tained in leads 1 and 2 separately, their state is
|ξ〉12 = 1√

6
(| ↑〉1| ↑〉2 − | ↓〉1| ↓〉2 + 2| ↑〉1| ↓〉2) where, as

it is usually done [5, 19], one uses the lead label to label
the electron. |ξ〉12 is an entangled state of the spins
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of electrons 1 and 2, with the amount of entanglement
(as quantified by the von Neumann entropy of one
of the particles [22]) being 0.19 ebits. Though the
entanglement is not very high, |ξ〉12 is a pure state,
and hence of value in quantum information, as its
entanglement can be concentrated without loss by local
means [22]. Moreover, the probability of obtaining two
outgoing electrons in separate leads (i.e., |ξ〉12) is rather
high, namely 3/8. At the expense of decreasing this
probability, one may improve the degree of entanglement
of the generated state by tuning the polarizations of the
incoming electrons. For instance, if the incoming state
is ( 1√

10
c†1,+y + 3√

10
c†1,−y)(

3√
10
c†2,+y + 1√

10
c†2,−y)|0〉, one

obtains an output state of entanglement 0.75 ebits, while
the probability of the generation this state becomes
0.055. The spin entanglement of the outgoing electrons
could be measured by passing them through separate
spin filters as in Ref. [21].
Unlike the entanglement generation scheme of Ref. [5],

here particles polarized parallel to each other suffice to
generate entanglement. Importantly, in our protocol,
particles at a distance from each other can be made en-
tangled; this may avoid the decoherence arising necessar-
ily from the transport needed to separate the particles
after a local entangling mechanism. In addition, the dis-
tance between the entangled particles can be enhanced
by putting n copies of our setup in series with leads con-
necting the end of one copy to the beginning of another.
The probability of obtaining the state |ξ〉12 in the left-
most and rightmost leads will then be (3/8)n.
One simple setting where the non-local two particle

interferometry and the entanglement generation between
distant electrons from MBS may be observed can be en-
gineered with magnet-superconductor-magnet junctions
deposited on the edge of a 2D quantum spin Hall insula-
tor [8, 13]. Just as in Ref.[8], one can observe these effects
when the Majorana modes are separated by several mi-
crometers at temperatures of the order of 10 mK. For
this setting, the explicit form of the Majorana operators
is exactly the same as in Eq.(9) [13]. Interestingly, strong
spin-orbit coupled quantum wires in proximity with fer-
romagnets and superconductors also support the realiza-
tion of MBS [14, 15] given in Eq.(9) [15]. As in previous
proposals [13, 14, 20], also in our settings, two STM tips
could act as the leads 1 and 2 to observe the non-local
two particle Hanbury Brown-Twiss interferometry. For
the entanglement generation, instead, it will be more use-
ful to have synchronized electron pumps [23] feeding in
the incoming electrons. In addition, the filtering of the
desired state |ξ〉12 can be achieved by pumps capturing
exactly one outgoing electron from each Majorana bound
state.
In this paper, we showed that a one dimensional de-

vice with two Majorana bound states at its ends yields
a Hanbury-Brown Twiss effect in the internal electron-
hole pseudospin space which may be detected in real-

istic condensed matter settings through current-current
correlations. This is a departure from all the known
multi-particle interference effects which have manifested
themselves in spatial bunching and antibunching or spin-
spin correlations. Fundamentally, it can be regarded as
a manifestation of the quantum indistinguishability be-
tween electronic annihilation and hole creation evidenc-
ing the presence of Majorana bound states. The same
settings may also be used to engineer a non-local entan-
gler of distant electronic spins, which may enable cir-
cumventing the decoherence arising from the transport
needed to separate entangled particles.
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