Counting packings of generic subsets in finite groups

Roland Bacher

November 4, 2010

Abstract

A packing of subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a group G is a sequence $\left(g_{1}, \ldots, g_{n}\right)$ such that $g_{1} \mathcal{S}_{1}, \ldots, g_{n} \mathcal{S}_{n}$ are disjoint subsets of G. We give a formula for the number of packings if the group G is finite and if the subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ satisfy a genericity condition.

1 Introduction

A (left-)packing of n non-empty subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a group G is an element $\left(g_{1}, \ldots, g_{n}\right)$ of G^{n} such that the left-translates $g_{1} \mathcal{S}_{1}, g_{2} \mathcal{G}_{2}, \ldots, g_{n} \mathcal{G}_{n}$ of the sets \mathcal{S}_{i} are disjoint. If G is a finite group with N elements, the number of packings of $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ is bounded by N^{n} and thus finite. The sets $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots$ are labelled by their indices. In particular, permuting the elements g_{1}, \ldots, g_{n} of a packing $\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{G}^{n}$ of $\mathcal{S}_{1}=\mathcal{S}_{2}=\cdots=\mathcal{S}_{n}$ yields a different packing. Moreover, in the case where \mathcal{S}_{1} for example is of the form $\mathcal{S}_{1}=H \mathcal{S}_{1}$ for some subgroup H of G, a packing $\left(g_{1}, \ldots, g_{n}\right)$ gives rise to $\sharp(H)$ distinct packings $\left(h g_{1}, g_{2}, \ldots, g_{n}\right), h \in H$.

Given $\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$, remark that there is an obvious one-to-one map between packings of $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n} \subset G$ and packings of $a_{1} \mathcal{S}_{1}, \ldots, a_{n} \mathcal{S}_{n} \subset G$.

This paper deals with enumerative properties of left-packings. Using the involutive antiautomorphism $g \longmapsto g^{-1}$, its content can easily be modified in order to deal with right-packings $\mathcal{S}_{1} g_{1}, \ldots, \mathcal{S}_{n} g_{n}$.

Counting packings of arbitrary subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in finite groups is probably difficult. There are however easy upper and lower bounds:

Proposition 1.1. Let $\alpha=\alpha\left(G ; \mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ denote the number of packings of subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a finite group G with N elements. Given an additional subset \mathcal{S}_{n+1} of G, we denote by $\tilde{\alpha}=\tilde{\alpha}\left(G ; \mathcal{S}_{1}, \ldots, \mathcal{S}_{n}, \mathcal{S}_{n+1}\right)$ the number of packings of $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}, \mathcal{S}_{n+1}$. We have

$$
\left(N-\sharp\left(\mathcal{S}_{n+1}\right) \sum_{i=1}^{n} \sharp\left(\mathcal{S}_{i}\right)\right) \alpha \leq \tilde{\alpha} \leq\left(N-\sum_{i=1}^{n} \sharp\left(\mathcal{S}_{i}\right)\right) \alpha .
$$

[^0]In particular, we have

$$
\begin{equation*}
\tilde{\alpha}=\left(N-\sum_{i=1}^{n} \sharp\left(\mathcal{S}_{i}\right)\right) \alpha \tag{1}
\end{equation*}
$$

if \mathcal{S}_{n+1} is a singleton.
A family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of subsets in a group G with identity element e is generic if for every sequence i_{1}, \ldots, i_{k} of $k \leq n$ distinct elements in $\{1, \ldots, n\}$ and for every choice of elements $g_{i_{j}} \in \mathcal{S}_{i_{j}}^{-1} \mathcal{S}_{i_{j}} \backslash\{e\}$, we have

$$
g_{i_{1}} g_{i_{2}} \cdots g_{i_{k}} \neq e
$$

Otherwise stated, a subset $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of a group G is generic if every nontrivial relation, written as a word with letters in the alphabets $\mathcal{G}_{i}=\mathcal{S}_{i}^{-1} \mathcal{S}_{i} \backslash$ $\{e\}$, in the subgroup generated by the sets $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$ involves at least two elements in one of the sets $\mathcal{G}_{1}, \ldots, \mathcal{G}_{n}$.

In the case of an additive abelian group G, the genericity condition boils down to the fact that the subset $\left(\mathcal{S}_{1}-\mathcal{S}_{1}\right) \times \cdots \times\left(\mathcal{S}_{n}-\mathcal{S}_{n}\right)$ of the group G^{n} intersects the subgroup $\left\{\left(x_{1}, \ldots, x_{n}\right) \in G^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\}$ of G^{n} only in the identity element $(0, \ldots, 0)$.

Remark 1.2. A generic family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of subsets in the additive group \mathbb{Z} with prescribed cardinalities $s_{i}=\sharp\left(\mathcal{S}_{i}\right)$ can be constructed by starting with $\mathcal{S}_{1}=\left\{0, \ldots, s_{1}-1\right\}$ and by defining \mathcal{S}_{i} recursively as $\mathcal{S}_{i}=\left\{0, k_{i}, 2 k_{i}, \ldots,\left(s_{i}-\right.\right.$ 1) $\left.k_{i}\right\}$ where k_{i} is an arbitrary natural integer strictly larger than $\sum_{j=1}^{i-1} \max \left(\mathcal{S}_{j}\right)-$ $\min \left(\mathcal{S}_{j}\right)$. A generic family is thus for example given by the sets $\mathcal{S}_{1}=$ $\{0,1\}, \mathcal{S}_{2}=\{0,2\}, \ldots, \mathcal{S}_{i}=\left\{0,2^{i-1}\right\}, \ldots, \mathcal{S}_{n}=\left\{0,2^{n-1}\right\}$.

Reducing such a generic family modulo a natural integer N yields a generic family in the finite group $\mathbb{Z} / N \mathbb{Z}$ except if N is a divisor of a non-zero integer in the finite set $\left\{\sum_{i=1}^{n} \mathcal{S}_{i}-\mathcal{S}_{i}\right\}$.

The aim of this paper is to describe a universal formula for the number of packings for a generic family of subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a finite group G. The number of associated packings depends then only on the cardinalities of G and $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$. A trivial example is given by n subsets reduced to singletons. The associated number of packings in a finite group with N elements is then easily seen to be given by $n!\binom{N}{n}=N(N-1) \cdots(N-n+1)$.

The study of generic packings in groups is, as far as I am aware, a new addition to the already large set of classical notions of packings. Wellknown and well-studied examples are Euclidean lattice-packings and spherepackings in metric spaces. The corresponding theory has however a different flavour since one tries to pack a huge (often infinite) number of spheres as tightly as possible. Packings of generic families in finite groups are not dense at all: Typically the cardinalities of the sets $\mathcal{S}_{i} \subset G$ of a generic family are very small compared to the cardinality N of G and we are not interested
in density but in enumerative properties. Another source of packing-related notions is additive and elementary number theory: The existence of an infinity of twin primes for example is obviously equivalent to the question whether the set $\mathcal{P} \cap(2+\mathcal{P})$ is infinite with $\mathcal{P} \subset \mathbb{Z}$ denoting the set of prime numbers.

Concerning the dual notion of packings, the following question is natural: Is there an interesting notion for generic packings in arbitrary groups?

The rest of the paper is organized as follows: Section 2 contains the main result, Theorem 2.1. It expresses the number of packings of a generic family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a finite group in terms of a formal power series $U=$ $U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right) \in A[[x]]$ with coefficients in the ring $A=\mathbb{Z}\left[\sigma_{1}, \sigma_{2}, \ldots\right]$ of polynomials in elementary symmetric functions $\sigma_{1}, \sigma_{2}, \ldots$ defined by $\sum_{k=0}^{\infty} \sigma_{k} t^{k}=\prod_{j=1}^{n}\left(1+\sharp\left(\mathcal{S}_{j}\right) t\right)$. The series U is given explicitely by formula (4) and involves combinatorial integers $t_{i, j}(n)$ (defined recursively by formula (3)) which extend Stirling numbers of the first kind. The first few coefficients of U are given by

$$
\begin{aligned}
& 1-\sigma_{2} x-\left(\left(1-\sigma_{1}\right) \sigma_{3}+\sigma_{4}\right) x^{2} \\
& -\left(\left(2-3 \sigma_{1}+\sigma_{1}^{2}\right) \sigma_{4}+\left(5-3 \sigma_{1}\right) \sigma_{5}+3 \sigma_{6}\right) x^{3} \\
& -\left(\left(6-11 \sigma_{1}+6 \sigma_{1}^{2}-\sigma_{1}^{3}\right) \sigma_{5}+\left(26-26 \sigma_{1}+6 \sigma_{2}^{2}\right) \sigma_{6}\right. \\
& \left.\quad+\left(35-15 \sigma_{1}\right) \sigma_{7}+15 \sigma_{8}\right) x^{4}+\ldots
\end{aligned}
$$

with omitted terms divisible by x^{5}. Theorem 2.1 and Proposition 1.1 imply easily that U satisfies the functional equation

$$
\begin{equation*}
\left(1-\sigma_{1} x\right) U\left(x, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)=U\left(x, 1+\sigma_{1}, \sigma_{1}+\sigma_{2}, \sigma_{2}+\sigma_{3}, \ldots\right) \tag{2}
\end{equation*}
$$

Section 3 discusses the combinatorics of packings associated to arbitrary (not necessarily generic) families $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of subsets in a group.

In Section 4, we refine the results of section 3 by applying them to generic packings. The underlying combinatorics are then simpler and imply the existence of a formal power series $\tilde{U}\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)$ such that the formula

$$
N^{n} \tilde{U}\left(N^{-1}, \sigma_{1}, \sigma_{2}, \ldots\right)
$$

(with $\sigma_{1}, \sigma_{2}, \ldots$ defined by $\sum_{k=0}^{\infty} \sigma_{k} t^{k}=\prod_{j=1}^{n}\left(1+\sharp\left(\mathcal{S}_{j}\right) t\right)$) gives the number of packings for a generic family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of n non-empty subsets in a finite group with $N_{\tilde{U}}$ elements. Although this approach does not yield an explicit formula for \tilde{U} it gives some useful information on the coefficients of \tilde{U}. Moreover, such a series \tilde{U} is unique and satisfies the functional equation (2) as an easy consequence (equivalent to identity (11) of Proposition 1.1) of its very definition.

Section [5] starts with establishing the uniqueness of a solution to the functional equation (2) under certain conditions satisfied by the series \tilde{U} considered in Section 4. Since our formulae for the series U satisfy these
conditions also, it is enough to show that U satisfies the functional equation (2) in order to prove that it coincides with \tilde{U}. This completes the proof of Theorem 2.1.

Section 6 uses Theorem 2.1 and its proof for computing the Moebius function of the poset of finite labelled hypertrees.

Section 7 illustrates the main theorem and its proof by giving a formula for the weighted number of labelled hypertrees with weights given by the Moebius function computed in Section 6.

Section 8 deals with computational aspects and examples.
The paper ends with section 9 describing a few experimental observation concerning arithmetic and analytic properties of the coefficients involved in U.

2 Main result

We consider the set $t_{i, j}(n)$ of strictly positive integers depending on $n \in$ $\{1,2, \ldots\}$, indexed by $i \in\{n+1, \ldots, 2 n\}, j \in\{0,1, \ldots, 2 n-i\}$ and defined recursively by $t_{2,0}(1)=1$ and

$$
\begin{equation*}
t_{i, j}(n)=(i-2) t_{i-1, j}(n-1)+t_{i-1, j-1}(n-1)+(i-3) t_{i-2, j}(n-1) \tag{3}
\end{equation*}
$$

for $n \geq 2$. We set $t_{i, j}(n)=0$ in all other cases, ie. if $i \leq n$ or $j<0$ or $i+j>2 n$.

Given a natural integer $n \geq 1$, the set of all $\binom{n+1}{2}$ non-zero integers $t_{i, j}(n)$ can be organized into a triangular array $T(n)$ with $T(n)$ determining $T(n+1)$ recursively by formula (3) reminiscent of the recurrence relation $\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$ for binomial coefficients. The first six triangular arrays $T(1), \ldots, T(6)$ are given by

1	$\begin{array}{ll} 1 & 1 \\ 1 & \end{array}$				6 11 6 26 26 6 35 15 15		
		2	3	1			
		5	3				
		3					

24	50	35	10	1	120	274	225	85	15	1
154	200	80	10		1044	1604	855	190	15	
340	255	45			3304	3325	1050	105		
315	105				3900	2940	420			
105					945	945				

Observe that the first rows of $T(1), T(2), \ldots$ coincide, up to signs, with Stirling numbers of the first kind. This is of course an easy consequence of the recurrence relation (3).

We consider the formal power series $U \in A[[x]]$ with coefficients in the $\operatorname{ring} A=\mathbb{Z}\left[\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right]$ of integral polynomials in $\sigma_{1}, \sigma_{2}, \ldots$ defined by

$$
\begin{equation*}
U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)=1-\sum_{n=1}^{\infty} x^{n} \sum_{i=n+1}^{2 n} \sigma_{i} \sum_{j=0}^{2 n-i} t_{i, j}(n)\left(-\sigma_{1}\right)^{j} \tag{4}
\end{equation*}
$$

Theorem 2.1. The number of packings of a generic family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of n non-empty subsets in a finite group G with N elements is given by the formula

$$
\begin{equation*}
N^{n} U\left(N^{-1}, \sigma_{1}, \sigma_{2}, \ldots\right) \tag{5}
\end{equation*}
$$

where

$$
\sum_{i=0}^{n} \sigma_{i} t^{i}=\prod_{j=1}^{n}\left(1+\sharp\left(\mathcal{S}_{j}\right) t\right)
$$

and where the series $U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)$ is given by formula (4).
Remark that formula (5) of Theorem 2.1 is polynomial in N for fixed complex numbers $\sigma_{1}, \sigma_{2}, \ldots$ such that $\sigma_{n+1}=\sigma_{n+2}=\cdots=0$. Indeed, the coefficient of x^{n} in $U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)$ belongs to the ideal generated by $\sigma_{n+1}, \sigma_{n+2}, \ldots, \sigma_{2 n} \in \mathbb{Z}\left[\sigma_{1}, \sigma_{2}, \ldots\right]$.

The proof of Theorem 2.1] is based on combinatorial properties of generic packings and on a functional equation for U described by the following result which is an almost obvious consequence of Theorem 2.1 and equality (1) in Proposition 1.1.

Proposition 2.2. Suppose that $\tilde{U} \in \mathbb{C}\left[\left[x, \sigma_{1}, \sigma_{2}, \ldots\right]\right]$ gives the number of packings $N^{n} \tilde{U}\left(N^{-1}, \sigma_{1}, \sigma_{2}, \ldots\right)$ with $\sum_{i=0}^{n} \sigma_{i} t^{i}=\prod_{j=1}^{n}\left(1+\sharp\left(\mathcal{S}_{j}\right) t\right)$ for every generic family of n non-empty subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n} \subset G$ in a finite group G with $N=\sharp(G)$ elements.

We have then

$$
\begin{equation*}
\left(1-\sigma_{1} x\right) \tilde{U}\left(x, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)=\tilde{U}\left(x, \tilde{\sigma}_{1}, \tilde{\sigma}_{2}, \tilde{\sigma}_{3}, \ldots\right) \tag{6}
\end{equation*}
$$

where $\tilde{\sigma}_{i}=\sigma_{i-1}+\sigma_{i}$, using the convention $\sigma_{0}=1$.
Proof Equation (6) corresponds to equation (11) if $\sigma_{1}, \sigma_{2}, \ldots$ are symmetric elementary functions of a finite set of natural integers. The general case follows by remarking that the algebra of symmetric polynomials is a free polynomial algebra on the set of elementary symmetric polynomials.

Remark 2.3. Iterating the identity (6) n times with $\tilde{U}=U$ given by formula (4) we have

$$
U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right) \prod_{j=0}^{n-1}\left(1-\left(\sigma_{1}+j\right) x\right)=U\left(x, \tilde{\sigma}_{1}, \tilde{\sigma}_{2}, \tilde{\sigma}_{3}, \ldots\right)
$$

where

$$
\tilde{\sigma}_{k}=\sum_{j=0}^{\min (k, n)}\binom{n}{j} \sigma_{k-j}
$$

A particular case is the specialization

$$
U\left(x,\binom{n}{1},\binom{n}{2},\binom{n}{3}, \ldots\right)=\prod_{j=1}^{n-1}(1-j x)
$$

associated to generic families $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ given by n singletons.

3 Combinatorics of packings for arbitrary families $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of subsets in a group G

Proof of Proposition 1.1 Let $\mathcal{S}_{1}, \ldots \mathcal{S}_{n}$ be n subsets in a finite group G with N elements and let \mathcal{S}_{n+1} be an additional subset of G. A packing of $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ given by $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ extends to a packing $\left(g_{1}, \ldots, g_{n}, g_{n+1}\right) \in$ G^{n+1} of $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n+1}$ if and only if $g_{n+1} \in G \backslash\left(\cup_{i=1}^{n} g_{i} \mathcal{S}_{i}\left(\mathcal{S}_{n+1}\right)^{-1}\right)$ where \mathcal{S}^{-1} denotes the set of inverses. Since $g_{i} \mathcal{S}_{i}\left(\mathcal{S}_{n+1}\right)^{-1}$ contains at most $\sharp\left(\mathcal{S}_{n+1}\right) \sharp\left(\mathcal{S}_{i}\right)$ elements, we have the first inequality.

Consider now a fixed element $x \in \mathcal{S}_{n+1}$. We have

$$
\sharp\left(\cup_{i=1}^{n} g_{i} \mathcal{S}_{i}\left(\mathcal{S}_{n+1}\right)^{-1}\right) \geq \sharp\left(\cup_{i=1}^{n} g_{i} \mathcal{S}_{i} x^{-1}\right)=\sharp\left(\cup_{i=1}^{n} g_{i} \mathcal{S}_{i}\right)
$$

Since $\left(g_{1}, \ldots, g_{n}\right)$ is a packing, we have

$$
\sharp\left(\cup_{i=1}^{n} g_{i} \mathcal{S}_{i}\right)=\sum_{i=1}^{n} \sharp\left(\mathcal{S}_{i}\right)
$$

showing the second inequality.
Equality (11) is obvious for $\sharp\left(\mathcal{S}_{n+1}\right)=1$.
We fix a group G and a family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of n non-empty subsets in G. Given an element $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right)$ of G^{n}, we consider the corresponding intersection graph $\mathcal{I}(\mathbf{g})$ with vertices $1, \ldots, n$ and edges $\{i, j\}$ between distinct vertices i, j if $g_{i} \mathcal{S}_{i} \cap g_{j} \mathcal{S}_{j} \neq \emptyset$ in G. Observe that $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right)$ in G^{n} defines a packing if and only if $\mathcal{I}(\mathbf{g})$ is the trivial graph with n isolated vertices.

Given a finite simple graph Γ with vertices $1, \ldots, n$ and edges $E(\Gamma)$, we consider the sets

$$
\mathcal{R}_{\Gamma}=\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n} \mid g_{i} \mathcal{S}_{i} \cap g_{j} \mathcal{S}_{j} \neq \emptyset \text { for every }\{i, j\} \in E(\Gamma)\right\}
$$

An element \mathbf{g} in G^{n} belongs thus to \mathcal{R}_{Γ} if and only if Γ is a subgraph of the intersection graph $\mathcal{I}(\mathbf{g})$.

We denote by \mathcal{E}_{Γ} the equivalence classes of \mathcal{R}_{Γ} defined by $\left(g_{1}, \ldots, g_{n}\right) \sim$ $\left(h_{1}, \ldots, h_{n}\right)$ if $g_{i} h_{i}^{-1}=g_{j} h_{j}^{-1}$ for every edge $\{i, j\}$ of Γ. Two elements $\mathbf{g}=$ $\left(g_{1}, \ldots, g_{n}\right)$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right)$ of \mathcal{R}_{Γ} represent thus the same equivalence class of \mathcal{E}_{Γ} if and only if the function $i \longmapsto g_{i} h_{i}^{-1}$ is constant on (vertices of) connected components.

Proposition 3.1. Suppose that G is a finite group having N elements. We have then

$$
\sharp\left(\mathcal{R}_{\Gamma}\right)=\sharp\left(\mathcal{E}_{\Gamma}\right) N^{c(\Gamma)}
$$

where $c(\Gamma)$ denotes the number of connected components of Γ.
Proof We set $c=c(\Gamma)$ and we denote the connected components of Γ by $\Gamma_{1}, \ldots, \Gamma_{c}$. We get a free action of G^{c} on \mathcal{R}_{Γ} by considering

$$
\left(a_{1}, \ldots, a_{c}\right) \cdot\left(g_{1}, \ldots, g_{n}\right) \longmapsto\left(a_{\gamma(1)}^{-1} g_{1}, \ldots, a_{\gamma(n)}^{-1} g_{n}\right)
$$

where $\gamma(i) \in\{1, \ldots, c\}$ is defined by the inclusion of the vertex i in the $\gamma(i)$-th connected component $\Gamma_{\gamma(i)}$ of Γ. This action is transitive and elements of \mathcal{E}_{Γ} are thus in one-to-one correspondence with orbits of this action on the set G^{n}.

Remark 3.2. Fixing an element $\left(g_{1}, \ldots, g_{n}\right)$ representing an equivalence class of \mathcal{E}_{Γ} and choosing elements $a_{i, j} \in \mathcal{S}_{i}, a_{j, i} \in \mathcal{S}_{j}$ such that $g_{i} a_{i, j}=g_{j} a_{j, i}$ for every edge $\{i, j\}$ in a spanning forest of Γ, one sees that \mathcal{E}_{Γ} consists of at most $\left(\max _{i} \sharp\left(\mathcal{S}_{i}\right)\right)^{2 c-2}$ distinct equivalence classes.
Proposition 3.3. The number $\alpha=\alpha\left(G ; \mathcal{S}_{1}, \ldots, \mathcal{S}_{n}\right)$ of packings of a family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a finite group G with N elements is given by

$$
\alpha=\sum_{\Gamma \in \mathcal{B}}(-1)^{e(\Gamma)} \sharp\left(\mathcal{E}_{\Gamma}\right) N^{c(\Gamma)}
$$

where the sum is over the Boolean poset \mathcal{B} of all $2\left(\begin{array}{c}\binom{n}{2} \\ \text { simple graphs with }\end{array}\right.$ vertices $1, \ldots, n$ and where $e(\Gamma)=\sharp(E(\Gamma))$, respectively $c(\Gamma)$, denotes the number of edges, respectively connected components, of a graph $\Gamma \in \mathcal{B}$.

Proof Proposition 3.1 shows that it is enough to prove the equality

$$
\alpha=\sum_{\Gamma \in \mathcal{B}}(-1)^{e(\Gamma)} \sharp\left(\mathcal{R}_{\Gamma}\right) .
$$

An element $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ defines a packing if and only if its intersection graph $\mathcal{I}(\mathbf{g})$ is trivial. It provides thus a contribution of 1 to α in this case since it is only involved as an element of \mathcal{R}_{Γ} if Γ is the trivial graph with isolated vertices $1, \ldots, n$ and no edges.

An element $\mathbf{g}=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ with non-trivial intersection graph $\mathcal{I}(\mathbf{g})$ containing $e \geq 1$ edges yields a contribution of 0 to α since contributions coming from the 2^{e-1} subgraphs of $\mathcal{I}(\mathbf{g})$ containing an even number of edges cancel out with contributions associated to the 2^{e-1} subgraphs having an odd number of edges.

Remark 3.4. Introducing

$$
\alpha_{\Gamma}=\left\{\mathbf{g} \in G^{n} \mid \mathcal{I}(\mathbf{g})=\Gamma\right\},
$$

we have $\alpha=\alpha_{T}$ where T denotes the trivial graph with n isolated vertices $1, \ldots, n$. The above proof of Proposition 3.3 computes α by applying Moebius inversion (more precisely, its dual form, see Proposition 3.7.2 of (4])

$$
\alpha=\sum_{\Gamma \in \mathcal{B}} \mu(\Gamma) \sharp\left(\mathcal{R}_{\Gamma}\right)
$$

(with $\mu(\Gamma)=(-1)^{e(\Gamma)}$ denoting the Moebius function of the Boolean lattice \mathcal{B} of all simple graphs on $1, \ldots, n$) to the numbers

$$
\sharp\left(\mathcal{R}_{\Gamma}\right)=\sum_{\Gamma \subset \Gamma^{\prime}} \alpha_{\Gamma^{\prime}}
$$

given by Proposition 3.1.

4 Proving the existence of U

We consider a fixed generic family of n non-empty finite subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ in a finite group G having N elements.

In this section we prove the existence of a series $\tilde{U}\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)$ such that the number of associated packings is given by

$$
N^{n} \tilde{U}\left(N^{-1}, \sigma_{1}, \sigma_{2}, \ldots\right)
$$

(see equation (5) with $\sigma_{1}, \sigma_{2}, \ldots$ defined by $\sum_{i=0}^{n} \sigma_{i} t^{i}=\prod_{j=1}^{n}\left(1+\sharp\left(\mathcal{S}_{j}\right) t\right)$.
We recall that a simple graph Γ is a block graph (or a cordal and diamondfree graph) if all its cycles occur in maximal cliques (ie. in maximal complete subgraphs) of Γ. Block graphs can be identified with hyperforests, see Section 7 Examples are given by forests and disjoint unions of complete graphs.
Proposition 4.1. All intersection graphs $\mathcal{I}(\mathbf{g}), \mathrm{g} \in G^{n}$ associated to a generic family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n} \subset G$ are block graphs.

Proof Consider an oriented cycle formed by k cyclically consecutive vertices $i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}, i_{k+1}=i_{1}$ of $\mathcal{I}(\mathbf{g})$. For every $j \in\{1, \ldots, k\}$ there exist thus two (not necessarily distinct) elements $a_{i_{j}}, b_{i_{j}} \in \mathcal{S}_{i_{j}}$ such that $g_{i_{j}} a_{i_{j}}=g_{i_{j+1}} b_{i_{j+1}}$. This implies the relation

$$
\begin{equation*}
g_{i_{1}} a_{i_{1}}\left(g_{i_{2}} b_{i_{2}}\right)^{-1} \cdots g_{i_{k}} a_{i_{k}}\left(g_{i_{1}} b_{i_{1}}\right)^{-1}=e . \tag{7}
\end{equation*}
$$

Setting $c_{i_{j}}=b_{i_{j}}^{-1} a_{i_{j}}$, relation (7) is equivalent to the relation $c_{i_{1}} \cdots c_{i_{k}}=e$ with $c_{i_{j}} \in \mathcal{S}_{i_{j}}^{-1} \mathcal{S}_{i_{j}}$. Genericity of the family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ shows $a_{i_{j}}=b_{i_{j}}$ for all j and the sets $g_{i_{j}} \mathcal{S}_{i_{j}}$ intersect in the common element $g_{i_{1}} a_{i_{1}}=\cdots=g_{i_{k}} a_{i_{k}}$. All vertices i_{1}, \ldots, i_{k} of $\mathcal{I}(\mathbf{t})$ are thus adjacent and contained in a maximal clique of $\mathcal{I}(\mathbf{t})$.

Lemma 4.2. The intersection $g_{i} \mathcal{S}_{i} \cap g_{j} \mathcal{S}_{j}$ associated to an edge $\{i, j\}$ in an intersection graph $\mathcal{I}(\mathbf{g})$ is reduced to a unique element if $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ is a generic family of G.

Proof Otherwise there exist two distinct elements $a_{i}, b_{i} \in \mathcal{S}_{j}$ and two distinct elements $a_{j}, b_{j} \in \mathcal{S}_{j}$ such that $g_{i} a_{i}=g_{j} a_{j}$ and $g_{i} b_{i}=g_{j} b_{j}$. This implies the relation $a_{i}^{-1} b_{i} b_{j}^{-1} a_{j}=e$ in contradiction with the definition of genericity.

Proposition 4.3. Let $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ be a generic family of subsets in a group G and let Γ be a block graph with vertices $1, \ldots, n$.

We have

$$
\sharp\left(\mathcal{E}_{\Gamma}\right)=\prod_{j=1}^{n}\left(\sharp\left(\mathcal{S}_{j}\right)\right)^{d_{h}(j)}
$$

where $d_{h}(j)$ denotes the number of non-trivial maximal cliques containing j.
Proof Let $\mathbf{g} \in G^{n}$ represent a class of \mathcal{E}_{Γ}. The proof of Proposition 4.1 and Lemma 4.2 show that each maximal clique of Γ with vertices i_{1}, \ldots, i_{k} corresponds to a unique element $a=\bigcap_{j=1}^{k} g_{i_{j}} \mathcal{S}_{i_{j}}$ of G. This defines maps $\mathbf{g} \longrightarrow g_{i_{j}}^{-1} a$ which depend only on the class of \mathbf{g} in \mathcal{E}_{Γ} and extend to a map from \mathcal{E}_{Γ} to $\prod_{j=1}^{n} \mathcal{S}_{j}^{d_{h}(j)}$ which is one-to-one.
Proposition 4.4. There exists a series $\tilde{U} \in \mathbb{Z}\left[x, \sigma_{1}, \sigma_{2}, \ldots\right]$ such that the number of packings of a generic family $\mathcal{S}_{1}, \ldots \mathcal{S}_{n}$ of n non-empty subsets in a finite group G with N elements is given by

$$
N^{n} \tilde{U}\left(N^{-1}, \sigma_{1}, \sigma_{2}, \ldots\right)
$$

where $\sum_{i=0}^{n} \sigma_{i} t^{i}=\prod_{j=1}^{n}\left(1+\sharp\left(\mathcal{S}_{j}\right) t\right)$.
Moreover, every monomial in $\sigma_{1}, \sigma_{2}, \ldots$ contributing to the coefficient x^{k} of \tilde{U} is divisible by an element of the set $\left\{\sigma_{k+1}, \cdots, \sigma_{2 k}\right\}$ and is of degree at most $2 k$ with respect to the grading given by $\operatorname{deg}\left(\sigma_{i}\right)=i$ for $i=1,2, \ldots$.

Proof Using Moebius inversion in the poset of block graphs (ordered by inclusion) with n labelled vertices $1, \ldots, n$, one gets an expression for the number of packings which involves only symmetric functions of $\sharp\left(\mathcal{S}_{1}\right), \ldots, \sharp\left(\mathcal{S}_{n}\right)$ by Proposition 4.3. The contribution to N^{n-k} for $k \geq 1$ comes only from block graphs involving $k+c$ non-isolated vertices in exactly c non-trivial connected components. Such a block graph contributes a monomial divisible by σ_{k+c}. Since $c \leq \frac{k+c}{2}$, the degree of such a monomial contribution is maximal and equals $2 k$ if and only if Γ is a forest consisting of k disjoint edges involving $2 k$ vertices.
Proposition 4.5. $\operatorname{Let} \tilde{U} \in \mathbb{Z}\left[\left[x, \sigma_{1}, \sigma_{2}, \ldots\right]\right]$ be a series such that $N^{n} \tilde{U}\left(N^{-1}, \sigma_{1}, \sigma_{2}, \ldots\right)$ is the number of packings for every generic family $\mathcal{S}_{1}, \ldots, \mathcal{S}_{n}$ of n non-empty subsets in a finite group G with N elements. Then \tilde{U} is unique and satisfies the functional equation (6) of Proposition (2.2.

Proof If $\tilde{U}_{1} \neq \tilde{U}_{2}$ are two such series, the difference

$$
D=\sum_{n=0}^{\infty} D_{n} x^{n}=\tilde{U}_{1}\left(x, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)-\tilde{U}_{2}\left(x, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)
$$

is not identically zero. Thus there exists an integer n such that the polynomial $D_{n} \in \mathbb{C}\left[\sigma_{1}, \sigma_{2}, \ldots, \sigma_{2 n}\right]$ is non-zero. The definition of \tilde{U}_{i} shows that the symmetric polynomial $P_{n}\left(s_{1}, \ldots, s_{2 n}\right)$ obtained by the polynomial substitution given by $\sum_{k=0}^{2 n} \sigma_{k} t^{k}=\prod_{j=1}^{2 n}\left(1+s_{j} t\right)$ in D_{n} is identically zero for all $s_{1}, \ldots, s_{2 n} \in \mathbb{N}$. This implies $P_{n}\left(s_{1}, \ldots, s_{2 n}\right)=0$ and $D_{n}=0$ since P determines $D_{n} \in \mathbb{C}\left[\sigma_{1}, \ldots, \sigma_{2 n}\right]$ uniquely.

Proposition [2.2 states that \tilde{U} satisfies the functional equation (6).

5 Proof of Theorem 2.1

Proposition 5.1. There exists at most a unique series $\tilde{U} \in \mathbb{Z}\left[\left[x, \sigma_{1}, \sigma_{2}, \ldots\right]\right]$ with the following properties:
(i) \tilde{U} satisfies the identity (6) of Proposition [2.2,
(ii) \tilde{U} is of the form $\tilde{U}=1+\sum_{n=1}^{\infty} a_{n} x^{n}$ with $a_{n} \in \mathbb{Z}\left[\sigma_{1}, \sigma_{2}, \ldots\right] a$ polynomial of degree $\leq 2 n$ with respect to the grading $\operatorname{deg}\left(\sigma_{i}\right)=i$ and a_{n} is an element of the ideal generated by $\sigma_{n+1}, \sigma_{n+2}, \sigma_{n+3}, \ldots$.

Proof Consider $D=\tilde{U}_{1}-\tilde{U}_{2}=\sum_{n=1}^{\infty} D_{n} x^{n}$ for two different series $\tilde{U}_{1}, \tilde{U}_{2}$ satisfying the conditions of Proposition [5.1. Let $n \geq 1$ be the smallest integer such that $D_{n} \neq 0$. Let $m \geq n+1$ be the smallest integer such that $D_{n}=\sum_{k=m}^{2 n} \sigma_{k} C_{n, k}$ with $C_{n, k} \in \mathbb{C}\left[\sigma_{1}, \sigma_{2}, \ldots\right]$ and $C_{n, m} \neq 0$. Since D_{n} is of degree $\leq 2 n$ with respect to the grading given by $\operatorname{deg}\left(\sigma_{i}\right)=i$, we have $C_{n, m} \in \mathbb{C}\left[\sigma_{1}, \ldots, \sigma_{2 n-m}\right] \subset \mathbb{C}\left[\sigma_{1}, \ldots, \sigma_{n-1}\right]$.

Equation (6) and minimality of n imply

$$
D_{n}\left(1+\sigma_{1}, \sigma_{1}+\sigma_{2}, \sigma_{2}+\sigma_{3}, \ldots\right)=D_{n}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)
$$

or equivalently
$\sum_{k=m}^{2 n}\left(\sigma_{k-1}+\sigma_{k}\right) C_{n, k}\left(1+\sigma_{1}, \sigma_{1}+\sigma_{2}, \sigma_{2}+\sigma_{3}, \ldots\right)=\sum_{k=m}^{2 n} \sigma_{k} C_{n, k}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots\right)$.
Comparison of both sides modulo the ideal I generated by $\sigma_{m}, \sigma_{m+1}, \sigma_{m+2}, \ldots$ gives

$$
C_{n, m}\left(1+\sigma_{1}, \sigma_{1}+\sigma_{2}, \sigma_{2}+\sigma_{3}, \ldots\right)=0
$$

contradicting $C_{n, m} \neq 0$.
Proposition 5.2. The series U defined by formula (4) satisfies equation (6) of Proposition 2.2.

Proof Remark first that both series $\left(1-\sigma_{1} x\right) U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)-1$ and $U\left(x, 1+\sigma_{1}, \sigma_{1}+\sigma_{2}, \ldots\right)-1$ are linear in $\sigma_{2}, \sigma_{3}, \ldots$ Considering the coefficient of $\sigma_{i} \sigma_{1}^{j} x^{n}$ of both series, equation (6) amounts to the identity

$$
t_{i, j}(n)+t_{i, j-1}(n-1)=\sum_{k=j}^{n}(-1)^{k+j}\binom{k}{j}\left(t_{i, k}(n)+t_{i+1, k}(n)\right)
$$

or equivalently to

$$
\begin{equation*}
t_{i, j}(n)+t_{i, j-1}(n-1)=\sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i, k}(n)+t_{i+1, k}(n)\right) \tag{8}
\end{equation*}
$$

where $\sum_{k} f(k)=\sum_{k \in \mathbb{Z}} f(k)$ since $\binom{k}{j}\left(t_{i, k}(n)+t_{i+1, k}(n)\right)=0$ for $k<j$ or $k \geq n$. We prove (8) by induction on n. Setting $t_{i, j}(0)=0$ it holds for $n=1$ and $n=2$. Applying the recursion relation (3) which holds for all $i, j \in \mathbb{Z}$ if $n \geq 2$ to the right-hand side

$$
R=\sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i, k}(n)+t_{i+1, k}(n)\right)
$$

of (8) we get

$$
\begin{aligned}
R= & \sum_{k=j}^{n}(-1)^{k+j}\binom{k}{j}(\\
& (i-2) t_{i-1, k}(n-1)+t_{i-1, k-1}(n-1)+(i-3) t_{i-2, k}(n-1) \\
& \left.\quad+(i-1) t_{i, k}(n-1)+t_{i, k-1}(n-1)+(i-2) t_{i-1, k}(n-1)\right) \\
= & L+C
\end{aligned}
$$

where

$$
\begin{aligned}
& L=(i-2) \sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
&+\sum_{k}(-1)^{k+j-1}\binom{k}{j-1}\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
&+(i-3) \sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i-2, k}(n-1)+t_{i-1, k}(n-1)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
C= & -\sum_{k}(-1)^{k+j-1}\binom{k}{j-1}\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
& +\sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i-1, k-1}(n-1)+t_{i, k-1}(n-1)\right) \\
& +\sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i, k}(n-1)+t_{i-1, k}(n-1)\right) \\
= & \sum_{k}(-1)^{k+j}\binom{k}{j-1}\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
& +\sum_{k}(-1)^{k+j}\binom{k}{j}\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
& -\sum_{k}(-1)^{k+j}\binom{k+1}{j}\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
= & \sum_{k}(-1)^{k+j}\left(\binom{k}{j-1}+\binom{k}{j}-\binom{k+1}{j}\right)\left(t_{i-1, k}(n-1)+t_{i, k}(n-1)\right) \\
= & 0
\end{aligned}
$$

Using induction on n and applying (8) we get

$$
\begin{aligned}
L=\quad & (i-2)\left(t_{i-1, j}(n-1)+t_{i-1, j-1}(n-2)\right) \\
& +\left(t_{i-1, j-1}(n-1)+t_{i-1, j-2}(n-2)\right) \\
& +(i-3)\left(t_{i-2, j}(n-1)+t_{i-2, j-1}(n-2)\right)
\end{aligned}
$$

We have thus

$$
\begin{aligned}
L= & (i-2) t_{i-1, j}(n-1)+t_{i-1, j-1}(n-1)+(i-3) t_{i-2, j}(n-1) \\
& +(i-2) t_{i-1, j-1}(n-2)+t_{i-1, j-2}(n-2)+(i-3) t_{i-2, j-1}(n-2)
\end{aligned}
$$

and applying (3) we get

$$
L=t_{i, j}(n)+t_{i, j-1}(n-1)
$$

which is the left-hand-side involved in (8).
Proof of Theorem 2.1 By Proposition [5.2, the series U defined by formula (4) satisfies condition (i) of Proposition 5.1. It satisfies condition (ii) by construction. By Proposition 4.5 it coincides with the series \tilde{U} given by Proposition 4.4.

6 The Moebius function for the poset of block graphs

Let \mathcal{P} be a poset (partially ordered set) with a unique minimal element m such that $\{y \in \mathcal{P} \mid y<x\}$ is finite for all $x \in \mathcal{P}$. This allows the
definition of a Moebius function μ given recursively by $\mu(m)=1$ and $\mu(x)=$ $-\sum_{y<x} \mu(y)$ for all $x>m$. Given a function $f: \mathcal{P} \longrightarrow \mathbb{C}$ with finite support, the value $f(m)$ can then be recovered from the function $g(x)=\sum_{y \geq x} f(y)$ using Moebius inversion

$$
f(m)=\sum_{x \in \mathcal{P}} \mu(x) g(x)
$$

see Proposition 3.7.2 of [4] (we use only the values $\mu(m, x)$ of the Moebius function and write $\mu(x)=\mu(m, x)$ in analogy with the usual, well-known number-theoretic Moebius function of natural integers). Moebius inversion was the main ingredient in the proof of Proposition 4.4. We did however not compute the Moebius function for the poset $\mathcal{H \mathcal { F }}$ (with $\mathcal{H} \mathcal{F}$ standing for HyperForest, see Remark 6.2 and Section 7) of all block graphs (ordered by inclusion) with vertices $1,2,3,4, \ldots$ and finitely many edges. The poset $\mathcal{H} \mathcal{F}$ has a minimal element given by the trivial graph having only isolated vertices. The subset

$$
\left\{\Gamma^{\prime} \in \mathcal{H} \mathcal{F} \mid \Gamma^{\prime} \subset \Gamma\right\}
$$

of all block subgraphs of a fixed block graph $\Gamma \in \mathcal{H \mathcal { F }}$ with n edges contains at most 2^{n} elements given by removing suitable subsets of edges from Γ. The poset $\mathcal{H} \mathcal{F}$ has thus a Moebius function which is described by the following result.

Proposition 6.1. The Moebius function $\mu(\Gamma)$ on a vertex-labelled block graph Γ with respect to the poset $\mathcal{H} \mathcal{F}$ of all vertex-labelled block graphs having finitely many edges is given by

$$
\mu(\Gamma)=\prod_{j \geq 2}(-(j-2)!)^{\kappa_{j}}
$$

where κ_{j} denotes the number of maximal cliques with j vertices in Γ.
Remark 6.2. The poset $\mathcal{H} \mathcal{F}$ coincides with the poset of all hyperforests (ordered by inclusion) having vertices \mathbb{N} and a finite number of hyperedges. It is in fact a lattice with wedge $\Gamma_{1} \wedge \Gamma_{2}$ given by the intersection and join $\Gamma_{1} \vee \Gamma_{2}$ given by the smallest block graph containing Γ_{1} and Γ_{2} as subgraphs.

Proof Remark first that the order relation on the poset of all (vertexlabelled) block subgraphs of Γ is the product over all order-relations on block graphs induced by maximal cliques of Γ. We have thus $\mu(\Gamma)=$ $\prod_{j \geq 2}\left(\mu\left(K_{j}\right)\right)^{\kappa_{j}}$ where K_{j} is a complete subgraph on j labelled vertices and where κ_{j} is the number of maximal cliques with j vertices in Γ.

In order to compute $\mu\left(K_{j}\right)$, the combinatorial description for the existence of a suitable series \tilde{U} given by the proof of Proposition 4.4 shows that $\mu\left(K_{j+1}\right)$ is given by the coefficient of $\sigma_{j+1} x^{j}$ in U. By Theorem 2.1 whose proof does not depend on Proposition 6.1 this coefficient equals $-t_{j+1,0}(j)=-(j-2)$! where the last identity follows easily from formula (3) defining $t_{i, j}(n)$ recursively.

Remark 6.3. It would be interesting to have a simple direct proof that $\mu\left(K_{n}\right)=-(n-2)$! for a complete graph K_{n} with $n \geq 2$ vertices in the poset $\mathcal{H F}$.

7 Enumeration of weighted hypertrees

A hypergraph is a generalized graph with edges replaced by hyperedges defined as finite subsets of at least two vertices. Calling $n-$ simplex a hyperedge with $n+1$ vertices, allowing simplices reduced to one vertex and adding a closure property we get the definition of a simplicial complex.

A path in a hypergraph is a finite sequence $v_{0}, v_{1}, \ldots, v_{n}$ of vertices such that v_{i-1} and v_{i} belong to a common hyperedge for $i=1, \ldots, n$. A hypergraph is connected if every pair v, w of vertices can be joined by a path $v_{0}=v, v_{1}, \ldots, v_{n}=w$. A cycle of a hypergraph is a cyclic path $v_{0}, v_{1}, \ldots, v_{n-1}, v_{n}=v_{0}$ of n distinct vertices such that the n ordinary edges $\left\{v_{i}, v_{i+1}\right\}, i=0, \ldots, n-1$ belong to n distinct hyperedges. A hyperforest is a hypergraph without cycles. A connected hyperforest is a hypertree. Associating to every maximal clique of a block graph the hyperedge with the same vertices we get a one-to-one map between block graphs and hyperforests.

We recall that Stirling numbers of the second kind $S_{2}(n, k)$, defined by the equality

$$
e^{t\left(e^{x}-1\right)}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\left(\sum_{k=0}^{n} S_{2}(n, k) t^{k}\right)
$$

count the number of partitions of $\{1, \ldots, n\}$ into k non-empty subsets. The following result, first proven by Husimi, see [2] or [1] generalizes Cayley's theorem (corresponding to the case $k=n-1$ of ordinary trees) to hypertrees.

Theorem 7.1. (Husimi) The number of hypertrees with k hyperedges and n labelled vertices is given by

$$
n^{k-1} S_{2}(n-1, k)
$$

Identifying hypertrees with the corresponding block graphs and introducing the resulting Moebius function $\mu(T)=\prod_{j \geq 2}(-(j-2)!)^{\kappa_{j}}$ of a hypertree having κ_{j} hyperedges involving j vertices for $j \geq 2$ we have the following result:

Theorem 7.2. We have

$$
(-1)^{n} \sum_{T \in \mathcal{T}(n, k)} \mu(T)=n^{k-1} S_{1}(n-1, k)
$$

where $\mathcal{T}(n, k)$ denotes the set of all labelled hypertrees with n vertices and k hyperedges and where $S_{1}(n, k)$ denotes the Stirling number of the first kind
defined by

$$
\sum_{k=0}^{n} S_{1}(n, k) x^{k}=x(x-1)(x-2) \cdots(x-n+1)=\prod_{j=0}^{n-1}(x-j)
$$

Proof Each hypertree T with vertices $1, \ldots, n$ consisting of k hyperedges yields a contribution of $\mu(T) \prod_{i=1}^{n} s_{i}^{\operatorname{deg}_{h}(i)}$ (with $\operatorname{deg}_{h}(i)$ denoting the number of hyperedges containing the vertex i) to the coefficient $(-1)^{k} t_{n, k-1}(n-1)=$ $-(-1)^{n} S_{1}(n-1, k)$ of the monomial $\sigma_{n} \sigma_{1}^{k-1} x^{n-1}$ in U and all contributions are of this form. Setting $s_{1}=s_{2}=\cdots=s_{n}=1$ yields the result.

8 Computational aspects and examples

The computation of $U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)$ up to $o\left(x^{n}\right)$ is straightforward using the recurrence relation (3). For a given fixed numerical value of σ_{1}, the following trick reduces memory requirement and speeds the computation up: Setting

$$
c_{n}\left(\sigma_{1}\right)=\left(\gamma_{n+1}\left(\sigma_{1}, n\right), \gamma_{n+2}\left(\sigma_{1}, n\right), \ldots, \gamma_{2 n}\left(\sigma_{1}, n\right)\right)
$$

with $\gamma_{i}\left(\sigma_{1}, n\right)=\sum_{j=0}^{n-1} t_{i, j}(n)\left(-\sigma_{1}\right)^{j}$ we have

$$
U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)=1-\sum_{n=1}^{\infty}\left\langle c_{n}\left(\sigma_{1}\right),\left(\sigma_{n+1}, \ldots, \sigma_{2 n}\right)\right\rangle x^{n}
$$

where $\langle a, b\rangle=\sum_{i=1}^{n} a_{i} b_{i}$ for $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$. The coefficients $\gamma_{i}\left(\sigma_{1}, n\right)$ of $c_{n}\left(\sigma_{1}\right)$ can be computed from the coefficients of $c_{n-1}\left(\sigma_{1}\right)$ by the formula

$$
\gamma_{i}\left(\sigma_{1}, n\right)=\left(i-2-\sigma_{1}\right) \gamma_{i-1}\left(\sigma_{1}, n-1\right)+(i-3) \gamma_{i-2}\left(\sigma_{1}, n-1\right)
$$

with missing coefficients omitted in the case of $i=n+1$ or $i=2 n$.
The coefficients of the first vectors $c_{1}(0), c_{2}(0), c_{3}(0), \ldots$ are given by the rows of

1				
1	1			
2	5	3		
6	26	35	15	
24	154	340	315	105,

see A112486 of [3].
8.1 The examples $U(x,-1,-1,-1, \ldots)$ and $U(x, 0,-1,-1,-1, \ldots)$

The series

$$
U(x,-1,-1,-1,-1, \ldots)-1
$$

is the generating series of the sequence

$$
S(n)=\sum_{i, j} t_{i, j}(n)
$$

enumerating the sums of the triangles $T(n)$ defined by the integers $t_{i, j}(n)$. We have

$$
\begin{aligned}
& (1+x) U(x,-1,-1,-1,-1, \ldots) \\
= & U(x, 0,-2,-2,-2,-2, \ldots) \\
= & 2 U(x, 0,-1,-1,-1,-1, \ldots)-1
\end{aligned}
$$

where $U(x, 0,-1,-1,-1, \ldots)-1$ corresponds to the generating series of the sequence

$$
s(n)=\sum_{i=n+1}^{2 n} t_{i, 0}(n)
$$

starting as

$$
1,2,10,82,938,13778,247210,5240338,128149802,3551246162, \ldots,
$$

cf. A112487 of [3], and obtained by summing the integers of the first column of the triangles $T(1), T(2), \ldots$. In particular, we have $2 s(n)=S(n-1)+S(n)$ or equivalently

$$
2 \sum_{i=n+1}^{2 n} t_{i, 0}(n)=\sum_{i=n+1}^{2 n} \sum_{j=0}^{2 n-i} t_{i, j}(n)+\sum_{i=n}^{2 n-2} \sum_{j=0}^{2 n-2-i} t_{i, j}(n-1)
$$

for all $n \geq 2$.

8.2 A family of rational examples

Proposition 8.1. Let $\sigma_{1}, \sigma_{2}, \ldots$ be a sequence of complex numbers of the form $\sigma_{n}=(-1)^{n} P(n)$ for all $n \geq A$ where A is some natural integer and where $P(s) \in \mathbb{C}[s]$ is a polynomial. Then $U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right)$ is a rational series.

Proof Let d denote the degree of P. Applying identity (6) of Proposition 2.2 iteratively $d+1$ times we get a series of the form $U\left(x, \tilde{\sigma}_{1}, \tilde{\sigma}_{2}, \ldots, \tilde{\sigma}_{A+d+2}, 0,0,0, \ldots\right)$ which is a polynomial.

As an illustration we consider the series $U(x, y, 1,-1,1, \ldots)$. Proposition 2.2 shows
$(1-x y) U(x, y, 1,-1,1,-1, \ldots)=(U(1+y, 1+y, 0,0, \ldots)=1-(1+y) x$.
We have thus $U(x, y, 1,-1,1, \ldots)=1-\frac{x}{1-x y}$.
8.3 Coefficients of $U\left(x, \sigma_{1}, P(2), P(3), P(4), \ldots\right)$

Proposition 8.2. Let $P(s) \in \mathbb{C}[s]$ be a polynomial of degree d. There exist constants $\alpha_{0}, \ldots, \alpha_{d} \in \mathbb{C}$ such that

$$
\left[x^{n}\right] U\left(x, \sigma_{1}, P(2), P(3), P(4), \ldots\right)=\sum_{h=0}^{d} \alpha_{h}\left[x^{n+h}\right] U\left(x, \sigma_{1}, 1,1,1,1,1, \ldots\right)
$$

for all $n \geq 1$ with $\left[x^{n}\right] U$ denoting the coefficient of x^{n} in the series U.
Proof The proof is by induction on d and holds certainly for $d=0$. Setting $\gamma_{i}(n)=\sum_{j=n+1}^{2 n} t_{i, j}(n)\left(-\sigma_{1}\right)^{j}$ we have

$$
\begin{aligned}
0= & -i^{d} \gamma_{i}(n+1)+i^{d}\left(i-2-\sigma_{1}\right) \gamma_{i-1}(n)+i^{d}(i-3) \gamma_{i-2}(n) \\
= & -i^{d} \gamma_{i}(n+1)+(i-1)^{d+1} \gamma_{i-1}(n)+(i-2)^{d-2} \gamma_{i-2}(n)+ \\
& +Q_{1}(i-1) \gamma_{i-1}(n)+Q_{2}(i-2) \gamma_{i-2}(n)
\end{aligned}
$$

where Q_{1} and Q_{2} are polynomials of degree $\leq d$.
Summing over i (for a fixed integer n) and using induction on d implies the result.

9 Modular properties

Proposition 9.1. The series $U\left(x, \sigma_{1}, \sigma_{2}, \ldots\right) \in \mathbb{F}_{p}[[x]]$ is rational if $\sigma_{1}, \sigma_{2}, \ldots$ is an ultimately periodic sequence of elements in \mathbb{F}_{p}.

Proof Since we work over \mathbb{F}_{p}, one can restrict the indices i, j of the coefficients $t_{i, j}(n)$ to finite subsets. This implies that the coefficients of $U\left(x, \sigma_{1}, \ldots\right)$ are ultimately periodic.

The easiest non-trivial case of Proposition 0.1 is perhaps given by the generating series $U(x, 0,-1,-1,-1, \ldots)-1$ associated to the sequence

$$
s(n)=\sum_{i=n+1}^{2 n} t_{i, 0}(n)=1-U(x, 0,-1,-1,-1, \ldots)
$$

obtained by summing all coefficients in the first column of the triangular arrays $T(1), T(2), \ldots$.

Experimentally, there exists seemingly a sequence

$$
\begin{aligned}
& \alpha_{0}=-1, \alpha_{1}=2, \alpha_{2}=0, \alpha_{3}=\frac{1}{3}, \alpha_{4}=\frac{5}{18}, \alpha_{5}=\frac{149}{540}, \alpha_{6}=\frac{553}{2025}, \\
& \alpha_{7}=\frac{1849741}{6804000}, \alpha_{8}=\frac{775167119}{2857680000}, \alpha_{9}=\frac{325214957371}{1200225600000}, \ldots
\end{aligned}
$$

of rational numbers such that

$$
\left(1+x^{p-1}\right) \sum_{n=1}^{\infty} s(n) x^{n} \equiv \sum_{n=0}^{p-1} \alpha_{n} x^{p-n} \quad(\bmod p)
$$

for every prime number p.
The rational sequence $\alpha_{0}, \alpha_{1}, \ldots$ has experimentally an asymptotic expansion given by

$$
\alpha_{n} \sim \sum_{k=1}^{\infty} \frac{k^{k-n}}{k!}\left(\frac{2}{e^{2}}\right)^{k} .
$$

In particular, it seems to converge to

$$
\frac{2}{e^{2}}=.27067056647322538378799 \ldots
$$

The generating series $\sum_{n=0}^{\infty} \alpha_{n} x^{n}$ seems to have a positive real root approximatively given by

$$
\text { . } 469988171695013162992878063240573355384683977952459810170161 \text {. }
$$

The error term

$$
\epsilon_{n}=\alpha_{n}-\sum_{k=1}^{\infty} \frac{k^{k-n}}{k!}\left(\frac{2}{e^{2}}\right)^{k}
$$

seems to be of the form

$$
\epsilon_{n} \sim \frac{(-1)^{n+1}}{s(n+1)} C(n)
$$

with $C(n)=\gamma_{0}-\frac{1}{12 n^{2}}+\frac{\gamma_{4}}{n^{4}}+\frac{\gamma_{6}}{n^{0}}+\cdots \in \mathbb{R}\left[\frac{1}{n^{2}}\right]$ where

$$
\begin{aligned}
\gamma_{0} & \sim 3.25889135327093 \\
\gamma_{4} & \sim-.0120865999417078 \\
\gamma_{6} & \sim .0312295100177430
\end{aligned}
$$

More (probably correct) digits for γ_{0} are given by

$$
3.25889135327092945459791735692 \text {. }
$$

Remark 9.2. The constant γ_{0} appearing in the error term $C(n)$ seems also to be related to the maximal index m_{n} such that $t_{m_{n}, 0}(n)=\max _{i}\left(t_{i, 0}(n)\right)$ with m_{n} given asymptotically by $\frac{\gamma_{0}}{2}$ and it seems also to be involved in the asymptotics of $s(n)$, given experimentally by

$$
s(n) \sim\left(\frac{n \gamma_{0}}{e}\right)^{n} \sum_{k \geq 1} \tilde{\gamma}_{k} n^{-k}
$$

where $\gamma_{0} \sim 3.258891 \ldots$ is as above and where

$$
\begin{aligned}
\tilde{\gamma}_{1} & \sim .553942974899091 \\
\tilde{\gamma}_{2} & \sim .239725616524017 \\
\tilde{\gamma}_{3} & \sim .099867601803607
\end{aligned}
$$

References

[1] I.M. Gessel, L.H. Kalikow, Hypergraphs and a functional equation of Bouwkamp and de Bruijn. J. Combin. Theory Ser. A 110 (2005), no. 2, 275-289.
[2] K. Husimi, Note on Mayer's theory of cluster integrals, Journal of Chemical Physics 18 (1950), 682-684.
[3] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.
[4] R. P. Stanley, Enumerative Combinatorics, Volume I, Cambridge University Press (1997).

Roland BACHER
 INSTITUT FOURIER

Laboratoire de Mathématiques
UMR 5582 (UJF-CNRS)
BP 74
38402 St Martin d'Hères Cedex (France)
e-mail: Roland.Bacher@ujf-grenoble.fr

[^0]: ${ }^{1}$ Keywords: Packings in groups, additive combinatorics, additive number theory, Stirling number, enumeration of hypertrees Math. class: 05C30, 11B73, 11P99

