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Molecular Frisbee: Motion of Spinning Molecules in Inhomogeneous Fields
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Several laser techniques have been suggested and demonstrated recently for preparing polarizable
molecules in rapidly spinning states with a disc-like angular distribution [1–5]. We consider motion
of these spinning discs in inhomogeneous fields, and show that the molecular trajectories may be
precisely controlled by the tilt of the plane of the laser-induced rotation. The feasibility of the scheme
is illustrated by optical deflection of linear molecules twirled by two delayed cross-polarized laser
pulses. These results open new ways for many applications involving molecular focusing, guiding
and trapping, and may be suitable for separating molecular mixtures by optical and static fields.

PACS numbers: 33.80.-b, 37.10.Vz, 42.65.Re, 37.20.+j

It is a common fact that in a thermal ensemble of ro-
tating molecules the orientation of individual molecules,
as well as the orientation of their vector of angular mo-
mentum, is completely random. Recent years have seen
a tremendous progress in developing methods for the cre-
ation and fine control of non-thermal molecular angular
distributions by the help of short laser pulses [6]. Several
studies addressed the challenge of the optical preparation
of molecules in a highly-spinning state [1–5] with a well
defined direction of the vector of angular momentum. At
least two routes leading to this goal have been demon-
strated experimentally, including the “optical molecular
centrifuge” [1], where the molecules are angularly accel-
erated by a laser field with a spinning polarization vector,
and the “molecular propeller” technique [2–4], which uses
two time-delayed cross-polarized short laser pulses.

The molecular axis of the fast-spinning molecules is
confined to the rotation plane perpendicular to the vector
of the angular momentum, and the molecular angular dis-
tribution has a specific disc-like shape (see Fig. 1). In this
Letter we consider deflection of the spinning molecules by
inhomogeneous fields, and show that the trajectories of
these “flying discs” may be controlled and fine-tuned by
inclination of the plane of laser-induced rotation with re-
spect to the external fields. A similar technique is used
by Frisbee players finessing the tilt of the spinning disc
for directing it into a pair of waiting hands.

In the present Letter we will concentrate on the molec-
ular deflection by optical fields, which is a hot exper-
imental subject [7–9], although the similar arguments
are applicable to the scattering in static fields as well.
When a molecule enters a nonuniform laser field, the lat-
ter induces molecular polarization, interacts with it, and
deflects the molecule along the intensity gradient. As
most molecules have an anisotropic polarizability, the de-
flecting force depends on the molecular orientation with
respect to the deflecting field, which couples the rota-
tional and translational motion [9–11]. It was recently
shown [12] that laser-induced molecular prealignment by
additional short laser pulses may change dramatically
the deflection process, and, in particular, reduce sub-
stantially the dispersion of the scattering angles. Here
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FIG. 1. (a) A classical molecule rotates in the plane per-
pendicular to its angular momentum J. (b) Disc-like angular
distribution for the tilted spinning state |J, J〉η with J = 25.
The state is almost confined to a plane, as in the classical case
(a).

we show that if the molecules are prepared in the fast-
spinning state, not only they are scattered into a narrow
angular interval, but also the position of this scattering
peak is controllable by ultra-fast lasers.
For certainty, we follow a deflection scheme resembling

the experiment by Stapelfeldt et al. [7] who used a strong
IR laser to deflect a CS2 molecular beam, and then ad-
dressed a portion of the deflected molecules (at a pres-
elected place and time) by an additional short and nar-
row ionizing pulse. Consider deflection (in the z direc-
tion) of a linear molecule moving in the x direction with
velocity vx and interacting with a focused nonresonant
laser beam that propagates along the y axis. The spa-
tial profile of the laser electric field in the xz plane is
E = E0 exp

[

−(x2 + z2)/ω2
0

]

exp
[

−2 ln 2t2/τ2
]

. The in-
teraction potential of a linear molecule in the laser field
is given by

U(t) = −1

4
E2

(

∆α cos2 θ + α⊥

)

, (1)

where E is defined above, and ∆α ≡ α‖ − α⊥, where α‖

and α⊥ are the molecular polarizabilities along and per-
pendicular to the molecular axis, respectively. Here θ is
the angle between the electric field polarization direction
(along the laboratory z axis) and the molecular axis. A
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molecule initially moving along the x direction will ac-
quire a velocity component vz along the z direction. In
the weak field regime, when the corresponding deflection
angle γ ≈ vz/vx is small, we substitute x = vxt, and
consider z as a fixed impact parameter. The deflection
velocity is given by

vz = − 1

M

∫ +∞

−∞

(

~∇U(t)
)

z
dt , (2)

where M is the mass of the molecule. The time depen-
dence of the potential in Eq. 2 comes from three sources:
pulse envelope, projectile motion of the molecule through
the laser focal area, and time variation of the angle θ due
to molecular rotation. For simplicity, we assume also that
the deflecting field does not affect significantly the rota-
tional motion. Such an approximation is justified, say for
CS2 molecules with the rotational temperature T = 5 K,
which are subject to a deflecting field of 3× 109 W/cm2.
Since the rotational time scale is the shortest one in the
problem, we average the force over the fast rotation. Con-
sidering molecular rotation classically (see Fig. 1a), we
arrive at the following expression for the deflection an-
gle, γ = vz/vx [12]:

γ = γ0/α (∆αA+ α⊥) . (3)

Here, α = 1/3α‖ + 2/3α⊥ is the orientation-averaged
molecular polarizability, γ0 is the average deflection an-
gle for an isotropic molecular ensemble, which is deter-
mined by the deflection scheme [7], and A = cos2 θ is
the time-averaged value of cos2 θ. This quantity depends
on the relative orientation of the vector of angular mo-
mentum and the polarization of the deflecting field. It is
different for different molecules of the incident ensemble,
which leads to the randomization of the deflection pro-
cess. Qualitatively, the properties of A may be under-
stood from the following classical arguments. Consider a
linear molecule that rotates freely in a plane that is per-
pendicular to the vector J of the angular momentum (see
Fig. 1a). The projection of the molecular axis on the ver-
tical z direction is given by cos θ(t) = cos(ωt) sin η, where
η is the angle between J and the deflecting field, and ω is
the angular frequency of molecular rotation. Averaging
over time, one arrives at

A = cos2 θ =
1

2
sin2 η. (4)

In a thermal ensemble, vector J is randomly oriented in
space, with isotropic angular distribution. Therefore, the
corresponding distribution of A is [12]

f(A) =
1√

1− 2A
, (5)

which has a rainbow singularity at A = 1/2 and a flat
step near the minimal A = 0.

However, for fast-spinning molecules the distribution
of J is completely different, as J is mostly perpendicular
to the well-defined molecular plane of rotation. Since η
takes a well-defined value, we expect the distribution ofA
to be very narrow and, more importantly, to be centered
around the value determined by η.

For a more quantitative quantum treatment, we con-
sider a linear molecule in a tilted spinning state |J,m =
J〉η, where J is the angular momentum quantum number
and m is the quantum number associated with the pro-
jection of angular momentum on the tilted J direction
(see Fig. 1b). The angular distribution for a molecule in
the |J = 25,m = 25〉η state is plotted in Fig. 1b, where
we observe that the molecule is indeed mostly confined
to the plane perpendicular to the direction of J. The
generation of such a state is feasible, e.g. by the optical
centrifuge approach [1], hexapole selection [13], or selec-
tion by deflection [14].

To obtain the distribution of A for a molecule being
in such a state, we expand |J, J〉η in the basis of |J,m〉
states with the quantization axis parallel to the deflecting
field. This is essentially obtained by rotating the state
by the angle η (see Fig. 1b):

|Ψ〉 = R̂(η)|J, J〉η =

+J
∑

m=−J

cJ,m|J,m〉 , (6)

where R̂(η) is the rotation matrix [15]. The expansion
coefficients cJ,m are given by [16]

cJ,m =

√

(

2J
J −m

)

(

cos
η

2

)J+m (

− sin
η

2

)J−m

. (7)

For a weak enough deflecting field, the scattering angle
for a molecule in the |J,m〉 rotational state is given by
Eq. 3, in which A is replaced by

AJ,m = 〈J,m| cos2 θ|J,m〉

=
1

3
+

2

3

J(J + 1)− 3m2

(2J − 1)(2J + 3)
. (8)

Fig. 2 shows the distribution of AJ,m values weighted
by the population |cJ,m|2 of each state (for several values
of η). Since the relation between m and AJ,m is known
(Eq. 8, where J is a parameter), we obtain

f(A) =
∑

i=1,2

∣

∣

∣

∣

dm

dA

∣

∣

∣

∣

f(m)(i) , (9)

where the summation is over two branches of the func-
tion m(A). Furthermore, we note that f(m) = |cJ,m|2 is
a binomial distribution, which becomes a Gaussian dis-
tribution in the limit of large J . Therefore, for J ≫ 1
and 0 < η < π the distribution of AJ,m for a molecule
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FIG. 2. (a) Distribution of A for a |J, J〉η state with J =
50 and different angles η between J and the deflecting field.
(b) Same as (a) but for J = 400. The distribution of A is
rather narrow, and by adjusting the angle η, its maximum
can be tuned between 0 and 0.5. The maximum of each curve
is approximately at 1/2 sin2 η (Eqs. 4 and 10).

prepared in the |J, J〉η state is

f(A) =
1√
2πσ2

1√
1− 2A

×
∑

i=1,2

exp

[

−
(

cos η + (−1)i
√
1− 2A

)2

2σ2

]

, (10)

with σ = | sin η|/
√
2J . The maximum of the distribu-

tion is located near Amax = 1/2 sin2 η, which is exactly
the classical value for A (see Eq. 4). Hence, prepar-
ing a molecule in a |J, J〉η state (with the appropriate
J direction) allows for controlling the deflection angle.
The corresponding distribution of the scattering angle is
much more localized compared to the thermal distribu-
tion (Eq. 5) which is spread out over the entire AJ,m

range.
To analyze the experimental feasibility of the suggested

control scheme, we consider optical deflection of unidirec-
tionally rotating molecules prepared by the double-pulse
“molecular propeller” technique [2–4]. Motivated by the
so-far success in predicting the main results classically,
we provide here only classical calculations. Full quantum
mechanical treatment which shows a strong agreement
with the classical results will be published elsewhere [17].
Let us recall briefly the corresponding scenario for in-
ducing molecular spinning (a detailed discussion of this
scenario can be found in Refs. [2, 18]). The first short lin-
early polarized laser pulse (with the polarization vector
p1) brings molecules to a concerted rotation that results
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FIG. 3. Distribution of A = cos2 θ for a classical thermal
ensemble of molecules (JT = 5) on a coarse-grained grid.
The molecules are excited by two delayed laser pulses cross-
polarized at 45 degrees with respect to each other. The kick-
strengths of the pulses are P1 = 10 and P2 = 50.

in molecular alignment along the p1-direction sometime
after the end of the pulse (i.e. at field-free conditions). At
the moment of the maximal alignment, when the molec-
ular angular distribution is mostly confined in a narrow
cone around p1, the second, delayed laser pulse is ap-
plied, with the polarization vector p2 at 45 degrees with
respect to the first one. As a result, the molecules gain
an angular momentum in the p1×p2 direction, and start
spinning in the plane spanned by the vectors p1 and p2.

We performed Monte Carlo simulations for a thermal
molecular ensemble excited by the above double-pulse
sequence for various orientations of the plane of induced
spinning with respect to the deflecting field. Since the
needed laser pulses are much shorter than the rotational
time-scale, we treated them as δ-kicks. The change of
the angular momentum of individual molecules due to a
pulse kick is given by [18]

∆J = 2~P (p · r) r× [p− (p · r) r] , (11)

where p is the unit polarization vector of the laser
pulse and r is unit vector along the molecular axis
at the moment of the pulse. The parameter P =
∆α/(4~)

∫

E2(t)dt is an effective kick-strength, charac-
terizing the laser-induced angular momentum influx (in
the units of ~). After calculating the final value of J for
every molecule after the two pulses, we obtained A from
Eq. 4 by using sin2 η = 1 − (J · d)2/J2, where d is the
unit vector along the deflecting field.

The resulting distribution of A is shown in Fig. 3 for
various values of the angle η. The parameters of the pre-
sented simulation are P1 = 10, P2 = 50 and JT = 5.
Here JT =

√

kBT/(2B) is a typical “thermal” value
of J (for JT ≥ 1), where T is the temperature, kB
is Boltzmann’s constant, and B is the rotational con-
stant of the molecules. In the case of CS2 molecules,
the values of P = 10, 50 correspond to the excitation
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by 0.5 ps (FWHM) laser pulses with the maximal inten-
sity of 1.1× 1012 W/cm2 and 5.6× 1012 W/cm2, respec-
tively, and JT = 5 corresponds to T = 3.9 K. Figure 3
clearly shows that the thermal distribution of the deflec-
tion angles (see Eq. 5) is drastically modified by the laser-
induced spinning. Distinguishable condensed deflection
peaks with a tunable position are indeed formed, as pre-
dicted above. The distribution elevation near A = 0.5 is
due to an integrable singularity (similar to the one de-
scribed by Eq. 5), which is caused by a residual fraction of
molecules with η close to π/2 because of the non-perfect
confinement of the molecules to the rotation plane. To
show the distribution of A unobstructed by this singu-
larity, we used a coarse-grained bin averaging in Fig. 3.

Our results demonstrate that the predicted effect
is clearly observable using a rather basic double-pulse
scheme for spinning molecules [2–4], which was demon-
strated in a recent experiment [4]. An even better
outcome can be achieved by the optical centrifuge ap-
proach [1] which has the potential for generating clean
|J, J〉 states. A recent proposal [5] for generating the co-
herent superposition 1/

√
2(|J, J〉 + |J,−J〉) by the help

of properly shaped perpendicularly polarized laser fields
is instrumental for our purposes as well. We hope that
the results presented in this Letter will encourage further
development of those schemes.

Summarizing, we have shown that a high degree of con-
trol over the molecular motion in inhomogeneous fields
is available by preparing the molecules in highly spin-
ning states with a tunable tilt of the plane of rota-
tion. Controlling deflection direction, and narrowing
the distribution of the deflection angle is important for
nanofabrication schemes based on the molecular optics
approach [11]. Moreover, molecular deflection by non-
resonant optical dipole force is considered as a promis-
ing route to the separation of molecular mixtures (for a
recent review, see [19]). Isotope-selective spinning was
already demonstrated in the optical centrifuge [1], and
it may be integrated with the present technique for a
non-destructive separation process. Furthermore, other
existing laser methods for selective alignment of molecu-
lar isotopes [20], or nuclear spin isomers [21, 22], can be
extended to selective spinning, and used for separation
purposes as well. The Frisbee-like game with spinning
molecules may open new ways for many applications in-
volving molecular focusing, guiding, and trapping by op-
tical and static fields.
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F. Filsinger, J. Küpper, and G. Meijer, Phys. Rev. Lett.,
102, 023001 (2009); F. Filsinger, J. Küpper, G. Meijer,
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