
ar
X

iv
:1

01
0.

09
40

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  5
 O

ct
 2

01
0

Dynamical cooling of a single-reservoir open quantum system via optimal control
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Based on an exact description of open quantum systems in terms of stochastic Liouville-von
Neumann equations optimal control is investigated without rotating-wave or Markovian approxi-
mations. Within this scheme we generalize Krotov’s iterative algorithm, preserving its monotonic
convergence. This formalism is applied to the problem of controlling a particle in a harmonic po-
tential whose thermal bath is characterized by an ohmic spectrum. Interestingly, optimal control
can modify the quantum dissipative dynamics to the point where its entropy change turns negative.
We provide an example where translational motion is cooled without any involvement of internal
degrees of freedom.

PACS numbers: 02.30.Yy, 03.67.-a, 05.70.Ln

Introduction. The control of quantum dynamics or the
accurate preparation of a prescribed quantum state by a
tailored time-dependent field is a task of key importance
in quantum physics and related disciplines. For instance,
the creation of ultrashort light pulses of well-defined
shape has led to the optical control of ultrafast processes
in quantum chemistry [1]. In the last decade, for the
successful realization of schemes for quantum informa-
tion processing (QIP), optimal control theory (OCT) has
become a key ingredient in strategies to tame the destruc-
tive effect of decoherence and other imperfections or to
speed up operations. Accordingly, OCT has been used to
improve the performance of simple quantum gates [2–6]
or to directly construct more complex operations [7]. In
several implementations it is also necessary to transport
computational states between different operational sites.
This usually requires the optimal control not only of the
quantum bits themselves but also of auxiliary degrees of
freedom, typically translational motion.

An important issue for all types of implementations
in QIP is the interaction of the relevant quantum sys-
tem with a fluctuating environment. Atomic systems
such as a neutral atom or ion in an electromagnetic trap,
are exposed to fluctuations of the (comparatively hot)
trapping chip surface [8]. In solid state devices diffus-
ing charges and electromagnetic fluctuations affect the
fidelity quite substantially [9]. Despite the ubiquitous
nature of such interactions, however, optimal control
schemes have treated them mostly by heuristic or approx-
imate methods so far. A simple strategy has been fol-
lowed in [10], where environmental influences were taken
into account by assuming an initial thermal state for
translational motion while neglecting the effect of the
environment completely during its dynamics. Fully dy-
namical approaches based on standard Markovian Mas-
ter equations, however, become inconsistent for strong
control fields unless additional field-dependent memory
terms in the dissipator are introduced [11, 12]. The ro-
tating wave approximation (RWA), usually invoked to

ensure complete positivity in quantum master equations,
is also known to be unreliable in driven systems [11]. This
observation raises questions on the fundamental proper-
ties of driven quantum dynamics since the current under-
standing of quantum statistical aspects such as entropy
production seems to depend largely on the RWA [13].

In this Letter we describe quantum dissipation through
non-Markovian stochastic Liouville-von Neumann (SLN)
equations [14] instead of Master equations. This repre-
sentation of quantum dissipation, closely related to the
non-Markovian Schrödinger equation of Diósi et al. [15],
is completely equivalent to influence functionals in the
path integral approach [16]. It is independent of the free
dynamics of the undamped system and, in particular, re-
mains unchanged when external driving is introduced.

The non-Markovian nature of the environment, how-
ever, does not lead to explicit time-retarded self-
interactions, but it appears only through correlations of
complex-valued noise forces. Its use has been demon-
strated for both discrete quantum systems [14, 17] and
problems involving translational motion [18]. The re-
sulting equations of motion are formally local in time, as
required by most standard optimal control algorithms.
SLN equations thus provide the basis for an approach
to optimal control which is both realistic and practical
even in the presence of low-temperature, non-Markovian
quantum noise. We outline the general mathematical and
algorithmic structure and address as a specific example
the control of a harmonic degree of freedom such as the
motional state of an atom or ion under electromagnetic
confinement or the low energy dynamics of the phase in
a Josephson junction. Moreover, the entropy production
induced by the control field is analyzed and shown to
deviate strongly from predictions based on the standard
RWA-Lindblad master equation.

Open-system dynamics and control algorithm. We con-
sider a quantum system characterized by a Hamiltonian
Ĥs representing a potential model, augmented by a term
Ĥc(t) describing the influence of time-dependent control
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fields. Additionally, we assume a dissipative environ-
ment, which can be characterized by the power spectrum
of its fluctuations. The SLN equation for the controlled
dissipative dynamics

˙̺̂
ξ,ν(t) = − i

~
[Ĥs, ˆ̺ξ,ν(t)]−

i

~
[Ĥc, ˆ̺ξ,ν(t)]

+
i

~
ξ(t)[q̂, ˆ̺ξ,ν(t)] +

i

2
ν(t){q̂, ˆ̺ξ,ν} (1)

contains the Gaussian, complex-valued stochastic vari-
ables ξ(t) and ν(t) with the properties (i) the autocorre-
lation of ξ matches the quantum noise of the reservoir,
(ii) the cross-correlations of ξ and ν match the dynamical
response of the environment and (iii) the autocorrelation
function 〈ν(t)ν(t′)〉 vanishes identically [14].
In the case of an ohmic environment, to be discussed

below, a partial average over ν simplifies Eq. (1) to [19]

˙̺̂
ξ(t) = L̂ ˆ̺ξ(t) := − i

~
[Ĥs, ˆ̺ξ(t)]−

i

~
[Ĥc, ˆ̺ξ(t)]

− i

2~
γ0[q̂, {p̂, ˆ̺ξ(t)}] +

i

~
ξ(t)[q̂, ˆ̺ξ(t)] , (2)

where γ0 is the damping rate of a Brownian particle in the
environment. The physical density matrix is a stochastic
average of the form ˆ̺(t) = E[ ˆ̺ξ(t)].
At the price of introducing an explicit noise variable

ξ(t), Eq. (2) represents the exact non-Markovian dy-
namics in terms of a stochastic ensemble with time-local

equations of motion. All memory effects are contained
in the temporal correlations of ξ(t). This consideration
of intrinsic non-Markovian features of the reservoir dif-
fers from the approach of Rebentrost et al. [20], where
non-Markovian fluctuations result from the characteris-
tic timescales of a small additional subsystem mediating
energy exchange between the system of interest and a
Markovian environment. Equation (2) becomes Marko-
vian in the high-temperature limit, where it reduces to
the master equation of Caldeira and Leggett [21].
We now generalize the monotonically convergent algo-

rithm of Krotov [22, 23] to optimization objectives de-
fined through averages of the stochastic variable ˆ̺ξ(t).

The objective associated with a final-state observable M̂
has the form of a quantum statistical expectation value
at the end time T , tr{M̂ ˆ̺(T )}. Assuming the control
Hamiltonian Ĥc(t) to be a function of a vector of control
fields u(t) = (u1(t), . . . , uN(t)), the form of the (termi-
nal) objective functional

F[u(t), { ˆ̺ξ(t)}] = E[tr{M̂ ˆ̺ξ(T )}] (3)

depends on the control fields only implicitly through the
equation of motion (2).
The objective functional F may be replaced by the

expectation value of an extended functional Lξ which
coincides with F for admissible processes, i.e., pairs
(u(t), { ˆ̺ξ(t)}) which obey the equation of motion (2).
Following Ref. [23], we choose

Lξ[u(t), ˆ̺ξ(t);φξ] := Gξ(ˆ̺ξ(T ))−
∫ T

0

dtRξ(t,u(t), ˆ̺ξ(t))

−φξ(0, ˆ̺ξ(0)), (4)

where φξ(t, ˆ̺ξ(t)) is a real-valued function of the time t,
the noise realization ξ(t), and the state sample ˆ̺ξ(t), and

Gξ(ˆ̺ξ(T )) := tr{M̂ ˆ̺ξ(T )}+ φξ(T, ˆ̺ξ(T )), (5)

Kξ(t,u(t), ˆ̺ξ(t), · ) := tr{ · L̂ ˆ̺ξ(t)}, (6)

Rξ(t,u(t), ˆ̺ξ(t)) := Kξ(t,u(t), ˆ̺ξ(t),
∂

∂ ˆ̺ξ
φξ(t, ˆ̺ξ(t)))

+
∂

∂t
φξ(t, ˆ̺ξ(t)). (7)

For admissible processes, Lξ does not depend on the
choice of φξ, which may be adjusted as the iterative al-
gorithm progresses. The following property of φξ must
be chosen for Krotov’s algorithm: For any admissible
process, Lξ is at a maximum with respect to ˆ̺ξ for any
function u(t). This amounts to the two conditions

Gξ(ˆ̺
(j)
ξ (T )) = max

ˆ̺ξ
{Gξ(ˆ̺ξ(T ))}, (8)

Rξ(t,u
(j)(t), ˆ̺

(j)
ξ (t)) = min

ˆ̺ξ
{Rξ(t,u

(j)(t), ˆ̺ξ(t))}. (9)

Each iteration cycle j proceeds in two steps: First
a time-local update law (a map u

(j)(t) 7→ u
(j+1)(t)) is

chosen which improves the objective for any ensemble of
states { ˆ̺ξ}, including the (yet unknown) updated ensem-
ble. Consistently propagating the states using Eq. (2)
and the updated control then yields a new admissible
process. Finally, the function φξ is adapted to the new
process (u, { ˆ̺ξ}).
For the linear dynamics of Eq. (2), it turns out that

the function φξ(t, { ˆ̺ξ}) appears in the conditions (8) and
(9) only in form of its derivative with respect to the state,
i.e., the co-state Λ̂ξ = ∂φξ/∂ ˆ̺ξ. After promoting Λ̂ξ to
the state of a dynamical variable, the extremal conditions
lead to the co-state equation of motion

˙̂
Λξ(t) = −L̂

†Λ̂ξ(t) = − i

~
[Ĥs, Λ̂ξ(t)]−

i

~
[Ĥc, Λ̂ξ(t)]

− i

2~
γ0{p̂, [q̂, Λ̂ξ(t)]} +

i

~
ξ(t)[q̂, Λ̂ξ(t)] (10)

accompanied by Λ̂ξ(T ) + M̂ = 0 resulting from (8).
Now, following [23] one determines that

u
(j+1)
k (t) = u

(j)
k (t) +

1

λk(t)
E

[

tr

{

Λ̂
(j)
ξ (t)

∂L̂

∂uk

ˆ̺
(j+1)
ξ (t)

}]

(11)
is a suitable update law for k = 1, . . . , N . Here λk(t) may
be adjusted to tune convergence properties. This update
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always reduces the objective, E[Fξ[u
(j+1)(t), ˆ̺

(j+1)
ξ (t)]] ≤

E[Fξ[u
(j)(t), ˆ̺

(j)
ξ (t)]] which can be seen as follows:

E[Lξ[u
(j)(t), ˆ̺

(j)
ξ (t), φξ]]− E[Lξ[u

(j+1)(t), ˆ̺
(j+1)
ξ (t), φξ ]]

= ∆1 +∆2 +∆3, (12)

where

∆k =

∫ T

0

dtE[R(t,u(j+k−1)(t), ˆ̺
(j+1)
ξ (t))

−R(t,u(j)(t), ˆ̺
(j+k−1)
ξ (t))] (13)

for k = 1, 2 and ∆3 = E[G(ˆ̺
(j)
ξ (T ))−G(ˆ̺

(j+1)
ξ (T ))]. Now

∆1 ≥ 0 and ∆3 ≥ 0 follow from Eq. (9) and Eq. (8),
respectively, whereas ∆2 ≥ 0 is a property of the update
law [23]. We have thus demonstrated monotonicity for
the modified algorithm, which ensures convergence for an
arbitrary initial guess.
Application. As a generic model we consider a har-

monic oscillator, i.e., Ĥs =
p̂2

2m
+ mω2

2 q̂2, which is subject
to an additional quadratic potential with two indepen-

dent control fields, Ĥc(t) = −u1(t)q̂ +
u2(t)
2 q̂2. This sit-

uation is not only a model for typical realizations as e.g.
trapped atoms or ions or low energy dynamics of Joseph-
son junctions, but also a non-trivial application of the
non-Markovian control formalism due to the quadratic
coupling of the system coordinate to the field u2(t). We
emphasize that Eq. (2) is completely general and not
restricted to quadratic potentials.
As initial states we consider Gaussian wavepackets,

conveniently parameterized by the first and second cu-
mulants (means and variances) 〈q̂〉c, 〈p̂〉c, 〈q̂2〉c, 〈p̂2〉c and
by 〈12 (q̂p̂+ p̂q̂)〉c. Under the equation of motion (2), the
samples ˆ̺ξ remain Gaussian, which allows us to re-phrase
the equation of motion (2) as a system of five ordinary
differential equations. A similar consideration holds for
the co-state dynamics (10) if a maximal overlap with a
Gaussian target state is chosen as optimization objective,
i.e., M̂ = 1 − Â, where Â = |α〉〈α| projects onto a co-
herent state. We thus obtain closed equations of motion
for the first two cumulants for the propagation of both
the state ˆ̺ξ(t) and the co-state Λ̂ξ(t). While the effect
of the linear control u1(t) alone is obviously given by lin-
ear response theory, the dynamical squeezing through a
time-dependent u2(t) leads to non-trivial dynamics, as
does the combined action of both controls. We have ex-
plored these effects numerically, computing the expecta-
tion values in Eq. (11) explicitly through a large number
of samples (typically 104). This has the advantage of
being justified from first principles, without resorting to
approximations of the dynamics. It reconciles the intrin-
sically non-Markovian character [16] of quantum dissi-
pation with the requirement of time-local equations of
motion for both dynamical state and co-state in optimal
control theory.
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Figure 1: (color online) Control of an open quantum sys-
tem with linear and parametric driving: Remaining error
1 − tr{Â ˆ̺(T )} for different damping rates γ0 and different
inverse thermal energies of the reservoir β.

In the following, we use natural units (~ω for energies,
√

~/(mω) for lengths,
√
~mω for momenta) and choose a

minimal-uncertainty wavepacket centered around q = 1
and p = 0 as both initial and target state. Values of the
temperature and the damping constant are chosen in the
range typical of superconducting solid-state devices [9].
The propagation time T = 20 is about the same order of
magnitude as the relaxation time in the examples to be
discussed.
Figure 1 shows how optimal control drives the dissipa-

tive dynamics towards the objective functional for vary-
ing environmental parameters. For thermal energies at
or above the level spacing, the optimized final state is
still visibly distinct from the target state even for fairly
weak damping. At low temperatures, this disparity vir-
tually vanishes, as evidenced by a numerical value of
1 − tr{Â ˆ̺(T )} ≈ 0.0023 for the shortest column. The
algorithmic property of monotonic convergence is con-
firmed by our numerical results.
Quantum dissipation invariably creates mixed states

in the subsystem of interest. But can optimal control
prevent an increase of entropy? To investigate this ques-
tion, we choose the oscillator ground state as target and
prepare both system and environment as thermal states
with equal inverse temperature β = 1. Since the effect
of the force u1(t) amounts to a unitary transform of the
final state, in the following we consider only the control
field u2(t). With the expression

S(ˆ̺) = f
(

√

〈q2〉c〈p2〉c − 〈pq + qp〉2c/4
)

, (14)

f(x) =
(

x+ 1
2

)

log
(

x+ 1
2

)

−
(

x− 1
2

)

log
(

x− 1
2

)

for the von Neumann entropy of a Gaussian state [24], we
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Figure 2: (color online) An open quantum system initially
equilibrated with its surroundings loses entropy under an op-
timized control field (solid). This result is not reproduced
within an RWA approximation (dashed).

obtain the remarkable result that a time-dependent con-
trol field can modify dissipative dynamics to the point
where its entropy change turns negative (Fig. 2). Like-
wise, the subsystem energy of the final state decreases
below its original thermal value. This strongly indicates
the interpretation of our result as a dynamical cooling

effect (with the caveat that the final state may be not
considered a thermal state with a uniquely defined tem-
perature). The simplistic approach of adding Hc(t) to
the system Hamiltonian after performing the RWA fails
in this scenario (Fig. 2, dashed lines). Moreover, the
described phenomenon intimately depends on the inter-
play of non-Markovian fluctuations and control field and
cannot be reproduced within a RWA-Markov-type of ap-
proximation. In contrast to recent proposals for quantum
refrigerators [25, 26], which rely on intricate band or level
structures, we have chosen a model with a very basic
structure. The cooling effect found here seems to arise
from general properties of driven dynamics, not from spe-
cific features of the system. We also note that no internal
degree of freedom is needed for the effect to occur.

Conclusions. Based on the dissipative dynamics in
terms of exact SLN equations, we have introduced a ver-
sion of Krotov’s optimal control algorithm adapted to
non-Markovian environmental fluctuations. First imple-
mentations on a harmonic degree of freedom subject to
two control fields illustrate the performance of the al-
gorithm. Efficient computations are feasible for envi-
ronmental couplings from small values up to damping
corresponding to a quality factor as low as Q ≈ 10.
This allows applications to solid state devices such as
superconducting circuits with Josephson junctions and
condensed-matter phenomena such as reactive dynamics
of small molecules in a solvent or on a surface. Extensions
to systems with anharmonic potentials and more com-
plex spectral bath densities are currently investigated,
relevant e.g. to the emerging field of ultracold quantum
chemistry. Optimal control of a dissipative quantum sys-

tem can extract entropy from a system initially at the
same temperature as its environment. This cooling ef-
fect in a generic system without special structural fea-
tures should be of importance for mesoscopic quantum
refrigerators.
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