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0 SPARSE PAVING MATROIDS, BASIS-EXCHANGE PROPERTIES, AND

CYCLIC FLATS

JOSEPH E. BONIN

ABSTRACT. We provide evidence for five long-standing, basis-exchange conjectures for
matroids by proving them for the enormous class of sparse paving matroids. We also
explore the role that these matroids may play in the following problem: as a function of the
size of the ground set, what is the greatest number of cyclic flats that a matroid can have?

1. INTRODUCTION

A matroid is paving if the closure of each nonspanning circuit is a hyperplane; it is
sparse pavingif each nonspanning circuit is a hyperplane. Thus, a matroidM of rankr is
sparse paving if and only if eachr-subset ofE(M) is either a basis or a circuit-hyperplane.
It follows that the class of sparse paving matroids is dual-closed. It is easy to show that
this class is also minor-closed. Sparse paving matroids canalso be characterized as the
matroidsM for which bothM and its dual,M∗, are paving.

While paving and sparse paving matroids have received increasing attention recently
(see, e.g., [12, 17, 21, 22, 23]), they have long played important roles in matroid theory.
For instance, D. Knuth [20] constructed at least

2(
n

⌊n/2⌋)/2n

n!

nonisomorphic sparse paving matroids of rank⌊n/2⌋ onn elements; with the upper bound
by M. Piff [26], it follows that the numbergn of nonisomorphic simple matroids onn
elements satisfies

(1.1) n− 3

2
log2 n+O(log2 log2 n) ≤ log2 log2 gn ≤ n− log2 n+O(log2 log2 n),

with sparse paving matroids accounting for the lower bound.Taking this further, in [21],
D. Mayhew, M. Newman, D. Welsh, and G. Whittle have conjectured that, asymptotically,
almost all matroids are sparse paving.

The five basis-exchange conjectures treated in this paper, all of which have been open
for decades and have been proven for only a few classes of matroids, are part of the circle
of ideas that revolve around the well-known symmetric basis-exchange property: for any
basesB1, B2 of a matroidM , if b1 ∈ B1 − B2, then, for someb2 ∈ B2 − B1, both
(B1 − b1) ∪ b2 and(B2 − b2) ∪ b1 are also bases ofM .

The first conjecture concerns thebasis pair graph, G(M), of a matroidM , which is
defined as follows. The vertices ofG(M) are the ordered triples(A1, A2, A3) of subsets
of E(M) whereA1 andA2 are disjoint bases ofM andA3 isE(M)− (A1 ∪A2). (Thus,
the inequality|E(M)| ≥ 2 r(M) must hold in order forG(M) to have any vertices.) Two
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vertices, sayA = (A1, A2, A3) andB = (B1, B2, B3), of G(M) are adjacent ifB can be
obtained fromA by switching some pair of elements in two different sets inA, that is, if

|A1 −B1|+ |A2 −B2|+ |A3 −B3| = 2.

If E(M) is the disjoint union of two bases ofM , thenG(M) is isomorphic to the basis-
cobasis graph studied by R. Cordovil and M. Moreira [8]. The following conjecture was
posed by M. Farber [9], who proved it for transversal matroids. (In [10], M. Farber,
B. Richter and H. Shank proved it for graphic and cographic matroids.)

Conjecture 1.1. The basis pair graph of any matroid is connected.

The second conjecture involves a family of graphs that we canassociate with a matroid.
Fix an integerk ≥ 2. Let M be a matroid of rankr and letS be a multiset of sizekr
with elements inE(M). Define the graphGM (S) as follows: the vertices ofGM (S) are
all multisets ofk bases ofM whose multiset union isS; two vertices are adjacent if one
can be obtained from the other by one symmetric exchange among one pair of bases in
one of the vertices. Thus, verticesA = {A1, A2, . . . , Ak} andB = {B1, B2, . . . , Bk} are
adjacent if, for some basesBi, Bj ∈ B and elementsbi ∈ Bi −Bj andbj ∈ Bj −Bi, we
obtainA from B by replacingBi by (Bi − bi) ∪ bj and replacingBj by (Bj − bj) ∪ bi.
(This graph may be empty.) The conjecture below is due to N. White [28, Conjecture 12].

Conjecture 1.2. For any matroidM and multisetS of sizek r(M) with elements inE(M)
and withk ≥ 2, the graphGM (S) is connected.

Conjecture 1.2 is sometimes cast in terms of toric ideals. A routine argument shows that
the conjecture holds forM if and only if it holds forM∗. It has been shown for graphic (and
so for cographic) matroids by J. Blasiak [1] and for rank-3 (and so for nullity-3) matroids
by K. Kashiwabara [19]. J. Herzog and T. Hibi [14] have shown that Conjecture 1.2 is
equivalent to its counterpart for discrete polymatroids. J. Schweig [27] has proven the
counterpart of the conjecture for certain discrete polymatroids.

While Conjecture 1.2 has received most attention, [28, Conjecture 12] has three parts,
of which the next conjecture is the strongest. Consider the graphG′

M (S) in which k-
tuples of bases replace multisets of bases. Thus, its vertices are allk-tuples of bases ofM
whose multiset union isS; verticesA = (A1, A2, . . . , Ak) andB = (B1, B2, . . . , Bk) are
adjacent if, for some integersi andj with 1 ≤ i < j ≤ k and somebi ∈ Bi − Bj and
bj ∈ Bj − Bi, we obtainA from B by replacingBi by (Bi − bi) ∪ bj and replacingBj

by (Bj − bj) ∪ bi.

Conjecture 1.3. For any matroidM and multisetS of sizek r(M) with elements inE(M)
and withk ≥ 2, the graphG′

M (S) is connected.

We show that the conclusion of Conjecture 1.3 holds for a matroidM if Conjecture 1.2
holds forM and Conjecture 1.1 holds for all of its minors. It follows that Conjecture 1.3
holds for all sparse paving matroids.

The fourth conjecture was made by Y. Kajitani, S. Ueno, and H.Miyano [18]. A matroid
M is cyclically orderableif there is a cyclic permutation(a1, a2, . . . , an) of E(M) in
which each set ofr(M) cyclically-consecutive elements is a basis ofM .

Conjecture 1.4. A matroidM is cyclically orderable if and only if, for all nonempty sub-
setsA ofE(M),

(1.2) r(M) |A| ≤ r(A) |E(M)|.
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A counting argument shows that inequality (1.2) holds ifM is cyclically orderable.
Recent progress on this conjecture was made by J. van den Heuvel and S. Thomassé [15]

The fifth conjecture was first raised as a problem by H. Gabow [11] and has been pur-
sued in [8, 15, 18]. To match our work below, we state the conjecture in the case of disjoint
bases; it is easy to show that this implies its counterpart for arbitrary bases.

Conjecture 1.5. If B1 andB2 are disjoint bases of a rank-r matroidM , then some cycle
(b1, b2, . . . , br, br+1, . . . , b2r) hasB1 = {b1, b2, . . . , br} andB2 = {br+1, br+2, . . . , b2r},
and has each set ofr cyclically-consecutive elements being a basis ofM .

It is not hard to show that if this conjecture holds forM , then it holds forM∗ and for
all minors ofM . H. Gabow [11] noted that the conjecture holds for transversal matroids.
It has also been proven for graphic matroids [8, 18]. A. de Mier [24] observed that this
conjecture holds for strongly base-orderable matroids. Recall that a matroid isstrongly
base-orderableif for each pair of basesB1 andB2 of M , there is a bijectionφ : B1 → B2

such that for every subsetX ⊆ B1, both (B1 − X) ∪ φ(X) and (B2 − φ(X)) ∪ X
are bases. IfM is strongly base-orderable, then listing the elements ofB1 in any order
followed by their images underφ, in the corresponding order, gives the required cycle.
The class of strongly base-orderable matroids is both minor-closed and dual-closed, and it
strictly contains the class of all gammoids (which include transversal matroids).

In Section 2, we prove Conjectures 1.1–1.5 for sparse pavingmatroids. Section 3 treats
another aspect of these matroids as we study the greatest number of cyclic flats in any
matroid onn elements. We give an upper bound on this number and note that alower
bound follows from work of R. Graham and N. Sloane [13] which,in a different setting,
essentially constructs sparse paving matroids. The gap between these bounds is similar to
that in inequality (1.1). We provide the relevant background on cyclic flats in that section.

Our notation follows J. Oxley [25]. The symmetric difference,(X − Y ) ∪ (Y −X), of
two setsX andY is denoted byX△Y . We let[n] denote the set{1, 2, . . . , n}.

2. PROOFS OFCONJECTURES1.1–1.5IN THE CASE OFSPARSEPAVING MATROIDS

We will use the lemmas below. The first follows easily from thedefinition of sparse
paving.

Lemma 2.1. LetM be a sparse paving matroid of rankr. LetH andB be twor-subsets
ofE(M) with |H△B| = 2. If H is a circuit-hyperplane ofM , thenB is a basis.

Although we will not use it, we note that the following strengthening of Lemma 2.1 is
easy to prove: a matroidM of rankr is sparse paving if and only if wheneverH andB
are twor-subsets ofE(M) with |H△B| = 2 andH is not a basis, thenB is a basis. (We
remark that the analogous condition on discrete polymatroids winds up being too restrictive
to be of interest.)

Lemma 2.2. LetB andB′ be distinct bases of a sparse paving matroidM . For a ∈ B−B′

andX ⊆ B′ − B, there are at least|X | − 2 elementsx ∈ X for which both(B − a) ∪ x
and(B′ − x) ∪ a are bases ofM .

Proof. The lemma follows since, by Lemma 2.1, at most one set(B− a)∪ x with x ∈ X ,
and at most one set(B′ − x′) ∪ a with x′ ∈ X , is a circuit-hyperplane. �

We now turn to Conjecture 1.1.

Theorem 2.3. Conjecture 1.1 holds for sparse paving matroids.
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Proof. We first prove the result whenE(M) is the disjoint union of two bases; we will
then reduce the general case to this one. In this case, vertices have the form(B1, B2, ∅),
which we simplify to(B1, B2) in the next two paragraphs. We must show that for each pair
(A1, A2) and(B1, B2) of vertices inG(M) with |A1△B1| ≥ 4, there is a path between
them. For this, it suffices to show that there is a path from(B1, B2) to a vertex(B′

1, B
′
2)

with |A1△B′
1| < |A1△B1|.

If |B1 − A1| ≥ 3, then fixx ∈ B1 − A1 and setX = A1 −B1. We have|X | ≥ 3 and
X ⊆ B2, so, by Lemma 2.2, the pair

(

(B1 − x) ∪ y, (B2 − y) ∪ x
)

is a vertex ofG(M)

for somey ∈ X . Also, |A1△
(

(B1 − x) ∪ y
)

| < |A1△B1|, as needed.
In the remaining case,|B1−A1| = 2, letB1−A1 = {b1, b2} andA1−B1 = {a1, a2}.

Thus,a1, a2 ∈ B2. If any of the following four symmetric exchanges yields only bases, it
would provide the desired vertex(B′

1, B
′
2) adjacent to(B1, B2):

(a) (B1 − b1) ∪ a1 and(B2 − a1) ∪ b1,
(b) (B1 − b1) ∪ a2 and(B2 − a2) ∪ b1,
(c) (B1 − b2) ∪ a1 and(B2 − a1) ∪ b2,
(d) (B1 − b2) ∪ a2 and(B2 − a2) ∪ b2.

Thus, we may assume that each pair contains a circuit-hyperplane. By symmetry, we may
assume that(B1− b1)∪a1 is a circuit-hyperplane; then(B1− b1)∪a2 and(B1− b2)∪a1
are bases by Lemma 2.1, so(B2 − a2) ∪ b1 and(B2 − a1) ∪ b2 are circuit-hyperplanes;
thus,(B2 − a2) ∪ b2 is a basis by Lemma 2.1, so(B1 − b2) ∪ a2 is a circuit-hyperplane.
For all four sets just identified to be circuit-hyperplanes,we must haver(M) ≥ 3, so there
is an elementx in B1 ∩ A1. By comparison with the four known circuit-hyperplanes, it
follows that each set in the following symmetric exchanges is a basis:

(e) (B1 − x) ∪ a1 and(B2 − a1) ∪ x,
(f) B′

1 = (B1 − {x, b2}) ∪ {a1, a2} andB′
2 = (B2 − {a1, a2}) ∪ {x, b2}.

Since(B′
1, B

′
2) is adjacent to(A1, A2), the needed path from(B1, B2) to (A1, A2) exists.

In the general case, for two verticesA = (A1, A2, A3) and(B1, B2, B3) of G(M), we
will show that there is a path inG(M) from A to a vertex of the form(C1, C2, B3); the
theorem then follows by applying the case just treated to thebasis pair graph ofM\B3.
(Recall that the third set in these triples need not be a basis.)

Assume|A3△B3| ≥ 4. By symmetry, we may assume|A1 ∩ B3| ≥ 1; fix some
a1 ∈ A1 ∩B3. SinceM is sparse paving, the hyperplane cl(A1 − a1) contains at most one
element inA3−B3, soA′

1 = (A1−a1)∪a3 is a basis for somea3 ∈ A3−B3. The vertex
(A′

1, A2, A
′
3), whereA′

3 = (A3−a3)∪a1, is adjacent toA and has|A′
3△B3| < |A3△B3|.

By iterating the argument above, it now suffices to treat the case|A3△B3| = 2. Let
A3 − B3 = {a3} andB3 − A3 = {b3}. We may assumeb3 ∈ A1. If (A1 − b3) ∪ a3 is
a basis ofM , then the claim holds, so assume instead that this set is a circuit-hyperplane.
By symmetrically exchanging any elementa1 ∈ A1 − b3 with some elementa2 ∈ A2, we
get a vertex((A1 − a1) ∪ a2, (A2 − a2) ∪ a1, A3) that is adjacent toA and in which, by
Lemma 2.1, we can exchangeb3 in (A1 − a1) ∪ a2 with a3 in A3, which completes the
proof of the claim and so of the theorem. �

We now turn to Conjecture 1.2.

Theorem 2.4. Conjecture 1.2 holds for sparse paving matroids.

Proof. LetM be a sparse paving matroid. We prove thatGM (S) is connected by induction
on k, where|S| = k r(M). The base casek = 1 is trivial: GM (S) is connected since it
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has at most one vertex. Fork ≥ 2, we claim that for any two vertices

A = {A1, A2, . . . , Ak} and B = {B1, B2, . . . , Bk}
of GM (S), there are (possibly trivial) paths fromA to some vertex{A′

1, A
′
2, . . . , A

′
k} and

from B to some vertex{B′
1, B

′
2, . . . , B

′
k} with A′

1 = B′
1. Proving this claim gives the

result by induction since having a path fromA toB in GM (S) follows from having a path
from{A′

2, A
′
3, . . . , A

′
k} to {B′

2, B
′
3, . . . , B

′
k} in GM (S−A′

1), whereS−A′
1 is the multiset

difference. List the sets inA andB so that|A1△B1| ≤ |Ah△Bj| for all h, j ∈ [k]. Set
|A1△B1| = 2i. To prove the claim, it suffices to show that ifi > 0, then

(*) there is a path fromB to a vertex{B′′
1 , B

′′
2 , . . . , B

′′
k} with |A1△B′′

1 | < 2i.

SetA1 − B1 = {a1, a2, . . . , ai} andB1 − A1 = {b1, b2, . . . , bi}. By symmetry, we
may assume that the sum of the multiplicities of the elementsin A1 −B1 in S is at least as
large as the corresponding sum forB1 − A1. It follows that some basis inB, sayB2, has
more elements fromA1 −B1 than fromB1 − A1. We consider several options forB2.

For the casei ≥ 3, first assumeB2 ∩ (B1 −A1) = ∅. We may assumea1 ∈ B2. Apply
Lemma 2.2 withx = a1 andX = B1 − A1 (so |X | ≥ 3): for somebh ∈ B1 − A1, both
(B1 − bh) ∪ a1 and(B2 − a1) ∪ bh are bases, so statement (*) follows.

Now, along withi ≥ 3, assume|B2∩ (A1−B1)| ≥ 3. LetX = B2∩ (A1−B1). Since
B2 has more elements fromA1 − B1 than fromB1 − A1, some element inB1 −A1, say
b1, is not inB2. Apply Lemma 2.2 toB1 andB2 with x = b1 andX : for someah ∈ X ,
both(B1 − b1) ∪ ah and(B2 − ah) ∪ b1 are bases. Statement (*) now follows.

We now address the case withB2 ∩ (A1△B1) = {a1, a2, b3}, thereby completing the
argument fori ≥ 3. If we can symmetrically exchange one ofa1, a2 in B2 for one ofb1, b2
in B1 to get bases, then statement (*) holds. Assume that none of these four symmetric
exchanges yields only bases. An argument like that in the third paragraph of the proof of
Theorem 2.3 shows that we may assume that

(B1 − b1) ∪ a1, (B2 − a2) ∪ b1, (B2 − a1) ∪ b2, and (B1 − b2) ∪ a2

are circuit-hyperplanes. In order to have|A1△B1| ≤ |A1△B2| given thatB2 ∩ (A1△B1)
is {a1, a2, b3}, there must be an element, sayy, in B2 − (A1 ∪B1). From Lemma 2.1 and
the circuit-hyperplanes above, we have that(B1 − b1) ∪ y and(B2 − y) ∪ b1 are bases, as
are(B1 − {b1, b2}) ∪ {y, a1} and(B2 − {y, a1}) ∪ {b1, b2}. Statement (*) now follows,
which completes the argument fori ≥ 3.

Now assumei = 2. By symmetry, there are two cases:B2 ∩ {b1, b2} is either∅ or
{b1}. First assumeB2 ∩ {b1, b2} = ∅. We may assumea1 ∈ B2. If a1 in B2 can be
symmetrically exchanged with eitherb1 or b2 in B1 to yield two bases, then statement (*)
holds, so assume this fails. By symmetry,H1 = (B1 − b1)∪ a1 andH2 = (B2 − a1)∪ b2
can be assumed to be circuit-hyperplanes. Since|A1△B1| ≤ |A1△B2|, there are least two
elements, sayz2 andz3, in B2−A1. By Lemma 2.1, either(B2−z2)∪b1 or (B2−z3)∪b1
is a basis; assume the former is. Comparison withH1 shows that(B1 − b1) ∪ z2 and
(B1 − {b1, b2}) ∪ {z2, a1} are bases; similarly,(B2 − {z2, a1}) ∪ {b1, b2} is a basis by
comparison withH2. Statement (*) now follows.

We now address the case withB2 ∩ {b1, b2} = {b1}, thus completing the argument
for i = 2. Note thatB2 must also containa1 anda2. Statement (*) holds ifb2 in B1

can be symmetrically exchanged with eithera1 or a2 in B2 to yield two bases. If neither
exchange yields only bases, then, by symmetry, we may assumethatH1 = (B1 − b2)∪ a1
andH2 = (B2 − a2) ∪ b2 are circuit-hyperplanes. At least two elements inA1 ∩ B1, say
x3 andx4, are not inB2 since|A1△B1| ≤ |A1△B2|. At least one of(B2 − a1) ∪ x3 and
(B2− a1)∪x4 is a basis by Lemma 2.1; assume the first is. Now(B1−x3)∪a1 is a basis
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by comparison withH1. The sets(B1−{x3, b2})∪{a1, a2} and(B2−{a1, a2})∪{x3, b2}
are also bases by comparison withH1 andH2, respectively. It follows that statement (*)
holds. This completes the argument fori = 2.

Finally, assumei = 1, soA1 −B1 = {a1} andB1 −A1 = {b1}. Thus,B2 containsa1
and notb1. LetX = B2 − a1. If X ∪ b1 is a basis (as it must be ifk is 2), then exchanging
a1 andb1 in B2 andB1 shows that statement (*) holds. Thus, assumek ≥ 3 and

(A) X ∪ b1 is a circuit-hyperplane.

If 3 ≤ h ≤ k and b1 6∈ Bh, and if there is an elementy ∈ X − Bh, then there is a
z ∈ Bh −B2 for which both(Bh − z) ∪ y and(B2 − y) ∪ z are bases; from Lemma 2.1
and statement (A), it follows that we can symmetrically exchangea1 in (B2 − y) ∪ z with
b1 in B1 to get two bases, which yields statement (*). Thus, we may assume

(B) each basisBh contains eitherb1 or all ofX .

If Bh ∩ {a1, b1} = {b1} for someh with 3 ≤ h ≤ k, then the assumption about the
multiplicities ofa1 andb1 implies thatBh′∩{a1, b1} = {a1} for someh′ with 3 ≤ h′ ≤ k.
Symmetrically exchangea1 in Bh′−Bh for somez ∈ Bh−Bh′ to get bases; sinceBh′−a1
isX by statement (B), statement (A) givesz 6= b1. Thus, we may assume

(C) for 3 ≤ h ≤ k, if b1 ∈ Bh, thena1 ∈ Bh.

Assume3 ≤ h ≤ k anda1, b1 ∈ Bh. If |B2△Bh| ≥ 4, then forx ∈ (Bh − b1)− B2, we
can symmetrically exchangex ∈ Bh with somey ∈ B2 (which cannot bea1) to yield two
bases; with statement (A), this allows us to exchangeb1 in B1 with a1 in (B2 − y) ∪ x to
yield statement (*). Thus, we may assume

(D) if a1, b1 ∈ Bh, then|B2△Bh| = 2.

The proof is completed by showing that statements (A)–(D) yield a contradiction. Consider
the multisetsA = {{a1}, A2, A3, . . . , Ak} andB = {{b1}, B2, B3, . . . , Bk} of sets.
Their multiset unions,

⋃

A∈A
A and

⋃

B∈B
B, are equal. Letb1 have multiplicityt+ 1 in

these unions. Statements (B)–(D) imply that the sum of the multiplicities of the elements
in X in the sets inB is |X |(k− t− 1)+ (|X | − 1)t, that is,|X |(k− 1)− t. By statement
(A), X ∪ b1 is not inA , so the sum of the multiplicities of the elements inX in the sets
in A is at most|X |(k − t− 2) + (|X | − 1)(t+ 1), that is,|X |(k − 1)− t− 1, which, as
desired, contradicts the equality

⋃

A∈A
A =

⋃

B∈B
B. �

We now prove a general connection between Conjectures 1.1, 1.2, and 1.3.

Theorem 2.5. Let M be a matroid for which the basis pair graph of each of its minors
is connected. Fork ≥ 2, let S be a multiset of sizek r(M) with elements inE(M). If
GM (S) is connected, then so isG′

M (S).

Proof. SinceGM (S) is connected, to show thatG′
M (S) is connected it suffices to show

that for each vertexA = (A1, A2, . . . , Ak) of G′
M (S) and each permutationσ of [k], there

is a path inG′
M (S) fromA to Aσ = (Aσ(1), Aσ(2), . . . , Aσ(k)). Since every permutation

is a composition of transpositions, we focus on a transposition σ, say permutingi andj
with i < j. The desired result follows if we show that there is a path from A to Aσ in
which all bases but thei-th andj-th are fixed. This follow by noting that the sequence of
symmetric exchanges that gives a path from(Ai−Aj , Aj−Ai, ∅) to (Aj−Ai, Ai−Aj , ∅)
in the basis pair graph of the minorM |(Ai ∪ Aj)/(Ai ∩ Aj) also gives the desired path
fromA toAσ in G′

M (S). �
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Corollary 2.6. For any minor-closed class of matroids for which Conjecture1.1 holds,
Conjectures 1.2 and 1.3 are equivalent. In particular, Conjecture 1.3 holds for all sparse
paving matroids.

For Conjecture 1.4, we start with a lemma. Ak-interval in a cycleσ is a set ofk
cyclically-consecutive elements, that is,{x, σ(x), σ2(x), . . . , σk−1(x)} for somex.

Lemma 2.7. Let M be a rank-r sparse paving matroid onn elements. If2r ≤ n, then,
over all cycles onE(M), the average number ofr-intervals that are circuit-hyperplanes
ofM is less than two.

Proof. Let b(M) and ch(M) be, respectively, the numbers of bases and circuit-hyperplanes
of M . By focusing on circuit-hyperplanes, it follows that the average of interest is

ch(M) r! (n− r)!

(n− 1)!
.

The desired result follows easily from this expression and the assumed inequality,2r ≤ n,
once we show

(2.1) ch(M) ≤ 1

n− r + 1

(

n

r

)

.

Consider the pairs(H,B) consisting of a circuit-hyperplaneH of M and a basisB of M
with |H△B| = 2. The definition of sparse paving gives three properties thatyield the
inequality above: each circuit-hyperplane is inr(n− r) such pairs, each basis is in at most
r such pairs, and b(M) + ch(M) =

(

n
r

)

. �

Theorem 2.8. Conjecture 1.4 holds for sparse paving matroids.

Proof. As noted after Conjecture 1.4, inequality (1.2) holds in every cyclically orderable
matroid. The conjecture is easy to verify for all sparse paving matroids that have rank
or nullity at most two (this includes all disconnected sparse paving matroids, i.e.,U0,n,
Un,n, Un−1,n ⊕ U1,1, U1,n ⊕ U0,1, andU1,2 ⊕ U1,2; this also includes all cases in which
inequality (1.2) fails), so below we assume thatM has rank and nullity at least three.

We may assumeE(M) = [n]. For a cycleσ on E(M), all r(M)-intervals inσ are
bases ofM if and only if their complements, allr(M∗)-intervals inσ, are bases ofM∗,
so, by replacingM by M∗ if needed, we may assume that2r ≤ n wherer = r(M). By
Lemma 2.7, for some cycle, sayσ1 = (1, 2, . . . , n), onE(M), at most one of itsr-intervals
is a circuit-hyperplane. We may assume there is such an interval, say

H1 = {4, 5, . . . , r + 3},
otherwise the desired conclusion holds.

Considerσ2 = (1, 2, 4, 3, 5, . . . , n). (To aid the reader, we underline the entries that
differ from σ1.) Only two of itsr-intervals differ from their counterparts inσ1, namely,
{3, 5, 6, . . . , r + 3}, which is a basis (use Lemma 2.1 withH1), and

H2 = {n− r + 4, . . . , n, 1, 2, 4}.
If H2 is a basis, thenσ2 is the cycle we want. Thus, assume thatH2 is a circuit-hyperplane.

We repeatedly apply this type of argument below. For brevity, for each cycle we list
its r-intervals that differ from their counterparts inσ1 and, when possible, the circuit-
hyperplanes that, with Lemma 2.1, show that these intervalsare bases. For brevity, we
omit ther-interval{i, 5, 6, . . . , r + 3}, with i 6= 4, which is a basis (compare it toH1).
Since the permutationsσi below differ fromσ1 in at most four consecutive places, the
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assumption that the nullity ofM is at least three implies that anr-interval in σi cannot
differ from its counterpart inσ1 at both ends.

Considerσ3 = (1, 3, 4, 2, 5, . . . , n). The relevant intervals are

⋄ {4, 2, 5, 6, . . . , r + 2} (compare toH1),
⋄ {n− r + 4, . . . , n, 1, 3, 4} (compare toH2), and

H3 = {n− r + 3, . . . , n, 1, 3}.
Thus,σ3 has the desired properties unlessH3 is a circuit-hyperplane, so we assume it is.

Considerσ4 = (1, 4, 3, 2, 5, . . . , n). The relevant intervals are

⋄ {n− r + 4, . . . , n, 1, 4, 3} and{n− r + 3, . . . , n, 1, 4} (compare toH3), and

H4 = {3, 2, 5, 6, . . . , r + 2}.
Thus,σ4 has the desired properties unlessH4 is a circuit-hyperplane, so we assume it is.

Considerσ5 = (3, 4, 1, 2, 5, . . . , n). The relevant intervals are

⋄ {1, 2, 5, 6, . . . , r + 2} (compare toH4),
⋄ {n− r + 4, . . . , n, 3, 4, 1} (compare toH2),
⋄ {n− r + 3, . . . , n, 3, 4} and{n− r + 2, . . . , n, 3} (compare toH3), and

H5 = {4, 1, 2, 5, 6, . . . , r + 1}.
Thus,σ5 has the desired properties unlessH5 is a circuit-hyperplane, so we assume it is.

Considerσ6 = (4, 3, 1, 2, 5, . . . , n). The relevant intervals are

⋄ {1, 2, 5, 6, . . . , r + 2} (compare toH4),
⋄ {3, 1, 2, 5, 6, . . . , r + 1} (compare toH5),
⋄ {n− r + 4, . . . , n, 4, 3, 1} (compare toH2),
⋄ {n− r + 3, . . . , n, 4, 3} (compare toH3), and

H6 = {n− r + 2, . . . , n, 4}.
Thus,σ6 has the desired properties unlessH6 is a circuit-hyperplane, so we assume it is.

Finally, considerσ = (2, 3, 4, 1, 5, . . . , n). The relevant intervals are

⋄ {4, 1, 5, 6, . . . , r + 2} (compare toH1),
⋄ {3, 4, 1, 5, 6, . . . , r + 1} (compare toH5),
⋄ {n− r + 4, . . . , n, 2, 3, 4} (compare toH2),
⋄ {n− r + 3, . . . , n, 2, 3} (compare toH3), and
⋄ {n− r + 2, . . . , n, 2} (compare toH6).

Thus,σ has the desired properties, which completes the proof. �

We now turn to Conjecture 1.5.

Theorem 2.9. Conjecture 1.5 holds for sparse paving matroids.

Proof. Consider disjoint basesB = {b1, b2, . . . , br} andC = {c1, c2, . . . , cr} of a sparse
paving matroidM . By the basis-exchange property, we may assume that in the cycle

σ = (b1, b2, . . . , br, c1, c2, . . . , cr),

everyr-interval of the form{bi, bi+1, . . . , br, c1, . . . , ci−1} is a basis; such cycles are said
to start properly. We say that aproblem occurs atci if {ci, ci+1, . . . , cr, b1, . . . , bi−1} is
not a basis; clearly,i > 1. We will show how, if a problem occurs atci, then we can switch
a few elements so that the number of problems decreases and the cycle starts properly;
iterating this procedure produces the desired cycle.

First assume1 < i < r. We will show that one of the following cycles starts properly
and has fewer problems (we underline the few elements that are permuted):

σ1 = (b1, b2, . . . , br, c1, c2, . . . , ci, ci−1, . . . , cr),
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σ2 = (b1, b2, . . . , bi, bi−1, . . . , br, c1, c2, . . . , cr),
σ3 = (b1, b2, . . . , br, c1, c2, . . . , ci+1, ci−1, ci, . . . , cr).

SinceS0 = {ci, ci+1, . . . , cr, b1, . . . , bi−1} is a circuit-hyperplane, Lemma 2.1 implies
that {ci−1, ci+1, . . . , cr, b1, . . . , bi−1} is a basis. Only one otherr-interval in σ1 differs
from its counterpart inσ, namely,S1 = {bi, . . . , br, c1, . . . , ci−2, ci}, so it follows thatσ1

starts properly and has fewer problems thanσ unlessS1 is a circuit-hyperplane. Assume
S1 is a circuit-hyperplane. Only twor-intervals inσ2 differ from their counterparts in
σ; of these, the set{ci, ci+1, . . . , cr, b1, . . . , bi−2, bi} is a basis by Lemma 2.1 (compare
it to S0); if its complement,S2 = {bi−1, bi+1, . . . , br, c1, . . . , ci−1}, is a basis, thenσ2

starts properly and has fewer problems thanσ, so we may assume thatS2 is also a circuit-
hyperplane. Fourr-intervals inσ3 differ from their counterparts inσ, namely,

T1 = {ci−1, ci, ci+2, . . . , cr, b1, . . . , bi−1}, T2 = {ci, ci+2, . . . , cr, b1, . . . , bi},

and their complements. Each of these sets is a basis by Lemma 2.1 since each symmetric
differenceT1△S0, T2△S0, (E(M)− T1)△S1, and(E(M)− T2)△S2 has two elements,
soσ3 starts properly and has fewer problems thanσ.

Now assumei = r, soS0 = {cr, b1, . . . , br−1} is a circuit-hyperplane. Consider

σ1 = (b1, b2, . . . , br, c1, c2, . . . , cr, cr−1),
σ2 = (b1, b2, . . . , br, br−1, c1, c2, . . . , cr),
σ3 = (b1, b2, . . . , br, c1, c2, . . . , cr−1, cr, cr−2).

An argument similar to that above shows thatσ1 starts properly and has fewer problems
thanσ unlessS1 = {br, c1, c2, . . . , cr−2, cr} is a circuit-hyperplane; likewise,σ2 starts
properly and has fewer problems thanσ unlessS2 = {br−1, c1, c2, . . . , cr−1} is a circuit-
hyperplane. Assume bothS1 andS2 are circuit-hyperplanes. Only fourr-intervals inσ3

differ from their counterparts inσ, namely:

T1 = {cr, cr−2, b1, . . . , br−2}, T2 = {cr−2, b1, . . . , br−1},

and their complements. These sets are bases sinceT1△S0, T2△S0, (E(M) − T1)△S2,
and(E(M)− T2)△S1 each have two elements, soσ3 is the desired cycle onB ∪ C. �

3. SPARSEPAVING MATROIDS AND THE NUMBER OF CYCLIC FLATS

A setX in a matroidM is cyclic if M |X has no coloops. Such sets are precisely the
(possibly empty) unions of circuits ofM . Let Z(M) be the set of cyclic flats ofM . As
noted in [7], the cyclic flats, along with their ranks, determine the matroid; indeed, this data
can be seen as distilling the essential geometric information about a matroid (see [2, 3] for
constructions that exploit this perspective). Cyclic flatsplay many roles in matroid theory,
especially in the theory of transversal matroids (see, e.g., [4, 5, 7, 16]).

Let zn bemax{|Z(M)| : |E(M)| = n}, that is,zn is the greatest number of cyclic
flats that any matroid onn elements can have. In [6], the problem of findingzn was
raised. The importance of this problem stems from the fact that cyclic flats and their ranks
generally provide a relatively compact description of a matroid.

To deduce a simple upper bound onzn, let ai be the number ofi-element cyclic flats in
a matroidM with |E(M)| = n. Note that forF ∈ Z(M) ande ∈ F , the closure cl(F −e)
is F ; also, forx ∈ E(M) − F , the restrictionM |(F ∪ x) has a unique coloop, namelyx.
It follows that the setsF andF − e, with F ∈ Z(M) ande ∈ F , all differ, as do the sets
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F andF ∪ x with F ∈ Z(M) andx ∈ E(M)− F . Thus,
n
∑

i=0

ai(i+ 1) ≤ 2n and
n
∑

i=0

ai(n− i+ 1) ≤ 2n.

Adding these inequalities gives(n+ 2) |Z(M)| ≤ 2n+1, sozn ≤ 2n+1/(n+ 2). We next
review a construction that yields sparse paving matroids inwhich the number of cyclic flats
is not so far from this bound.

As mentioned in Section 1, Knuth [20] constructed a family ofat least
(

2(
n

⌊n/2⌋)/2n
)

/n!
nonisomorphic sparse paving matroids of rank⌊n/2⌋ onn elements. To do this, he showed
that there is a sparse paving matroid of rank⌊n/2⌋ onn elements with at least

(

n
⌊n/2⌋

)

/2n

circuit-hyperplanes; the circuit-hyperplane relaxations of this matroid, taking into account
potential isomorphisms, give the family.

While exploring an equivalent problem in the context of coding theory, Graham and
Sloane [13] generalized and strengthened Knuth’s result byshowing that for each rankr
with r ≤ n, there is a sparse paving matroid of rankr onn elements with at least

(

n
r

)

/n
circuit-hyperplanes. Their construction, which we sketch, has the same general flavor as
Knuth’s. Partition the set of all0-1 vectors(a0, a1, . . . , an−1) of lengthn with r ones into
n classes according to the remainder, modulon, of the sum of the positions that contain
ones, i.e.,

∑

i ai i. They noted that any two vectors in the same class differ in atleast four
places. At least one of the classes has at least

(

n
r

)

/n vectors; by interpreting these vectors
as the characteristic functions of the circuit-hyperplanes, this class defines a sparse paving
matroid with at least

(

n
r

)

/n circuit-hyperplanes.
The cyclic flats of a sparse paving matroidM having rank and nullity at least two are

∅, E(M), and its circuit-hyperplanes. A routine induction (treating evenn and oddn
separately) shows

(

n
⌊n/2⌋

)

≥ 2n−1/
√
n (consistent with Stirling’s approximation). Thus,

it follows from Graham and Sloane’s work that some sparse paving matroid onn elements
has at least2n−1/n3/2 + 2 cyclic flats. (For largen, the numbers of cyclic flats in these
examples far surpass those mentioned in [6].) We summarize these remarks in the result
below, which, if we applylog2 to each term in the inequality, bears a strong resemblance
to inequality (1.1).

Theorem 3.1. The maximum number of cyclic flats among matroids onn elements,zn,
satisfies

2n−1

n3/2
+ 2 ≤ zn ≤ 2n+1

n+ 2
.

To close, we note that Graham and Sloane’s examples cannot besubstantially improved
upon within the class of sparse paving matroids. The sparse paving matroids that they
construct have

(

n
⌊n/2⌋

)

/n circuit-hyperplanes. It is routine to check that the right side of
inequality (2.1) above is maximized whenr = ⌊n/2⌋. The ratio of this upper bound to
the number of circuit-hyperplanes in Graham and Sloane’s examples tends to2 asn goes
to infinity. (Also see [13, Remark 2].) This supports the natural suspicion that the lower
bound in Theorem 3.1 is close to optimal.
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