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SPARSE PAVING MATROIDS, BASISEXCHANGE PROPERTIES, AND
CYCLIC FLATS

JOSEPH E. BONIN

ABSTRACT. We provide evidence for five long-standing, basis-excbacmnjectures for
matroids by proving them for the enormous class of sparsengawatroids. We also
explore the role that these matroids may play in the follgnpnoblem: as a function of the
size of the ground set, what is the greatest number of cyaelis that a matroid can have?

1. INTRODUCTION

A matroid is pavingif the closure of each nonspanning circuit is a hyperplahés i
sparse pavingf each nonspanning circuit is a hyperplane. Thus, a mattéidf rankr is
sparse paving if and only if eachsubset of£'( M) is either a basis or a circuit-hyperplane.
It follows that the class of sparse paving matroids is dimded. It is easy to show that
this class is also minor-closed. Sparse paving matroidsatssnbe characterized as the
matroidsM for which bothM and its dual M *, are paving.

While paving and sparse paving matroids have received asarg attention recently
(see, e.g.,[12, 17, 21, 22,123]), they have long played itapdroles in matroid theory.
For instance, D. Knuth [20] constructed at least

9(1n)2))/2n
n!

nonisomorphic sparse paving matroids of rank2| onn elements; with the upper bound
by M. Piff [26], it follows that the numbep,, of nonisomorphic simple matroids an
elements satisfies

3
(11) n-— 3 log, n + O(log, logy n) < log, logy gn < n —logy n + O(log, log, n),

with sparse paving matroids accounting for the lower bouraking this further, in[[211],
D. Mayhew, M. Newman, D. Welsh, and G. Whittle have conjeatithat, asymptotically,
almost all matroids are sparse paving.

The five basis-exchange conjectures treated in this papef,wahich have been open
for decades and have been proven for only a few classes obitigtare part of the circle
of ideas that revolve around the well-known symmetric bagishange property: for any
basesB,, B, of a matroidM, if by € By — Bs, then, for somé, € By — By, both
(B1 — b1) Ubg and(Bs — by) U by are also bases dif.

The first conjecture concerns thasis pair graph G(M), of a matroidM, which is
defined as follows. The vertices 6f(M) are the ordered triplegd;, A, A3) of subsets
of E(M) whereA; andA; are disjoint bases a¥/ and A3 is E(M) — (A; U Az). (Thus,
the inequality E(M)| > 2 (M) must hold in order fof7(M) to have any vertices.) Two
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vertices, sayA = (43, Az, A3) andB = (By, Bs, Bs), of G(M) are adjacent iB can be
obtained fromA by switching some pair of elements in two different setdinthat is, if

|Ay — Bi1| 4 |As — Ba| + |A3 — B3| = 2.

If E(M) is the disjoint union of two bases @/, thenG(M) is isomorphic to the basis-
cobasis graph studied by R. Cordovil and M. Moreira [8]. Tbkofving conjecture was
posed by M. Farber [9], who proved it for transversal masoidIn [10], M. Farber,

B. Richter and H. Shank proved it for graphic and cographitroigs.)

Conjecture1.1. The basis pair graph of any matroid is connected.

The second conjecture involves a family of graphs that weasanciate with a matroid.
Fix an integerk > 2. Let M be a matroid of rank and letS be a multiset of sizér
with elements inE (M ). Define the grapld;(S) as follows: the vertices aff,(S) are
all multisets ofk bases of\/ whose multiset union i§'; two vertices are adjacent if one
can be obtained from the other by one symmetric exchange gumoa pair of bases in
one of the vertices. Thus, vertices= {4;, Ay,..., A} andB = {By, Ba, ..., By} are
adjacent if, for some basds;, B; € B and elements; € B; — B; andb; € B; — B;, we
obtain A from B by replacingB; by (B; — b;) U b; and replacingB; by (B; — b;) U b;.
(This graph may be empty.) The conjecture below is due to Nit&\JR8, Conjecture 12].

Conjecturel.2. For any matroid)M and multisetS of sizek (M) with elements it (M)
and withk > 2, the graphG,(.S) is connected.

Conjectur¢ 1]2 is sometimes cast in terms of toric idealouAine argument shows that
the conjecture holds fav/ if and only if it holds forA/*. It has been shown for graphic (and
so for cographic) matroids by J. Blasiak [1] and for rah{and so for nullity3) matroids
by K. Kashiwabaral[19]. J. Herzog and T. Hibi [14] have shoWattConjectur€ 112 is
equivalent to its counterpart for discrete polymatroids.Sdhweig [2¥] has proven the
counterpart of the conjecture for certain discrete polyoids.

While Conjecturé 112 has received most attentipn, [28, €zinje 12] has three parts,
of which the next conjecture is the strongest. Consider ta@lyG’,,(S) in which k-
tuples of bases replace multisets of bases. Thus, its gswie alk-tuples of bases af/
whose multiset union i§; verticesA = (A;, Ao, ..., Ax) andB = (B, Ba, ..., By) are
adjacent if, for some integeisandj with 1 < ¢ < j < k and somé; € B; — B; and
b; € B; — B;, we obtainA from B by replacingB; by (B; — b;) U b; and replacing3;
by (BJ - bj) U b;.

Conjecturel.3. For any matroid)M and multisetS of sizek (M) with elements it (M)
and withk > 2, the graphG’,(.S) is connected.

We show that the conclusion of Conjectlire] 1.3 holds for a oify/ if Conjecturd 1.P
holds for M and Conjecture1l1 holds for all of its minors. It follows ti@onjecturé 113
holds for all sparse paving matroids.

The fourth conjecture was made by Y. Kajitani, S. Ueno, ankliijlano [18]. A matroid
M is cyclically orderableif there is a cyclic permutatiofas, as, . .., a,) of E(M) in
which each set of (M) cyclically-consecutive elements is a basis\éf

Conjecture1.4. A matroid M is cyclically orderable if and only if, for all nonempty sub-
setsA of E(M),

(1.2) r(M)|A] <r(A) |E(M)].



J. Bonin,Sparse Paving Matroids, Basis-Exchange Properties, ardiClylats 3

A counting argument shows that inequalify_{1.2) hold9/fis cyclically orderable.
Recent progress on this conjecture was made by J. van dereHm/S. Thomassg [115]

The fifth conjecture was first raised as a problem by H. Gabdv4hd has been pur-
sued in([8[ 15, 118]. To match our work below, we state the azigje in the case of disjoint
bases; it is easy to show that this implies its counterpaibitrary bases.

Conjecture 1.5. If B; and B, are disjoint bases of a rank-matroid M, then some cycle
(bl, bg, Ceey br, br+1, Ceey bgr) ha331 = {bl, bg, A ,br} anng = {br+1, br+2, A ,bgr},
and has each set ofcyclically-consecutive elements being a basig/fof

It is not hard to show that if this conjecture holds faf, then it holds forA* and for
all minors of M. H. Gabow [11] noted that the conjecture holds for translerstroids.

It has also been proven for graphic matroids [8, 18]. A. derNRd] observed that this
conjecture holds for strongly base-orderable matroidscaRéhat a matroid istrongly
base-orderablé for each pair of base®; andB; of M, there is a bijectiop : B; — Bs
such that for every subséf C By, both (B; — X) U ¢(X) and (By — ¢(X)) U X

are bases. IV is strongly base-orderable, then listing the element8ofn any order
followed by their images undef, in the corresponding order, gives the required cycle.
The class of strongly base-orderable matroids is both rifosed and dual-closed, and it
strictly contains the class of all gammoids (which includesversal matroids).

In Sectiori 2, we prove Conjectuifes]1.131.5 for sparse pawmatgoids. Sectiohl3 treats
another aspect of these matroids as we study the greateftenuwhcyclic flats in any
matroid onn elements. We give an upper bound on this number and note tloates
bound follows from work of R. Graham and N. Sloahel[13] whicha different setting,
essentially constructs sparse paving matroids. The gayeketthese bounds is similar to
that in inequality[(1.11). We provide the relevant backgmbon cyclic flats in that section.

Our notation follows J. Oxley [25]. The symmetric differentX —Y) U (Y — X), of
two setsX andY is denoted byX AY. We let[n] denote the sefl,2,...,n}.

2. PROOFS OFCONJECTURESL IFT.BIN THE CASE OF SPARSEPAVING MATROIDS

We will use the lemmas below. The first follows easily from thefinition of sparse
paving.

Lemma 2.1. Let M be a sparse paving matroid of ramk Let H and B be twor-subsets
of E(M) with |HAB| = 2. If H is a circuit-hyperplane of\/, thenB is a basis.

Although we will not use it, we note that the following stréhening of Lemma2]1 is
easy to prove: a matroid/ of rankr is sparse paving if and only if whenevBr and B
are twor-subsets o/ (M) with |HAB| = 2 and H is not a basis, the® is a basis. (We
remark that the analogous condition on discrete polymadéneinds up being too restrictive
to be of interest.)

Lemma2.2. Let BandB’ be distinct bases of a sparse paving matrbid Fora € B— B’
andX C B’ — B, there are at leastX| — 2 elements: € X for which both(B — a) Uz
and(B’ — x) U a are bases of\/.

Proof. The lemma follows since, by Lemrha .1, at most ong Bet a) U z with z € X,
and at most one s¢B’ — z’) U a with 2’ € X, is a circuit-hyperplane. O

We now turn to Conjectuffe1.1.

Theorem 2.3. Conjecturé LIl holds for sparse paving matroids.
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Proof. We first prove the result wheB (M) is the disjoint union of two bases; we will
then reduce the general case to this one. In this case,egh@ve the forniB,, B, 1),
which we simplify to(B1, Bz) in the next two paragraphs. We must show that for each pair
(A1, A2) and(Bq, B2) of vertices inG(M) with |A; AB;| > 4, there is a path between
them. For this, it suffices to show that there is a path f{@n, B-) to a vertex(B}, B})

If |By — A1] > 3, then fixe € B; — A; and setX = A; — B;. We have X| > 3 and
X C By, s0, by Lemm&212, the paf B, — ) Uy, (B2 — y) Ux) is a vertex ofG(M)
for somey € X. Also,|A1A((By — x) Uy)| < |A1ABy|, as needed.

In the remaining caséB; — A;| = 2, let By — Ay = {by, b} andA; — By = {ay,as}.
Thus,a1, a2 € Bs. If any of the following four symmetric exchanges yieldsyhhses, it
would provide the desired vert¢®}, B}) adjacent tq By, Bz):

(a) (Bl —bl)Ual and(BQ—al)Ubl,
(b) (Bl — bl) Uasg and(B2 — ag) U by,
(C) (Bl — bg) Uay and(B2 — al) U ba,
(d) (Bl - bg) U aso and(Bg - ag) U bo.

Thus, we may assume that each pair contains a circuit-higrerpBy symmetry, we may
assume thatB; — b1) Uay is a circuit-hyperplane; thefB; — by) Uas and(B1 — b)) Uay

are bases by Lemnia 2.1, B> — as) U by and(Bs — a1) U bs are circuit-hyperplanes;
thus, (B — a2) U by is a basis by Lemma2.1, @, — b2) U a- is a circuit-hyperplane.
For all four sets just identified to be circuit-hyperplangs,must have (M) > 3, so there

is an element: in B; N A;. By comparison with the four known circuit-hyperplanes, it
follows that each set in the following symmetric exchanges basis:

(e) (Bl - ,T) Uay and(Bg - al) Uz,
(f) Bi = (Bl — {ZC, bQ}) @] {al, CLQ} andBé = (B2 — {al, CLQ}) U {ZC, b2}

Since(B}, B}) is adjacenttd A;, Az), the needed path frofB;, Bz) to (A4;, A2) exists.

In the general case, for two verticAs= (A4;, A3, A3) and(B1, Bs, B3) of G(M), we
will show that there is a path i6/(1/) from A to a vertex of the forn{Cy, Cs, Bs); the
theorem then follows by applying the case just treated tdotsis pair graph of/\ Bs.
(Recall that the third set in these triples need not be a hasis

Assume|A3ABs| > 4. By symmetry, we may assumé; N Bz| > 1; fix some
a1 € A; N Bs. SinceM is sparse paving, the hyperplané4] — a,) contains at most one
elementinds — B3, s0A] = (A1 —a1)Uag is a basis for somes € As — Bs. The vertex
(A}, Ag, A%), whereAd} = (A3 —a3)Uas, is adjacent td\ and hagA; A Bs| < |A3ABs).

By iterating the argument above, it now suffices to treat theetA; A B3| = 2. Let
As — By = {az} andB; — A3 = {b3}. We may assumi; € A;. If (4; —b3) Uagz is
a basis ofM, then the claim holds, so assume instead that this set isuitelryperplane.
By symmetrically exchanging any elementc A; — b3 with some elemeni, € A,, we
getaverteX(A; — a1) U ag, (A2 — a2) U a1, A3) that is adjacent té\ and in which, by
Lemmd2.1, we can exchanggin (A; — a1) U ae with a3 in Az, which completes the
proof of the claim and so of the theorem. O

We now turn to Conjectuffe1.2.
Theorem 2.4. Conjecturé_1.R holds for sparse paving matroids.

Proof. Let M be a sparse paving matroid. We prove fiat (.5) is connected by induction
onk, where|S| = kr(M). The base case = 1 is trivial: Gj/(S) is connected since it
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has at most one vertex. Fbr> 2, we claim that for any two vertices
A:{Al,AQ,...,Ak} and B:{Bl,BQ,...,Bk}

of G (S), there are (possibly trivial) paths from to some verteX A}, A5, ..., A, } and
from B to some verteX By, Bs, ..., B} with A} = Bj. Proving this claim gives the
result by induction since having a path frodnto 5 in G, (.S) follows from having a path
from{A5, A5, ... AL} to{B), B;, ..., B} in Gy (S— A7), whereS — A7 is the multiset
difference. List the sets igl andB so that|A; AB;| < |A,AB;| forall h,j € [k]. Set
|A1ABq| = 2i. To prove the claim, it suffices to show that it 0, then

(*) there is a path fronB to a vertex{ B{, By, . .., By} with |A; ABY| < 2i.

SetA; — By = {a1,a92,...,a;} andB; — Ay = {b1,bo,...,b;}. By symmetry, we
may assume that the sum of the multiplicities of the elemienty — B; in S'is at least as
large as the corresponding sum f8r — A;. It follows that some basis if8, say B2, has
more elements froml; — B; than fromB; — A;. We consider several options 6.

For the case > 3, firstassumeB, N (B; — A1) = (). We may assume; € Bs. Apply
Lemmd2.2 withr = a; andX = B; — A; (so|X| > 3): for someb,, € B; — Ay, both
(B1 — by) Uay and(By — a1) U by, are bases, so statement (*) follows.

Now, along withi > 3, assuméB; N (A; — B;)| > 3. Let X = BaN(A; — By). Since
B has more elements from; — B; than fromB; — Ay, some element il; — A;, say
by, is notinBy. Apply Lemmd2Z.R taB, and By with x = b; and X: for somea;, € X,
both(B; — b1) Uay and(Bz — ap) U by are bases. Statement (*) now follows.

We now address the case wily N (A;AB;1) = {a1, a2, bs}, thereby completing the
argumentfor > 3. If we can symmetrically exchange oneaf as in Bs for one ofby, by
in B; to get bases, then statement (*) holds. Assume that noneesé ttour symmetric
exchanges yields only bases. An argument like that in thid tharagraph of the proof of
Theoreni 2.B shows that we may assume that

(Bl —bl)Ual, (Bg —ag)Ubl, (Bg—al)Ubg, and (Bl —bg)Uag

are circuit-hyperplanes. In order to have AB;| < |A; ABs| given thatB, N (A1 ABy)

is {a1, az, b3}, there must be an element, sgyin By — (4; U By). From Lemm&2]1 and
the circuit-hyperplanes above, we have that — b;) Uy and(B2 — y) U b; are bases, as
are(By — {b1,b2}) U{y,a1} and(Bz — {y, a1}) U {b1, b2}. Statement (*) now follows,
which completes the argument fop> 3.

Now assume& = 2. By symmetry, there are two caseB, N {b1, b2} is either() or
{b1}. FirstassumeBs N {b1,b2} = . We may assume; € B,. If a; in By can be
symmetrically exchanged with eith&r or b, in B; to yield two bases, then statement (*)
holds, so assume this fails. By symmett, = (B; — b1) Ua; andHy = (B —a1) U by
can be assumed to be circuit-hyperplanes. Sideé\ B | < |A; A Bs|, there are least two
elements, say, andzs, in Bo — A;. By LemmdZ.1L, eithefBz — z2) Ub; or (B — z3) Uby
is a basis; assume the former is. Comparison ifthshows that{B; — b;) U 22 and
(B1 — {b1,b2}) U {22,a;} are bases; similarly,Ba — {z2,a1}) U {b1, b2} is a basis by
comparison withH,. Statement (*) now follows.

We now address the case widy N {b1,b2} = {b1}, thus completing the argument
for i = 2. Note thatB, must also contaim; anda.. Statement (*) holds ibs in By
can be symmetrically exchanged with eitlagror as in By to yield two bases. If neither
exchange yields only bases, then, by symmetry, we may ashatié; = (B; — bs) Uas
andH, = (B2 — ag) U by are circuit-hyperplanes. At least two elementslinn By, say
x3 andzxy, are not inBsy since|A; AB;| < |A; ABs|. Atleast one of B, — a1) U 25 and
(B2 —a1) Uzy is a basis by Lemniad.1; assume the firstis. N@wv— z3) Ua; is a basis
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by comparison with;. The set§ By — {z3,b2})U{a1, a2} and(By—{a1, a2})U{xs, b2}
are also bases by comparison with and H,, respectively. It follows that statement (*)
holds. This completes the argumentfce 2.

Finally, assumeé = 1, s0A; — B; = {a1} andB; — A; = {b1}. Thus,B; containsy;
and noth;. Let X = B, —ay. If X Uby is a basis (as it must beffis 2), then exchanging
a1 andb; in By and B; shows that statement (*) holds. Thus, assuime 3 and

(A) X U b, is a circuit-hyperplane.

If 3 < h < kandby € By, and if there is an element € X — By, then there is a
2 € By, — By for which both(B;, — 2) Uy and(By — y) U 2 are bases; from Lemnia2.1
and statement (A), it follows that we can symmetrically exofpea; in (B2 — y) U z with

b1 in B, to get two bases, which yields statement (*). Thus, we mayrass

(B) each basi®3;, contains eitheb; or all of X.

If By, N {a1,b1} = {b1} for someh with 3 < h < k, then the assumption about the
multiplicities ofa; andb; implies thatBy, N{a1, b1} = {a;} for someh’ with3 < h’ < k.
Symmetrically exchange in By, — By, for somez € Bj,— By to get bases; sindgy,: —a;

is X by statement (B), statement (A) gives~ b;. Thus, we may assume

(C) for3 < h <k,if by € By, thena; € By.

Assume3 < h < k anday, by € By. If |[BoABy| > 4, then forx € (By, — by) — Bs, we
can symmetrically exchangee B;, with somey € B, (which cannot be) to yield two
bases; with statement (A), this allows us to exchange B; with a; in (By —y) Ux to
yield statement (*). Thus, we may assume

(D) if al,bl € By, then|B2ABh| = 2.

The proofis completed by showing that statements (A)—(Bldya contradiction. Consider
the multisetse = {{a1}, Aa, As,..., Ax} and B = {{b1}, Ba, Bs, ..., By} of sets.
Their multiset uniondJ 4., A and{J, 5 B, are equal. Leb; have multiplicityt 4 1 in
these unions. Statements (B)—(D) imply that the sum of thitipfigities of the elements
in X inthe setsinZis | X|(k—t—1)+ (| X]| — 1)¢, thatis,| X |(k — 1) — ¢. By statement
(A), X U by is noting/, so the sum of the multiplicities of the elementsinin the sets
ine isatmosiX|(k—t—2)+ (| X|—1)(¢t+ 1), thatis,| X|(k — 1) — t — 1, which, as
desired, contradicts the equallty, . ., A = Upc» B- O

We now prove a general connection between Conjediurés P, 1add 1.B.

Theorem 2.5. Let M be a matroid for which the basis pair graph of each of its mgor
is connected. Fok > 2, let S be a multiset of sizé r(M) with elements inE(M). If
G (S) is connected, then so @, (5).

Proof. SinceG,(S) is connected, to show th&t;,(.S) is connected it suffices to show
that for each verteA = (A1, As, ..., Ay) of G),(S) and each permutatianof [k], there

is a path inG";(S) from A to A, = (As(1), As(2), - - - As(r)). SiNce every permutation
is a composition of transpositions, we focus on a transiposit, say permuting andj
with ¢ < j. The desired result follows if we show that there is a patimfth to A, in
which all bases but theth andj-th are fixed. This follow by noting that the sequence of
symmetric exchanges that gives a path fiotp— A;, A; — A;, 0) to (A; — A;, A, — A, 0)

in the basis pair graph of the mindf|(A; U A;)/(A; N A;) also gives the desired path
from A to A, in G, (S5). O
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Corollary 2.6. For any minor-closed class of matroids for which Conjecflii@ holds,
Conjecture§ 112 anld 1.3 are equivalent. In particular, Gmjire 1.8 holds for all sparse
paving matroids.

For Conjecturé_1]4, we start with a lemma. kAinterval in a cycleo is a set ofk
cyclically-consecutive elements, that {s;, o(z), o%(z), . .., *~1(z)} for somex.

Lemma 2.7. Let M be a ranks sparse paving matroid on elements. Ir < n, then,
over all cycles onE(M), the average number efintervals that are circuit-hyperplanes
of M is less than two.

Proof. Letb()M) and cl{)M) be, respectively, the numbers of bases and circuit-hypeesl
of M. By focusing on circuit-hyperplanes, it follows that theeeage of interest is
ch(M) r!(n —r)!
(n—1)!
The desired result follows easily from this expression dredassumed inequalit®y < n,
once we show

2.1) HM) < ——— (7:)

“n—r+1

Consider the pair§H, B) consisting of a circuit-hyperplané of M and a basi®3 of M
with |[HAB| = 2. The definition of sparse paving gives three properties ytetl the
inequality above: each circuit-hyperplane is-{m — ) such pairs, each basis is in at most
r such pairs, and([@/) + ch(M) = (7). O

T

Theorem 2.8. Conjecturd 1.} holds for sparse paving matroids.

Proof. As noted after Conjectute 1.4, inequalify (1.2) holds inrgxeyclically orderable
matroid. The conjecture is easy to verify for all sparse pavinatroids that have rank
or nullity at most two (this includes all disconnected spapaving matroids, i.elJj ,,
Unns Un—1,n @ Ur,1, Ui @ Up,1, andU; o & Uy 2; this also includes all cases in which
inequality [1.2) fails), so below we assume thidthas rank and nullity at least three.

We may assumé (M) = [n]. For a cycles on E(M), all »(M)-intervals inc are
bases of\/ if and only if their complements, all( M *)-intervals ino, are bases oM *,
so, by replacingV/ by M* if needed, we may assume tteat < n wherer = r(M). By
Lemmd2.¥, for some cycle, say = (1,2,...,n),onE(M), at most one of its-intervals
is a circuit-hyperplane. We may assume there is such arvaifesay

H1={4,5,...,7‘+3},

otherwise the desired conclusion holds.

Consideroy = (1,2,4,3,5,...,n). (To aid the reader, we underline the entries that
differ from o;1.) Only two of itsr-intervals differ from their counterparts i, namely,
{3,5,6,...,r + 3}, which is a basis (use LemrhaP.1 with ), and

Hy={n—-r+4,...,n,1,2,4}.

If Hs is a basis, thens is the cycle we want. Thus, assume thatis a circuit-hyperplane.
We repeatedly apply this type of argument below. For brefiy each cycle we list
its r-intervals that differ from their counterparts in and, when possible, the circuit-
hyperplanes that, with Lemnia2.1, show that these intes@bases. For brevity, we
omit ther-interval {4,5,6,...,r + 3}, with i # 4, which is a basis (compare it tH;).
Since the permutations; below differ fromo; in at most four consecutive places, the
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assumption that the nullity of/ is at least three implies that arinterval in o; cannot
differ from its counterpart ir; at both ends.
Considerss = (1,3,4,2,5,...,n). The relevant intervals are
o {4,2,5,6,...,r+ 2} (compare taH,),
o{n—-r+4,...,n,1,3,4} (compare taHd,), and
Hs={n—-r+3,...,n,1,3}.
Thus,o3 has the desired properties unlégsis a circuit-hyperplane, so we assume it is.
Considerry = (1,4,3,2,5,...,n). The relevantintervals are
o{n—r+4,...,n,1,4,3Yand{n —r +3,...,n,1,4} (compare taf3), and
H,=1{3,2,5,6,...,r 4+ 2}.
Thus,o4 has the desired properties unléssis a circuit-hyperplane, so we assume it is.
Considerss = (3,4,1,2,5,...,n). The relevant intervals are
o {1,2,5,6,...,r 4+ 2} (compare taH,),
o {n—r+4,...,n,3,4,1} (compare taHs),
o{n—r+3,...,n,3,4} and{n —r+2,...,n,3} (compare taf/3), and
H; ={4,1,2,5,6,...,7 + 1}.
Thus,o5 has the desired properties unléssis a circuit-hyperplane, so we assume it is.
Considersg = (4,3,1,2,5,...,n). The relevant intervals are
o {1,2,5,6,...,r 4+ 2} (compare taH,),
o {3,1,2,5,6,...,7 + 1} (compare taH5),
o {n—r+4,...,n,4,3, 1} (compare taHs),
o {n—r+3,...,n,4,3} (compare taHs), and
Hs={n—-r+2,...,n,4}.
Thus,o has the desired properties unlésgis a circuit-hyperplane, so we assume it is.
Finally, consider = (2,3,4,1,5,...,n). The relevant intervals are
o {4,1,5,6,...,r+ 2} (compare taH,),
o {3,4,1,5,6,...,7 + 1} (compare taH5),
o {n—r+4,...,n,2,3 4} (compare taHs),
o {n—-r+3,...,n,2, 3} (compare taHs), and
o {n—r+2,...,n,2} (compare taHs).
Thus,o has the desired properties, which completes the proof. O

We now turn to Conjectuffe1.5.
Theorem 2.9. Conjecturé_1.b holds for sparse paving matroids.

Proof. Consider disjoint baseB = {by,bs,...,b.} andC = {c1, ca,...,c.} of a sparse
paving matroidM . By the basis-exchange property, we may assume that in tte cy

g = (b17b27"'7b7‘1011021"'ac’l‘)7
everyr-interval of the form{b;, b;11,..., b, c1,...,c;—1} is a basis; such cycles are said
to start properly We say that groblem occurs at; if {c;,ci+1,...,¢,b1,...,b;—1}iS

not a basis; clearly, > 1. We will show how, if a problem occurs af, then we can switch
a few elements so that the number of problems decreases amydle starts properly;
iterating this procedure produces the desired cycle.

First assumé < ¢ < r. We will show that one of the following cycles starts proger!
and has fewer problems (we underline the few elements thggeamuted):

o1 = (b11b27"'7b7‘1011021‘"1&107;—11"'107‘)!
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09 = (bl,bg,...,ﬁ,bifl,...,bT,Cl,CQ,...,CT),
03 = (b11b27---7b7‘1011021'"aci+l7ci—laﬂa"'ac’r)'

SinceSy = {c¢i,¢iv1,---5¢r,b1,...,b;—1} iS a circuit-hyperplane, Lemnia 2.1 implies
that{c;—1,¢it1,...,¢r,b1,...,b;_1} is @ basis. Only one otherinterval in o, differs
from its counterpart i, namely,S; = {b;, ..., b, c1,...,ci—2,¢; }, SO it follows thato;
starts properly and has fewer problems tlrannlesssS; is a circuit-hyperplane. Assume
S is a circuit-hyperplane. Only twe-intervals ino. differ from their counterparts in
o; of these, the sefc;, ¢;y1,...,¢r,b1,...,bi—2,b;} is @ basis by Lemmia3.1 (compare
it to Sp); if its complement,S; = {b;—1,bi41,...,br,c1,...,ci—1}, IS @ basis, thewa
starts properly and has fewer problems thaso we may assume thét is also a circuit-
hyperplane. Four-intervals inos differ from their counterparts i, namely,

T1 = {Ci—laciaci+27 .. .,Cr,bl, .. .7bi_1}, Tg = {ci,ci+2, .. .,C,_,bl7 .. .,bi},

and their complements. Each of these sets is a basis by Lénihsin2e each symmetric
differencelt ASy, ToASo, (E(M) — T1)ASy, and(E(M) — T>)AS2 has two elements,
So0oj starts properly and has fewer problems than

Now assumé = r, s0Sy = {¢;, b1, ..., b1} IS a circuit-hyperplane. Consider
o1 = (b1,b2,...,br,c1,¢2,. .., ¢, Cr1),
oy = (b1,b2,...,bp,br1,C1,C2,...,¢p),
03 = (bla b27 SRR bTa C1,€2,...,Cr—1,Cr, CT*Q)-

An argument similar to that above shows thatstarts properly and has fewer problems
thano unlessS; = {b,,c1,co,...,cr—2,¢.} is a circuit-hyperplane; likewises. starts
properly and has fewer problems thamnlessSy = {b,_1,¢1, ¢, ..., ¢.—1} IS a circuit-
hyperplane. Assume bot$y andS; are circuit-hyperplanes. Only fourintervals inos
differ from their counterparts i, namely:

Tl = {CT, Cr—2, bl, e ,bT,Q}, T2 = {CT,Q, bl, ceey brfl},

and their complements. These sets are bases $inb&,, ToASo, (E(M) — T1)ASs,
and(E(M) — T»)AS, each have two elements, 89 is the desired cycleoB U C. O

3. SPARSEPAVING MATROIDS AND THE NUMBER OF CyCLIC FLATS

A set X in a matroidM is cyclicif M|X has no coloops. Such sets are precisely the
(possibly empty) unions of circuits dff. Let Z(M) be the set of cyclic flats af/. As
noted in [7], the cyclic flats, along with their ranks, detéretthe matroid; indeed, this data
can be seen as distilling the essential geometric infoonatbout a matroid (seel[2, 3] for
constructions that exploit this perspective). Cyclic flatsy many roles in matroid theory,
especially in the theory of transversal matroids (see, d5, 7, 16]).

Let z, bemax{|Z(M)| : |E(M)| = n}, that s, z, is the greatest number of cyclic
flats that any matroid om elements can have. Inl[6], the problem of finding was
raised. The importance of this problem stems from the fatdixclic flats and their ranks
generally provide a relatively compact description of anwidt

To deduce a simple upper bound an let a; be the number of-element cyclic flats in
a matroidM with |E(M)| = n. Note that forF € Z(M) ande € F, the closure ¢lF' —e)
is F'; also, forr € E(M) — F, the restrictionM | (F' U x) has a unique coloop, namely
It follows that the setd” andF' — e, with F' € Z(M) ande € F, all differ, as do the sets
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FandF Uz with F € Z(M) andx € E(M) — F. Thus,

dai+1)<2® and ) ain—i+1) <2

i=0 i=0
Adding these inequalities givésa + 2) |Z(M)| < 2" "1, s0z, < 2" /(n + 2). We next
review a construction that yields sparse paving matroigdghich the number of cyclic flats
is not so far from this bound.

As mentioned in Sectidd 1, Knuth [20] constructed a famil;atifeast(2(w72i)/2")/n!
nonisomorphic sparse paving matroids of rank2| onn elements. To do this, he showed
that there is a sparse paving matroid of rank2| onn elements with at Iea:{ttn’/‘%)/%
circuit-hyperplanes; the circuit-hyperplane relaxasiof this matroid, taking into account
potential isomorphisms, give the family.

While exploring an equivalent problem in the context of emdtheory, Graham and
Sloanel[13] generalized and strengthened Knuth’s resudthioyving that for each rank
with » < n, there is a sparse paving matroid of rankn n elements with at Ieas{f’;)/n
circuit-hyperplanes. Their construction, which we skettéis the same general flavor as
Knuth's. Partition the set of all-1 vectors(ag, a1, . . . , a,—1) Of lengthn with r ones into
n classes according to the remainder, modul@f the sum of the positions that contain
ones, i.e.) ", a;i. They noted that any two vectors in the same class differ ieast four
places. At least one of the classes has at I(é@sm vectors; by interpreting these vectors
as the characteristic functions of the circuit-hyperptatigis class defines a sparse paving
matroid with at leas{”") /n circuit-hyperplanes.

The cyclic flats of a sparse paving matrdifl having rank and nullity at least two are
(0, E(M), and its circuit-hyperplanes. A routine induction (tregtievenn and oddn
separately) showéLn’}QJ) > 2n~1/\/n (consistent with Stirling’s approximation). Thus,
it follows from Graham and Sloane’s work that some sparséngawatroid on elements
has at leas2™ ! /n?/2 + 2 cyclic flats. (For large:, the numbers of cyclic flats in these
examples far surpass those mentioned in [6].) We summadrézetremarks in the result
below, which, if we apphijog, to each term in the inequality, bears a strong resemblance

to inequality [1.1).

Theorem 3.1. The maximum number of cyclic flats among matroids:@iementsz,,,

satisfies
n—1 2n+1
PR s T
To close, we note that Graham and Sloane’s examples cansabk&ntially improved
upon within the class of sparse paving matroids. The spaagmg matroids that they

construct have(Ln’;QJ)/n circuit-hyperplanes. It is routine to check that the rigitesof
inequality [2.1) above is maximized when= |n/2|. The ratio of this upper bound to
the number of circuit-hyperplanes in Graham and Sloaneisngtes tends t@ asn goes
to infinity. (Also seel[18, Remark 2].) This supports the makguspicion that the lower
bound in Theorem 311 is close to optimal.
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