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Abstract

We give a full classification of 6-dimensional nilpotent Lie algebras over an arbitrary field, including
fields that are not algebraically closed and fields of characteristic 2. To achieve the classification we
use the action of the automorphism group on the second cohomology space, as isomorphism types of
nilpotent Lie algebras correspond to orbits of subspaces under this action. In some cases, these orbits
are determined using geometric invariants, such as the Gram determinant or the Arf invariant. As a
byproduct, we completely determine, for a 4-dimensional vector space V , the orbits of GL(V ) on the
set of 2-dimensional subspaces of V ∧ V .
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1 Introduction

The classification of small-dimensional Lie algebras is a classical problem. The history of the classification
problem of 6-dimensional nilpotent Lie algebras goes back to Umlauf ([17]). In the 1950’s Morozov
([10]) published a classification of 6-dimensional nilpotent Lie algebras valid over fields of characteristic
0. Recently several classifications have appeared, over various ground fields. We mention [8] (over
algebraically closed fields, and over the real field), [14] (over various finite fields) [5] (over fields of
characteristic not 2). However, no classification that treats all ground fields, in particular fields of
characteristic 2, is known up to now. It is the purpose of this paper to complete the classification of
6-dimensional nilpotent Lie algebras over an arbitrary field.

Nilpotent Lie algebras up to dimension five are well-known. There is just one isomorphism type of
nilpotent Lie algebras with dimension two, two isomorphism types in dimension 3, three isomorphism type
in dimension 4, and 9 isomorphism types in dimension 5. The classification of nilpotent Lie algebras with
dimension up to 5 is independent of the field in the sense that the isomorphism types can be described by
uniform structure constant tables with integer entries. This is not, however, the case in dimension 6, as
the number of isomorphism types of 6-dimensional nilpotent Lie algebras may depend on the characteristic
of the underlying field. There are 36 isomorphism types over F2, but only 34 isomorphism types over F3;
see [14]. Over fields F of characteristic not 2, the number of isomorphism types is 26 + 4s where s is the
(possibly infinite) index of (F∗)2 in the multiplicative group F∗ of F ([5]). In the present paper we give
a classification that covers all ground fields, in particular also those of characteristic 2. For a field F of

characteristic 2, define an equivalence relation
∗+
∼ on F as follows: α

∗+
∼ β if and only if α = γ2β + δ2

with some γ ∈ F∗ and δ ∈ F. Let t be the (possibly infinite) number of equivalence classes of
∗+
∼ in F.
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Theorem 1.1. The number of isomorphism types of nilpotent Lie algebras with dimension 6 over fields
of characteristic different from 2 is 26+4s, while this number is 30+2s+4t over fields of characteristic 2.

In Section 3, a list of the isomorphism classes of the 6-dimensional nilpotent Lie algebras over an
arbitrary field is given. The first part of this theorem concerning fields of characteristic different from 2
was already proved in the article [5] by the second author (see also [4] for more details).

As stressed above, our paper treats fields of characteristic 2, and, for the first time, gives a full classi-
fication of 6-dimensional nilpotent Lie algebras over an arbitrary field of characteristic 2. As far as we are
aware, in characteristic 2, the only existing classification of such Lie algebras was given over algebraically
closed fields by Gong’s Ph.D. dissertation [8]. Comparing Gong’s results to ours, we found that Gong’s
classification contains one mistake: namely, his Lie algebras N6,2,10 and (E) are both isomorphic to our
Lie algebra L6,24(0) defined in Section 3. Apart from this, our classification agrees with Gong’s.

The original aim of the research presented in this paper was to extend the results of [5] to fields of
characteristic 2. As in the course of this work some proofs of [5] were revised, we decided, in this paper, to
present a full classification of 6-dimensional nilpotent Lie algebras that is valid over all fields. In addition,
some results in [5] relied on computer calculations (specifically, computing a Gröbner bases for ideals in
a polynomial rings), while the arguments of the present paper are all theoretical with no computer
calculations involved. Nevertheless, we should mention here that several of the theoretical arguments in
Section 5 were inspired by Gröbner basis computations in the computational algebra system Magma [1]
and it would have been significantly more difficult, maybe even impossible, to obtain the classification in
Theorem 1.1 without performing such computations.

Our methodology, which is the same as in [5], is explained in Section 2. We construct the 6-dimensional
nilpotent Lie algebras as certain central extensions, descendants in our terminology, of lower-dimensional
algebras. To separate the isomorphism classes of the descendants, we use the action of the automorphism
group on the subspaces of the second cohomology space. It is interesting to note that, in some examples,
the automorphism group preserves a non-degenerate quadratic form on the second cohomology space
and the isomorphism classes of the descendants can be characterized by purely geometric means. An
example of this situation is the abelian Lie algebra L with dimension 4, whose automorphism group
GL(4,F), by the Klein correspondence, preserves a quadratic form on the second cohomology space
H2(L,F) = (F4)∧(F4) with dimension 6. In characteristic different from 2, the 6-dimensional descendants
of L can be completely determined using the Gram determinant of the restriction of the quadratic form
to the 2-dimensional subspaces of H2(L,F). In characteristic 2, we determined these descendants using
the Arf invariant of the restriction of the quadratic form to these 2-dimensional subspaces. See Sections 4
and 5 for the details. The use of the Klein correspondence in the classification of nilpotent Lie algebras
of nilpotency class 2 was also explored in [16]. An interesting byproduct of our work is the determination
of the GL(4,F)-orbits on the 2-dimensional subspaces of (F4) ∧ (F4) (Theorem 4.4).

Here is an outline of the paper. In Section 2 we describe the cohomological method that we use to
classify nilpotent Lie algebras, which also appeared in [5], [15], [8]. In Section 3 we present the main
result of this paper, that is the classification of the 6-dimensional nilpotent Lie algebras. Section 4 has
a number of results on bilinear and quadratic forms that we need. Then in Section 5 the main work is
performed to prove the main result.

The main result of this paper can be accessed electronically using the LieAlgDB package [2] of the
computational algebra system GAP [7].

2 A summary of the method

The main idea that we use here is to obtain the nilpotent Lie algebras of dimension n as central extensions
of Lie algebras of smaller dimension. The central extensions are defined using the second cohomology
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space, and the isomorphism classes of the central extensions correspond to the orbits of the automorphism
group on the set of the subspaces of this cohomology space. This method has been described for Lie
algebras by Skjelbred and Sund ([15]). Similar ideas appear in the recent work concerning the classification
of p-groups; see, e.g., [6], [11], [12], [13]. We summarize the method in this section without giving proofs
or explanations; the details can, for instance, be found in [5].

For a Lie algebra L, let Li denote the terms of the lower central series. If L is nilpotent then Li+1 = 0
with some i and the smallest such i is called the nilpotency class of L. The second term L2 of the lower
central series will usually be written as L′. We denote the center of L by C(L). Adapting terminology
from [12] to our context, a Lie algebra K is said to be a descendant of the Lie algebra L if K/C(K) ∼= L
and C(K) 6 K ′. If dimC(K) = s then K is also referred to as a step-s descendant. A descendant of a
nilpotent Lie algebra is nilpotent. Conversely, if K is a finite-dimensional nilpotent Lie algebra over a field
F, then K is either a descendant of a smaller-dimensional nilpotent Lie algebra, or K = K1⊕F where K1

is an ideal of K and F is viewed as a 1-dimensional Lie algebra. Hence determining the isomorphism types
of the descendants of the nilpotent Lie algebras with dimension at most 5 suffices for the classification of
the nilpotent Lie algebras with dimension 6.

The main idea of the method is that, for a nilpotent Lie algebra L over a field F, the isomorphism
types of the descendants of L are in 1-1 correspondence with the Aut(L)-orbits of some of the subspaces
of the second cohomology space H2(L,F). The second cohomology spaces for nilpotent Lie algebras
are defined as follows. For a vector space V , let Z2(L, V ) denote the set of alternating bilinear maps
ϑ : L× L→ V with the property that

ϑ([x1, x2], x3) + ϑ([x3, x1], x2) + ϑ([x2, x3], x1) = 0 for all x1, x2, x3 ∈ L.

The set Z2(L, V ) is viewed as a vector space over F and the elements of Z2(L, V ) are said to be cocy-
cles. We define, for a linear map ν : L → V , a map ην : L × L → V as ην(x, y) = ν([x, y]). The set
{ην | ν : L→ V is linear} is denoted by B2(L, V ). It is routine to check that B2(L, V ) is a subspace of
Z2(L, V ), and the elements of B2(L, V ) are called coboundaries. The second cohomology space H2(L, V )
is defined as the quotient Z2(L, V )/B2(L, V ).

The vector spaces defined in the previous paragraph can be viewed as Aut(L) modules. Indeed, for
ϕ ∈ Aut(L) and ϑ ∈ Z2(L, V ) define ϕϑ ∈ Z2(L, V ) by the equation (ϕϑ)(x, y) = ϑ(ϕ(x), ϕ(y)). The
action ϑ 7→ ϕϑ makes Z2(L, V ) an Aut(L)-module and it is easy to see that B2(L, V ) is an Aut(L)-
submodule. Hence the quotient H2(L, V ) can also be viewed as an Aut(L)-module.

Let L be a Lie algebra and V a vector space over a field F. For ϑ ∈ Z2(L, V ), define a Lie algebra
Lϑ as follows. The underlying space of Lϑ is L ⊕ V . The product of two elements x + v, y + u ∈ Lϑ,
is defined as [x + v, y + w] = [x, y]L + ϑ(x, y) where [x, y]L denotes the product in L. Then Lϑ is a Lie
algebra and V is an ideal of Lϑ such that V 6 C(Lϑ). In addition, L ∼= Lϑ/V , and hence Lϑ is a central
extension of L. Further, if ϑ1, ϑ2 ∈ Z2(L, V ) such that ϑ1 − ϑ2 ∈ B2(L, V ) then Lϑ1

∼= Lϑ2
, and so

the isomorphism type of Lϑ only depends on the element ϑ + B2(L, V ) of H2(L, V ). Conversely let K
be a Lie algebra such that C(K) 6= 0, and set V = C(K) and L = K/C(K). Let π : K → L be the
projection map. Choose an injective linear map σ : L → K such that π(σ(x)) = x for all x ∈ L. Define
ϑ : L × L → V by ϑ(x, y) = [σ(x), σ(y)] − σ([x, y]). Then ϑ is a cocycle such that K ∼= Lϑ. Though ϑ
depends on the choice of σ, the coset ϑ+ B2(L,B) is independent of σ. Hence the central extension K
of L determines a well-defined element of H2(L, V ).

Let us now fix a basis {e1, . . . , es} of V . A cocycle ϑ ∈ Z2(L, V ) can be written as

ϑ(x, y) =

s
∑

i=1

ϑi(x, y)ei,

where ϑi ∈ Z2(L,F). Furthermore, ϑ is a coboundary if and only if all ϑi are. For ϑ ∈ Z2(L, V ), let ϑ⊥
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denote the radical of ϑ; that is, the set of elements x ∈ L such that ϑ(x, y) = 0 for all y ∈ L. Then

ϑ⊥ =
⋂

η∈〈ϑ1,...,ϑs〉

η⊥ = ϑ⊥1 ∩ · · · ∩ ϑ⊥s .

Theorem 2.1 (Lemmas 2–4 in [5]). Let L be a Lie algebra, let V be a vector space with fixed basis
{e1, . . . , es} over a field F, and let ϑ, η be elements of Z2(L, V ).

(i) The Lie algebra Lϑ is a step-s descendant of L if and only if ϑ⊥ ∩ C(L) = 0 and the image of the
subspace 〈ϑ1, . . . , ϑs〉 in H2(L,F) is s-dimensional .

(ii) Suppose that η is an other element of Z2(L, V ) and that Lϑ, Lη are descendants of L. Then
Lϑ

∼= Lη if and only if images of the subspaces 〈ϑ1, . . . , ϑs〉 and 〈η1, . . . , ηs〉 in H2(L,F) are in the
same orbit under the action of Aut(L).

A subspace U of H2(L,F) is said to be allowable if
⋂

ϑ∈U ϑ
⊥ ∩ C(L) = 0. By Theorem 2.1, there

is a one-to-one correspondence between the set of isomorphism types of step-s descendants of L and
the Aut(L)-orbits on the s-dimensional allowable subspaces of H2(L,F). Hence the classification of 6-
dimensional nilpotent Lie algebras requires that we determine these orbits for all nilpotent Lie algebras
of dimension at most 5. The determination of these orbits is achieved in Section 5.

3 The 6-dimensional nilpotent Lie algebras

Let F be an arbitrary field. In order to classify the 6-dimensional nilpotent Lie algebras over F, we
determine the isomorphism classes of the 6-dimensional descendants of the nilpotent Lie algebras with
dimension at most 5. In this section we summarize the result by listing these isomorphism classes for each
of the Lie algebras with dimension at most 5, while in the Section 5 we provide with a detailed proof.
The notation we use to describe nilpotent Lie algebras of dimension at most 5 is the same as in [5].

Unlike the 5-dimensional algebras, nilpotent Lie algebras of dimension 6 cannot be described uniformly
over all fields. In some cases, the isomorphism types of descendants will depend on a parameter. In order
to describe these cases, we need some notation. First, for a field F, let F∗ denote the multiplicative group
of non-zero elements of F. If F is a field, then let

∗
∼ denote the equivalence relation on F defined as

α
∗
∼ β if and only if α = γ2β with some γ ∈ F∗. If charF = 2 then define the equivalence relation

∗+
∼ as

α
∗+
∼ β if and only if α = γ2β+ δ2 with some γ ∈ F∗ and δ ∈ F. Using that charF = 2, it is easy to show

that
∗+
∼ is indeed an equivalence relation. For a set X and equivalence relation ∼, let X/(∼) denote a

transversal of the equivalence relation ∼; that is, X/(∼) is a set that contains precisely one element from
each of the equivalence classes of ∼. Now let F be a field of characteristic 2. View F as a vector space
over F2, the map ψ : F → F defined by ψ(x) = x2 + x is F2-linear with kernel F2. Hence the image ψ(F)
is a subspace of codimension 1. Let ω denote a fixed element of F \ ψ(F). Then the set {0, ω} is a set of
coset representatives for ψ(F) in F.

Following and extending the notation in [5], the nilpotent Lie algebras in this paper are denoted by

Ld,k, Ld,k(ε), L
(2)
d,k, or L

(2)
d,k(ε) where d is the dimension of the algebra, k is its index among the nilpotent

Lie algebras with dimension d, ε is a possible parameter, and the superscript “(2)” refers to the fact that
the algebra is defined over a field of characteristic 2. The list of nilpotent Lie algebras with dimension
at most 5, described in the same notation, can be found in [5]. In particular, there are 9 isomorphism
types of nilpotent Lie algebras of dimension 5: L5,1, . . . , L5,9. Hence there are 9 isomorphism types of
nilpotent Lie algebras with dimension 6 that are not descendants of smaller-dimensional Lie algebras,
namely L6,1, . . . , L6,9, where L6,i = L5,i ⊕ F.
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Next we describe the 6-dimensional descendants of nilpotent Lie algebras with dimension at most 5.
The Lie algebras in this section are given with multiplication tables with respect to fixed bases with
trivial products of the form [xi, xj ] = 0 omitted. With respect to the list of [5] we have made a few
small changes. The multiplication table of L6,19(ε), for ε 6= 0, is different from (but isomorphic to) the
Lie algebra denoted with the same symbol in [5]. The Lie algebras L6,19(0) and L6,21(0) from [5] are
denoted here by L6,27 and L6,28, respectively. We have made these changes because the structure of
L6,k(ǫ), k = 19, 21, is different for ε = 0 and ε 6= 0. Furthermore, in characteristic 2 a few new algebras

appear that are not contained in [5]. These Lie algebras are L
(2)
6,k or L

(2)
6,k(ε) (here k ∈ {1, . . . , 8}).

Step-1 descendants of 5-dimensional Lie algebras

(5/1) The abelian Lie algebra L5,1 has no step-1 descendants.

(5/2) The Lie algebra L5,2 = 〈x1, . . . , x5 | [x1, x2] = x3〉 has only one isomorphism class of step-1
descendants namely

L6,10 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x6, [x4, x5] = x6〉.

(5/3) The Lie algebra L5,3 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4〉 has two isomorphism classes of
step-1 descendants namely

L6,11 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x6, [x2, x3] = x6, [x2, x5] = x6〉 and

L6,12 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x6, [x2, x5] = x6〉.

(5/4) The Lie algebra L5,4 = 〈x1, . . . , x5 | [x1, x2] = x5, [x3, x4] = x5〉 has no step-1 descendants.

(5/5) Let L5,5 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x5〉. If charF 6= 2, then L5,5 has a
unique isomorphism type of step-1 descendants, namely

L6,13 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x5, [x3, x4] = x6〉.

If charF = 2 then L5,5 has two isomorphism classes of step-1 descendants, namely L6,13 above and

L
(2)
6,1 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x5 + x6, [x3, x4] = x6〉.

(5/6) Set L5,6 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x5〉. If charF 6= 2, then
L5,6 has two isomorphism classes of step-1 descendants, namely

L6,14 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5,

[x2, x3] = x5, [x2, x5] = x6, [x3, x4] = −x6〉;

L6,15 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5,

[x1, x5] = x6, [x2, x3] = x5, [x2, x4] = x6〉.

If charF = 2 then L6,15 and the Lie algebras

L
(2)
6,2 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5,

[x1, x5] = x6, [x2, x3] = x5 + x6, [x2, x4] = x6〉;

L
(2)
6,3(ε) = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5,

[x2, x3] = x5 + εx6, [x2, x5] = x6, [x3, x4] = x6〉 with ε ∈ F/(
∗+
∼ ),

form a complete and irredundant list of representatives of the isomorphism classes of step-1 descen-
dants of L5,6.
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(5/7) Set L5,7 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5〉. If charF 6= 2, then the Lie algebra
L5,7 has three isomorphism classes of step-1 descendants namely

L6,16 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x5] = x6, [x3, x4] = −x6〉;

L6,17 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6, [x2, x3] = x6〉;

L6,18 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6〉.

If charF = 2 then L6,17, L6,18 and the Lie algebras

L
(2)
6,4(ε) = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5,

[x2, x3] = εx6, [x2, x5] = x6, [x3, x4] = x6〉,

where ε runs through the elements of F/(
∗+
∼ ), form a complete and irredundant set of representatives

of the isomorphism types of step-1 descendants of L5,7.

(5/8) Set L5,8 = 〈x1, . . . , x5 | [x1, x2] = x4, [x1, x3] = x5〉. If charF 6= 2, then the Lie algebras

L6,20 = 〈x1, . . . , x6 | [x1, x2] = x4, [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x6〉;

L6,19(ε) = 〈x1, . . . , x6 | [x1, x2] = x4, [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x6, [x3, x5] = εx6〉,

where ε ∈ F∗/(
∗
∼ ),

form a complete and irredundant set of representatives of the isomorphism classes of step-1 descen-
dants of L5,8. If charF = 2 then such a set of representatives is formed by the Lie algebras L6,19(ε)

with ε ∈ F∗/(
∗
∼ ), L6,20 and the Lie algebra

L
(2)
6,5 = 〈x1, . . . , x6 | [x1, x2] = x4, [x1, x3] = x5, [x2, x5] = x6, [x3, x4] = x6〉.

(5/9) Set L5,9 = 〈x1, . . . , x5 | [x1, x2] = x3, [x1, x3] = x4, [x2, x3] = x5〉. If charF 6= 2 then the Lie algebras

L6,21(ε) = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x6, [x2, x3] = x5, [x2, x5] = εx6〉,

where ε runs through the elements of F∗/(
∗
∼ ) form a complete and irredundant set of represen-

tatives of the isomorphism classes of step-1 descendants of L5,9. If charF = 2 then such a set of

representatives is formed by the Lie algebras L6,21(ε) with ε ∈ F∗/(
∗
∼ ) and by the Lie algebra

L
(2)
6,6 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x5] = x6, [x2, x3] = x5, [x2, x4] = x6〉.

Step-2 descendants of 4-dimensional Lie algebras

(4/1) Let L4,1 be the abelian Lie algebra of dimension 4. If charF 6= 2 the following is a complete and
irredundant list of the representatives of the isomorphism classes of the step-2 descendants of L4,1:

L6,22(ε) = 〈x1, . . . , x6 | [x1, x2] = x5, [x1, x3] = x6, [x2, x4] = εx6, [x3, x4] = x5〉

where ε ∈ F/(
∗
∼ ). If charF = 2, then such a list is formed by the Lie algebras L6,22(ν) as above,

where, in this case, ν ∈ F/(
∗+
∼ ), and by the Lie algebras

L
(2)
6,7(η) = 〈x1, . . . , x6 | [x1, x2] = x5, [x1, x3] = x6, [x2, x4] = ηx6, [x3, x4] = x5 + x6〉

where η ∈ {0, ω}.
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(4/2) Set L4,2 = 〈x1, . . . , x4 | [x1, x2] = x3〉. If charF 6= 2, then the following Lie algebras form a complete
and irredundant set of representatives of the isomorphism classes of the step-2 descendants of L4,2:

L6,27 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x2, x4] = x6〉;

L6,23 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = x6, [x2, x4] = x5〉;

L6,25 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = x6〉;

L6,24(ε) = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = εx6,

[x2, x3] = x6, [x2, x4] = x5〉 where ε ∈ F/(
∗
∼ ).

If charF = 2 then such a set of representatives is formed by the Lie algebras L6,27, L6,23, L6,24(ν),

where ν ∈ F/(
∗+
∼ ), L6,25 and by the Lie algebras

L
(2)
6,8(η) = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x5, [x1, x4] = ηx6,

[x2, x3] = x6, [x2, x4] = x5 + x6〉 where η ∈ {0, ω}.

(4/3) The Lie algebra L4,3 = 〈x1, . . . , x4 | [x1, x2] = x3, [x1, x3] = x4〉 has only one isomorphism class of
step-2 descendants namely

L6,28 = 〈x1, . . . , x6 | [x1, x2] = x3, [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x6〉.

Step-3 descendants of 3-dimensional Lie algebras

(3/1) The abelian Lie algebra L3,1 has a unique isomorphism type of step-3 descendants, namely

L6,26 = 〈x1, . . . , x6 | [x1, x2] = x4, [x1, x3] = x5, [x2, x3] = x6〉.

(3/2) The Lie algebra L3,2 = 〈x1, x2, x3|[x1, x2] = x3〉 has no step-3 descendants.

By explicitly listing the isomorphism classes of 6-dimensional nilpotent Lie algebras, the following
theorem gives a summary of the results stated in this section. Recall that in a field F of characteristic 2,
ω denotes a fixed element from F \ {x2 + x | x ∈ F}.

Theorem 3.1. (I) Over a field F of characteristic different from 2, the list of the isomorphism types
of 6-dimensional nilpotent Lie algebras is the following: L5,k ⊕ F with k ∈ {1, . . . , 9}; L6,k with

k ∈ {10, . . . , 18, 20, 23, 25, . . . , 28}; L6,k(ε1) with k = {19, 21} and ε1 ∈ F∗/(
∗
∼ ); L6,k(ε2) with

k ∈ {22, 24} and ε2 ∈ F/(
∗
∼ ).

(II) Over a field F of characteristic 2, the isomorphism types of 6-dimensional nilpotent Lie algebras
are L5,k ⊕ F with k ∈ {1, . . . , 9}; L6,k with k ∈ {10, . . . , 13, 15, 17, 18, 20, 23, 25, . . . , 28}; L6,k(ε1)

with k = {19, 21} and ε1 ∈ F∗/(
∗
∼ ); L6,k(ε2) with k = {22, 24} and ε2 ∈ F/(

∗+
∼ ); L

(2)
6,k with

k = {1, 2, 5, 6}; L
(2)
6,k(ε3) with k = {3, 4} and ε3 ∈ F/(

∗+
∼ ); L

(2)
6,k(ε4) with k ∈ {7, 8} and ε4 ∈ {0, ω}.

Theorem 3.1 follows from the statements concerning the descendants of this section. These statements
are proved in Section 5. Noting that F/(

∗
∼ ) = F∗/(

∗
∼ ) ∪ {0}, the main Theorem 1.1 is a consequence

of Theorem 3.1. If F is an algebraically closed field or a perfect field of characteristic 2, then s = 1. If
F is a finite field of size q then s = gcd(q − 1, 2). Further, if F is a perfect field of characteristic 2 then
t = 1. This gives that the number of isomorphism types of 6-dimensional nilpotent Lie algebras is 34
over a finite field of characteristic different from 2; is 30 over an algebraically closed field of characteristic
different from 2; and it is 36 over a perfect field (including finite fields) of characteristic 2.
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4 Vector spaces with forms

As cocycles are alternating bilinear forms, and vector spaces with quadratic forms will play an important
role in determining isomorphisms within certain descendants of L4,1 and L4,2, we summarize in this
section some basic facts concerning quadratic and bilinear forms. Suppose that V is a vector space over
a field F and f is a function from V × V to F. The function f is said to be a bilinear form if f is
linear in both of its variables. Further, f is said to be symmetric if f(u, v) = f(v, u), f is said to be
alternating if f(v, v) = 0, while f is said to be skew-symmetric if f(u, v) = −f(v, u) for all v, u ∈ V . An
alternating form is always skew-symmetric, while the converse of this statement is only valid if charF 6= 2.
In characteristic 2, there are skew-symmetric forms that are not alternating. For a map Q : V → F define
fQ : V × V → F as

fQ(u, v) = Q(u+ v)−Q(u)−Q(v).

Then Q is said to be a quadratic form if Q(αv) = α2Q(v) for all α ∈ F and v ∈ V and fQ is a bilinear
form. In this case the bilinear form f is called the associated bilinear form of Q. If f is a symmetric
or skew-symmetric bilinear form on a vector space V and U ⊆ V then let U⊥ denote the orthogonal
complement of U in V :

U⊥ = {v ∈ V | f(u, v) = 0 for all u ∈ U}.

The radical of the form f is defined as V ⊥ and f is said to be non-singular if V ⊥ = 0; otherwise f is said
to be singular. If U is a subspace of V then an orthogonal form Q or a bilinear form f can be restricted
to U and the restriction is a form with the same symmetrical properties as f . Such a space U is called
singular or non-singular, if the restriction of the form to U is singular or non-singular, respectively.

If V is a vector space with basis {b1, . . . , bn} then, for i, j ∈ {1, . . . , n} with i 6= j, let ∆i,j denote
the alternating bilinear form defined as ∆i,j(bi, bj) = −∆i,j(bj, bi) = 1 and ∆i,j(bk, bl) = 0 otherwise.
Then the set of forms ∆i,j with i < j is a basis for the linear space of alternating bilinear forms on
V . Suppose that V is a vector space with a bilinear form f . If g ∈ GL(V ) then the form gf defined
by (gf)(u, v) = f(gu, gv) is also a bilinear form on V . Further, gf is alternating, skew-symmetric, or
symmetric if and only if f is alternating, skew-symmetric, or symmetric, respectively. This defines a
GL(V )-action on the set of bilinear forms on V . The following lemma is well-known, see for example [9,
Theorem 8.10.1].

Lemma 4.1. Let V be a vector space with a fixed basis {b1, . . . , bn} and set n1 = n if n is even, n1 = n−1
if n is odd.

(i) If ∆ is a non-singular alternating bilinear form on V then n is even.

(ii) The group GL(V ) has ⌊n/2⌋ orbits on the set of alternating bilinear forms on V with orbit repre-
sentatives

∆1,2, ∆1,2 +∆3,4, . . . ,∆1,2 +∆3,4 + · · ·+∆n1−1,n1
.

Let f be a form of one of the types above on a vector space V over a field F. If {b1, . . . , bn} is a fixed
basis of V then the Gram matrix G is defined with respect to this basis as the matrix whose (i, j) entry
is f(bi, bj). The Gram determinant will be crucial for separating isomorphism types within parametric
families of Lie algebras in characteristic different from 2. However, in characteristic 2, another invariant,
namely the Arf invariant, will be needed. Let Q be a quadratic form on a vector space V over a field of
characteristic 2 with associated bilinear form f . Note, in this case, that f is alternating. Assume that f is
non-singular, which implies by Lemma 4.1(i), that dimV is even. Let e1, . . . , ek, f1, . . . , fk be a symplectic
basis of V ; that is f(ei, ej) = f(fi, fj) = 0 and f(ei, fj) = δi,j where δi,j is the Kronecker-delta. Define
the Arf invariant δQ of Q with respect to the given basis as

q =

k
∑

i=1

Q(ei)Q(fi).
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Of course, the Arf invariant of Q depends on the chosen symplectic basis of V . However, the following is
valid.

Lemma 4.2. Let V be a vector space over a field and let Q be a quadratic form with non-singular
associated bilinear form.

(i) Let G1 and G2 denote the Gram matrices of V with respect to two bases of V . Then detG1/ detG2

is an element of the multiplicative subgroup {x2 | x ∈ F∗} of F∗.

(ii) Assume that charF = 2 and suppose that q1 and q2 are the values of the Arf invariant of Q with
respect to two symplectic bases. Then q1+q2 is an element of the additive subgroup {x2+x | x ∈ F}
of F.

Proof. Statement (i) is well-known, see for instance equation (8.1.8) in [3]. Statement (ii) is proved in [3,
Theorem 8.11.12].

Suppose that Q is a quadratic form on a vector space V with associated bilinear form fQ. A vector
v ∈ V is said to be singular if Q(v) = 0, and it is isotropic if f(v, v) = 0. A subspace U of V is totally
singular if Q(u) = 0 for all u ∈ U , while U is said to be totally isotropic if f(u, u) = 0 for all u ∈ U . If
charF 6= 2, then the notions of singular and isotropic, and those of totally singular and totally isotropic
can be freely interchanged. This, however, is no longer true if charF = 2. Let V be a vector space with
a quadratic form Q and let G be a group acting on V . Then we say that G preserves Q modulo scalars
if for each g ∈ G there is some αg ∈ F such that

Q(gv) = αgQ(v).

Lemma 4.3. Suppose that V is a vector space over a field F with a quadratic form Q whose associated
bilinear form is f , and let G be a subgroup of GL(V ) preserving Q modulo scalars. Suppose that S1 and
S2 are 2-dimensional subspaces of V in the same G-orbit, and let {b1, b2} and {c1, c2} be bases of S1 and
S2, respectively.

(i) Suppose that S1 and S2 are non-singular subspaces, and let G1 and G2 be the Gram matrices of S1

and S2 with respect to the given bases. Then (detG1)/(detG2) ∈ {α2 | α ∈ F
∗}.

(ii) Suppose that charF = 2, that f is non-singular, that the given bases of Si are symplectic, and that
q1 and q2 are the Arf invariants of S1 and S2 with respect to the given bases. Then q1 + q2 ∈
{α+ α2 | α ∈ F}.

(iii) Suppose that charF = 2 and that f is identically zero on Si, for i = 1, 2, and set q1 = Q(b1)Q(b2)
and q2 = Q(c1)Q(c2). Then there exist α ∈ F

∗ and β ∈ F such that q2 = α2q1 + β2.

Proof. Suppose that g ∈ G such that gS1 = S2. Since G preserves the form Q modulo scalars, there
is some α ∈ F such that Q(gv) = αQ(v), and f(gu, gv) = αf(u, v) for all u, v ∈ V . Let us prove
statement (i) first. The elements gb1 and gb2 form a basis for S2 and the Gram matrix of S2 with respect
to this basis is αG1 with determinant α2 detG1. By a remark above, there is some β ∈ F

∗ such that
α2 detG1 = β2 detG2, and hence (detG1)/(detG2) = (β/α)2 as claimed.

Let us now prove the second assertion. Since b1, b2 is a symplectic basis of S1, we obtain that
f(gb1, gb1) = f(gb2, gb2) = 0 and f(gb1, gb2) = f(gb2, gb1) = α. Hence the basis (1/α)gb1, gb2 is a
symplectic basis of S2 and the Arf invariant with respect to this basis is

Q

(

1

α
gb1

)

Q(gb2) =
1

α2
α2Q(b1)Q(b2) = q1.
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Thus Lemma 4.3 gives that q1 + q2 ∈ {α+ α2 | α ∈ F}.
(iii) First we note that if f is identically zero, then Q(γb1+δb2) = γ2Q(b1)+δ

2Q(b2). Since gS1 = S2,
there are α1, α2, β1, β2 ∈ F such that c1 = g(α1b1 + α2b2) and c2 = g(β1b1 + β2b2). As c1 and c2 are
linearly independent, we obtain that α1β2 + α2β1 6= 0. Then

q2 = Q(c1)Q(c2)

= Q(g(α1b1 + α2b2))Q(g(β1b1 + β2b2))

= α2(α2
1Q(b1) + α2

2Q(b2))(β
2
1Q(b1) + β2

2Q(b2))

= α2(α2
1β

2
1Q(b1)

2 + (α2
1β

2
2 + α2

2β
2
1)Q(b1)Q(b2) + α2

2β
2
2Q(b2)

2)

= (αα1β1Q(b1) + αα2β2Q(b2))
2 + (αα1β2 + αα2β1)

2q2.

Since α 6= 0 and α1β2 + α2β1 6= 0, the assertion follows.

We close this section with an interesting byproduct of our work. In the course of determining the
isomorphism classes of the descendants of the 4-dimensional abelian Lie algebra, we determined, for an
arbitrary 4-dimensional vector space V , the GL(V )-orbits on the 2-dimensional subspaces of V ∧ V . As
this result may have applications elsewhere, we state it separately.

Theorem 4.4. Let V be a vector space of dimension 4 over a field F with basis {v1, v2, v3, v4}. If
charF 6= 2 then set

P = {〈v1 ∧ v2, v1 ∧ v3〉} ∪ {〈v1 ∧ v2 + v3 ∧ v4, v1 ∧ v3 + εv2 ∧ v4〉 | ε ∈ F/(
∗
∼ )}.

If charF = 2 then let ω ∈ F be a fixed element such that ω 6∈ {x2 + x | x ∈ F} and set

P = {〈v1 ∧ v2, v1 ∧ v3〉, 〈v1 ∧ v2 + v3 ∧ v4, v1 ∧ v3 + v3 ∧ v4〉,

〈v1 ∧ v2 + v3 ∧ v4, v1 ∧ v3 + ωv2 ∧ v4 + v3 ∧ v4〉}

∪ {〈v1 ∧ v2 + v3 ∧ v4, v1 ∧ v3 + εv2 ∧ v4〉 | ε ∈ F/(
∗+
∼ )}.

Then P is a complete and irredundant set of representatives of the GL(V )-orbits on the two-dimensional
subspaces of V ∧ V .

The proof of Theorem 4.4 will be given in Section 5.

5 The calculation of 6-dimensional descendants

In this section we prove the results stated in Section 3. In order to make the calculations more compact,
we introduce uniform notation. In each of the sections, L will denote a fixed nilpotent Lie algebra with
dimension d, where d < 6, for which the descendants will be computed. The algebra L will be given by
a multiplication table as in Section 3. Recall that the forms ∆i,j with i 6 j form a basis for the space
of alternating bilinear forms on L, and the cohomology spaces Z2(L,F), B2(L,F), and H2(L,F) will be
determined in terms of this basis. These spaces will be described for each of the Lie algebras without
proof, as it is an easy exercise to compute them in these cases. If ∆ is an element of Z2(L,F), then ∆
denotes its image in H2(L,F).

The automorphism group of L will be described as a group of (d × d)-matrices with respect to the
given basis of L. The automorphism groups will also be presented without proof as it is in general easy to
verify that the given matrices do indeed form the full automorphism group. We use column notation to
describe the automorphisms; that is, the i-th column of the given matrix will contain the image of the i-th
basis vector of L. By Theorem 2.1, we will need to compute the Aut(L)-orbits on the (6−d)-dimensional
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allowable subspaces of H2(L,F). The set of these subspaces will be denoted by S. The quotient H2(L,F)
will be given with a fixed basis Γ1, . . . ,Γk. The element α1Γ1 + · · ·+ αkΓk of H2(L, F ) will be written
simply as (α1, . . . , αk). The action of Aut(L) on H2(L,F) will be computed explicitly.

Now we can start determining the 6-dimensional descendants of the nilpotent Lie algebras with di-
mension at most 5.

L5,1, L5,4, L4,3, L3,1, L3,2

First we compute the descendants in the easy cases. As there are no non-singular alternating bilinear
forms on an odd-dimensional space (Lemma 4.1(i)), the Lie algebra L5,1 has no step-1 descendants. If
L = L5,4 then Z2(L, F ) = 〈∆1,2,∆1,3,∆1,4,∆2,3,∆2,4,∆3,4〉, B2(L, F ) = 〈∆1,2 +∆3,4〉, and H2(L,F) =
〈∆1,3,∆1,4,∆2,3,∆2,4,∆3,4〉. Note that each element of H2(L,F) has x5 in its radical. Hence S = ∅, and
so there are no step-1 descendants of L.

If L = L4,3 then H2(L,F) is 2-dimensional, spanned by ∆1,4, and ∆2,3. Since H2(L,F) is allowable,
S = H2(L,F) which gives that L has a single isomorphism type of step-2 descendants, as claimed in
Section 3. Similarly, if L = L3,1, we obtain that H2(L,F) is 3-dimensional spanned by ∆1,2, ∆1,3,
and ∆2,3. Since H2(L,F) is allowable, we have that S = H2(L,F), which shows that L has only one
isomorphism class of step-3 descendants. Finally, if L = L3,2, then H

2 is 2-dimensional spanned by ∆1,3

and ∆2,3 which shows, in this case, that S = ∅.

L5,2

Set L = L5,2. It is routine to check that Aut(L) is the group of invertible matrices of the form

A =













a11 a12 0 0 0
a21 a22 0 0 0
a31 a32 u a34 a35
a41 a42 0 a44 a45
a51 a52 0 a54 a55













(1)

with u = a11a22 − a12a21. As Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆1,5,∆2,3,∆2,4,∆2,5,∆4,5〉 and B2(L,F) =
〈∆1,2〉, we obtain that H2(L,F) = 〈∆1,3,∆1,4,∆1,5,∆2,3,∆2,4,∆2,5,∆4,5〉 and

S = {〈(a, b, c, d, e, f, g)〉 | g 6= 0 and (a, d) 6= (0, 0)} .

As the matrix A is invertible, u 6= 0. For ϑ = (a, b, c, d, e, f, g) ∈ H2(L,F), we compute that Aϑ =
(ā, b̄, c̄, d̄, ē, f̄ , ḡ) where

ā = u(a11a+ a21d);

b̄ = a11a34a+ a11a44b+ a11a54c+ a21a34d+ a21a44e + a21a54f + (a41a54 − a44a51)g;

c̄ = a11a35a+ a11a45b+ a11a55c+ a21a35d+ a21a45e + a21a55f + (a41a55 − a45a51)g;

d̄ = u(a12a+ a22d);

ē = a12a34a+ a12a44b+ a12a54c+ a22a34d+ a22a44e + a22a54f + (a42a54 − a44a52)g;

f̄ = a12a35a+ a12a45b+ a12a55c+ a22a35d+ a22a45e + a22a55f + (a42a55 − a45a52)g;

ḡ = (a44a55 − a45a54)g.
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Choose S = 〈(a, b, c, d, e, f, g)〉 ∈ S and let B be the first of the following matrices if a 6= 0, or the second
if a = 0:













1 −dg 0 0 0
0 ag 0 0 0
0 0 ag −b −c
0 −(af − cd) 0 a 0
0 ae− bd 0 0 a













,













0 −dg 0 0 0
1 0 0 0 0
0 0 dg −e −f
0 cd 0 d 0
0 −bd 0 0 d













.

Then BS = 〈(1, 0, 0, 0, 0, 0, 1)〉 and hence the group of matrices of the form (1) has only one orbit on S.
Thus L has only one step-1 descendant, namely L6,10.

L5,3

Set L = L5,3. The group Aut(L) consists of the invertible matrices of the form

A =













a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a11a22 0 0
a41 a42 a11a32 a211a22 a45
a51 a52 0 0 a55













. (2)

We have that Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆1,5,∆2,3,∆2,5〉, B2(L,F) = 〈∆1,2,∆1,3〉, and so H2(L,F) =
〈∆1,4,∆1,5,∆2,3,∆2,5〉. Further,

S = {〈(a, b, c, d)〉 | a, d 6= 0}.

If ϑ = (a, b, c, d) ∈ H2(L,F), then Aϑ = (ā, b̄, c̄, d̄) where

ā = a311a22a, b̄ = a11a45a+ a11a55b+ a21a55d, c̄ = a11a
2
22c, d̄ = a22a55d.

Choose S = 〈(a, b, c, d)〉 ∈ S. Set c1 = 1 if c = 0 and set c1 = c/(ad2) otherwise. Let B denote the matrix












c1 0 0 0 0
0 c1 0 0 0
0 0 c21 0 0
0 0 0 c31 0
0 0 0 0 c31

























d 0 0 0 0
0 1 0 0 0
0 0 d 0 0
0 0 0 d2 −bd2

0 0 0 0 ad2













.

Easy computation shows that BS = 〈(1, 0, 0, 1)〉 if c = 0 while BS = 〈(1, 0, 1, 1)〉 otherwise. Hence
the group of matrices of the form (2) has two orbits on S, namely 〈(1, 0, 0, 1)〉 and 〈(1, 0, 1, 1)〉. The
corresponding Lie algebras are L6,12 and L6,11.

The derived subalgebra 〈x3, x4, x6〉 of both L6,11 and L6,12 is 3-dimensional. However, in L6,11

the centralizer 〈x3, x4, x5, x6〉 of the derived subalgebra is 4-dimensional, while in L6,12 the centralizer
〈x2, x3, x4, x5, x6〉 of L′

6,12 is 5-dimensional. Hence L6,11 and L6,12 are not isomorphic.

L5,5

Let L = L5,5. Invertible matrices of the form

A =













a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a11a22 −a11a21 0
a41 a42 0 a211 0
a51 a52 u a54 a211a22,













(3)
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where u = a11a32 + a21a42 − a22a41, form the group Aut(L). We have, in addition, that Z2(L,F) =
〈∆1,2,∆1,3,∆1,4,∆1,5+∆3,4,∆2,3,∆2,4〉, B2(L,F) = 〈∆1,2,∆1,3+∆2,4〉, and so H2(L,F) = 〈∆1,4,∆1,5+
∆3,4,∆2,3,∆2,4〉. The set of allowable subspaces of H2(L,F) is

S = {〈(a, b, c, d)〉 | b 6= 0}.

If ϑ = (a, b, c, d) ∈ H2(L,F), then Aϑ = (ā, b̄, c̄, d̄) where

ā = a311a+ (a11a54 + a211a31 + a11a21a41)b− a11a
2
21c+ a211a21d;

b̄ = a311a22b, c̄ = −a11a22a42b+ a11a
2
22c, d̄ = 2a11a22a41b− 2a11a21a22c+ a211a22d.

Choose S = 〈(a, b, c, d)〉 ∈ S. If charF 6= 2 then












2b 0 0 0 0
0 b 0 0 0

−2a 0 2b2 0 0
−d c 0 4b2 0
0 0 bd 0 4b3













S = 〈(0, 1, 0, 0)〉,

which shows that the group of matrices of the form (3) is transitive on S, and that L has only one
isomorphism type of step-1 descendants, namely L6,13, as claimed.

Suppose now that charF = 2. Set b1 = d/b2 if b 6= 0 and set b1 = 1 otherwise. Let B denote the
matrix













b1 0 0 0 0
0 1 0 0 0
0 0 b1 0 0
0 0 0 b21 0
0 0 0 0 b21

























b 0 0 0 0
0 b 0 0 0
a 0 b2 0 0
0 c 0 b2 0
0 0 0 0 b3













.

Then BS = 〈(0, 1, 0, 1)〉 if d 6= 0 and BS = 〈(0, 1, 0, 0)〉 otherwise. Hence, in this case, the group of
matrices of the form (3) has two orbits on S, namely 〈(0, 1, 0, 0)〉 and 〈(0, 1, 0, 1)〉. The corresponding Lie

algebras are L6,13, and L
(2)
6,1, respectively.

We claim, for charF = 2 that L
(2)
6,1 and L6,13 are not isomorphic. It suffices to show that the allowable

subspaces 〈(0, 1, 0, 0)〉 and 〈(0, 1, 0, 1)〉 are in different orbits under Aut(L). Suppose by contradiction that
A is of the form (3) such that A〈(0, 1, 0, 1)〉 = 〈(0, 1, 0, 0)〉. Then, as charF = 2, the expression for d̄ gives
that 0 = a211a22, which is impossible as A is invertible. Hence the two descendants are non-isomorphic.

L5,6

Set L = L5,6. The group Aut(L) consists of the invertible matrices of the form

A =













a11 0 0 0 0
a21 a211 0 0 0
a31 a32 a311 0 0
a41 a42 a11a32 a411 0
a51 a52 u v a511













,

where u = −a211a31 + a11a42 + a21a32 and v = a311a21 + a211a32. As Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆1,5 +
∆2,4,∆2,3,∆2,5 − ∆3,4〉 and B2(L,F) = 〈∆1,2,∆1,3,∆1,4 + ∆2,3〉, we obtain that H2(L,F) = 〈∆1,5 +
∆2,4,∆2,3,∆2,5 −∆3,4〉. Moreover,

S = {〈(a, b, c)〉 | (a, c) 6= (0, 0)}.

13



If ϑ = (a, b, c) ∈ Z2(L,F), then Aϑ = (ā, b̄, c̄) where

ā = a511(a11a+ a21c), b̄ = −2a411a21a+ a511b+ (2a311a42 − a311a
2
21 − a11a

2
32)c, c̄ = a711c.

Choose S = 〈(a, b, c)〉 ∈ S. Suppose first that charF 6= 2. Let B denote the first of the following matrix
if c 6= 0, or the second if c = 0:













2c 0 0 0 0
−2a 4c2 0 0 0
0 0 8c3 0 0
0 −2(a2 + bc) 0 16c4 0
0 0 −4c(a2 + bc) −16ac3 32c5













,













2a 0 0 0 0
b 4a2 0 0 0
0 0 8a3 0 0
0 0 0 16a4 0
0 0 0 8a3b 32a5













.

Then, if c 6= 0, then BS = 〈(0, 0, 1)〉, while BS = 〈(1, 0, 0)〉 otherwise. This shows that Aut(L) has at
most two orbits on S, namely 〈(0, 0, 1)〉 and 〈(1, 0, 0)〉 and the corresponding Lie algebras are L6,14 and
L6,15, respectively. The Lie algebras L6,14 and L6,15 are clearly non-isomorphic, as (L6,15)

′ is abelian,
while (L6,14)

′ is not.
Assume now that charF = 2. If b = c = 0 then S = 〈(1, 0, 0)〉, and so we may suppose that

(b, c) 6= (0, 0). Let B be the first of the following matrices if c = 0 and b 6= 0; while if c 6= 0 then let B be
the second matrix:













b 0 0 0 0
0 b2 0 0 0
0 0 b3 0 0
0 0 0 b4 0
0 0 0 0 b5













,













c 0 0 0 0
a c2 0 0 0
0 ac c3 0 0
0 0 ac2 c4 0
0 0 a2c 0 c5













.

Now, if c = 0 and b 6= 0 then BS = 〈(1, 1, 0)〉, while BS = 〈(0, b/c3, 1)〉 otherwise. Thus the set of
the subspaces 〈(1, 0, 0)〉, 〈(1, 1, 0)〉 and 〈(0, ε, 1)〉 with ε ∈ F contains a representative of each of the

Aut(L)-orbits on S. The Lie algebras corresponding to these subspaces are L6,15, L
(2)
6,2 and L

(2)
6,3(ε).

Let us now determine the possible isomorphisms among the algebras L6,15, L
(2)
6,2 and L

(2)
6,3(ε). First

note that the derived subalgebras of L6,15 and L
(2)
6,2 are abelian, while that of L

(2)
6,3(ε) is not. Thus

L
(2)
6,3(ε) 6

∼= L6,15 and L
(2)
6,3(ε) 6

∼= L
(2)
6,2. If L

(2)
6,2

∼= L6,15, then there is some A ∈ Aut(L) such that A〈(1, 1, 0)〉 =

〈(1, 0, 0)〉. However, the expression for b̄ implies in this case that a11 = 0, which makes A non-invertible.

Thus L
(2)
6,2 6∼= L6,15.

Therefore it remains to determine the isomorphisms among the algebras L
(2)
6,3(ε) with different values

of ε. We claim that L
(2)
6,3(ε)

∼= L
(2)
6,3(ν) if and only of ε

∗+
∼ ν where

∗+
∼ is the equivalence relation defined

at the beginning of Section 3. To prove one direction of this claim, assume that L
(2)
6,3(ε)

∼= L
(2)
6,3(ν).

Then there is A ∈ Aut(L) such that A〈(0, ε, 1)〉 = 〈(0, ν, 1)〉. The equations for b̄ and c̄ give that
a511ε+a

3
11a

2
21+a11a

2
32 = a711ν. Since a11 6= 0, we may divide both sides of this equation by a511 and obtain

that ε
∗+
∼ ν, as required. Now suppose, conversely, that ε

∗+
∼ ν; that is, there are α ∈ F

∗ and β ∈ F such
that ν = α2ε+ β2. Then













α−1 0 0 0 0
0 α−2 0 0 0
0 βα−3 α−3 0 0
0 0 βα−4 α−4 0
0 0 0 βα−5 α−5













〈(0, ε, 1)〉 = 〈(0, ν, 1)〉.

This proves the claim about the isomorphisms among the algebras L
(2)
6,3(ν).
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L5,7

The group Aut(L) consists of the invertible matrices of the form

A =













a11 0 0 0 0
a21 a22 0 0 0
a31 a32 a11a22 0 0
a41 a42 a11a32 a211a22 0
a51 a52 a11a42 a211a32 a311a22













.

We have Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆1,5,∆2,3,∆2,5 −∆3,4〉 and B2(L,F) = 〈∆1,2,∆1,3,∆1,4〉, and so
H2(L,F) = 〈∆1,5,∆2,3,∆2,5 −∆3,4〉. Moreover,

S = {〈(a, b, c)〉 | (a, c) 6= (0, 0)}.

If ϑ = (a, b, c) ∈ H2(L,F), then Aϑ = (ā, b̄, c̄) where

ā = a311a22(a11a+ a21c), b̄ = a11(a
2
22b+ (2a22a42 − a232)c), c̄ = a311a

2
22c.

Choose S = 〈(a, b, c)〉 ∈ S. If b = c = 0 then S = 〈(1, 0, 0)〉. Let B be the first, the second, or the third of
the following matrices, in the cases when c = 0 and b 6= 0; c 6= 0 and charF 6= 2; or c 6= 0 and charF = 2;
respectively:













b 0 0 0 0
0 b2 0 0 0
0 0 b3 0 0
0 0 0 b4 0
0 0 0 0 b5













,













c 0 0 0 0
−a 2c 0 0 0
0 0 2c2 0 0
0 −b 0 2c3 0
0 0 −bc 0 2c4













,













c 0 0 0 0
a 1 0 0 0
0 0 c 0 0
0 0 0 c2 0
0 0 0 0 c3













.

Then we obtain that BS = 〈(1, 1, 0)〉 if c = 0 and b 6= 0; BS = 〈(0, 0, 1)〉 if c 6= 0 and charF 6= 2; while
BS = 〈(0, ε, 1)〉 if c 6= 0 and charF = 2. Hence if charF 6= 2 then Aut(L) has at most three orbits on
S, namely 〈(1, 0, 0)〉, 〈(1, 1, 0)〉, 〈(0, 0, 1)〉 and the corresponding Lie algebras are L6,18, L6,17, and L6,16,
respectively. If charF = 2 then the 1-spaces 〈(1, 0, 0)〉, 〈(1, 1, 0)〉, 〈(0, ε, 1)〉 contain a set of representatives

for the Aut(L)-orbits on S with corresponding Lie algebras L6,18, L6,17 and L
(2)
6,4(ε), respectively.

Note that the derived subalgebras L6,17 and L6,18 are abelian, while those of L6,16 and L
(2)
6,4(ε) are

not. Hence L6,16 6∼= L6,17, L6,16 6∼= L6,18, L
(2)
6,4(ε) 6∼= L6,17 and L

(2)
6,4(ε) 6∼= L6,18. Further, the cen-

tralizer 〈x3, x4, x5, x6〉 of (L6,17)
′ is 4-dimensional while the centralizer 〈x2, x3, x4, x5, x6〉 of (L6,18)

′ is
5-dimensional, and hence L6,17 6∼= L6,18. Thus we are left with having to determine the possible isomor-

phisms between the algebras L
(2)
6,4(ε) with different values of ε. We claim that L

(2)
6,4(ε)

∼= L
(2)
6,4(ν) if and

only if ε
∗+
∼ ν. To show this claim, suppose first that L

(2)
6,4(ε)

∼= L
(2)
6,4(ν). Then there is A ∈ Aut(L)

such that A〈(0, ε, 1)〉 = 〈(0, ν, 1)〉. The equations for b̄ and c̄ and the fact that a11 6= 0 imply that

a222ε + a232 = a211a
2
22ν, which, in turn, gives that ε

∗+
∼ ν. Conversely, let us assume that ε

∗+
∼ ν. Then

there is some α ∈ F
∗ and β ∈ F such that ν = α2ε+ β2. Then













α−1 0 0 0 0
0 α−1β−1 0 0 0
0 α−2 α−2β−1 0 0
0 0 α−3 α−3β−1 0
0 0 0 α−4 α−4β−1













〈(0, ε, 1)〉 = 〈(0, ν, 1)〉.

This completes the proof of the claim concerning the isomorphism among the L
(2)
6,4(ε).
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L5,8

The group Aut(L) consists of the invertible matrices of the form

A =













a11 0 0 0 0
a21 a22 a23 0 0
a31 a32 a33 0 0
a41 a42 a43 a11a22 a11a23
a51 a52 a53 a11a32 a11a33













.

We have Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆1,5,∆2,3,∆2,4,∆2,5+∆3,4,∆3,5〉 and B2(L,F) = 〈∆1,2,∆1,3〉, and
so H2(L,F) = 〈∆1,4,∆1,5,∆2,3,∆2,4,∆2,5 +∆3,4,∆3,5〉. Further,

S =







〈(a, b, c, d, e, f)〉 | rank





a b
d e
e f



 = 2







.

If ϑ = (a, b, c, d, e, f) ∈ H , then Aϑ = (ā, b̄, c̄, d̄, ē, f̄) where

ā = a211a22a+ a211a32b+ a11a21a22d+ a11(a21a32 + a22a31)e+ a11a31a32f ;

b̄ = a211a23a+ a211a33b+ a11a21a23d+ a11(a21a33 + a23a31)e+ a11a31a33f ;

c̄ = (a22a33 − a23a32)c+ (a22a43 − a23a42)d+ (a22a53 − a23a52 + a32a43 − a33a42)e;

+ (a32a53 − a33a52)f ;

d̄ = a11a
2
22d+ 2a11a22a32e+ a11a

2
32f ;

ē = a11a22a23d+ a11(a22a33 + a23a32)e + a11a32a33f ;

f̄ = a11a
2
23d+ 2a11a23a33e+ a11a

2
33f.

Choose S = 〈(a, b, c, d, e, f)〉 ∈ S and set δ1 = ae − bd, δ2 = af − be, δ3 = df − e2. Suppose first that
d 6= 0. If δ1 6= 0, then let B be the first of the following two automorphisms; if δ1 = 0 (which implies that
δ3 6= 0), then let B be the second:













1 0 0 0 0
0 δ1 0 0 0
0 0 δ1 0 0
0 0 0 δ1 0
0 0 0 0 δ1

























d 0 0 0 0
−a 1 e 0 0
0 0 −d 0 0
0 0 c d de
0 0 0 0 −d2













,













1 0 0 0 0
0 δ3 0 0 0
1 0 δ3 0 0
0 0 0 δ3 0
0 0 0 0 δ3

























d 0 0 0 0
−a 1 e 0 0
0 0 −d 0 0
0 0 c d de
0 0 0 0 −d2













.

Then BS = 〈(0, 1, 0, 1, 0, δ3)〉. Suppose now that d = 0 and consider the following two cases: e = 0 which
implies that a, f 6= 0; and e 6= 0. In these cases, let B denote the first or the second of the following
transformations, respectively:













1 0 0 0 0
0 −b af 0 0
0 a 0 0 0
0 0 0 −b af
0 0 ac a 0













,













e2 0 0 0 0
af − be 1 0 0 0
−ae 0 e 0 0
0 c 0 e2 0
0 0 0 0 e3













.

Then, in the first case, BS = 〈(0, 1, 0, 1, 0, 0)〉, while in the second case, BS = 〈(0, 0, 0, 0, 1, f)〉. Thus if
d = e = 0 then we obtain that S is in the orbit of 〈(0, 1, 0, 1, 0, 0)〉. Therefore we may assume that d = 0
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and e 6= 0, and that S is in the orbit of 〈(0, 0, 0, 0, 1, f)〉. If f 6= 0, then let B1 denote the first of the
following transformations; if f = 0 and charF 6= 2 then let B1 be the second:













1 0 0 0 0
0 f 0 0 0
−1 −1 1 0 0
0 0 0 f 0
0 0 0 −1 1













,













1 0 0 0 0
1 1 −1 0 0
−1 1 1 0 0
0 0 0 1 −1
0 0 0 1 1













.

We obtain, in both cases, that B1〈(0, 0, 0, 0, 1, f〉) = 〈(0, 1, 0, 1, 0,−1)〉.
To summarize, in characteristic different from 2, the set of subspaces 〈(0, 1, 0, 1, 0, ε)〉 contain a rep-

resentative from each of the Aut(L)-orbits on S. In characteristic 2, these orbits are covered by the
subspaces 〈(0, 1, 0, 1, 0, ε)〉 and 〈(0, 0, 0, 0, 1, 0)〉. The Lie algebras corresponding to these subspaces are

L6,19(ε) and L
(2)
6,5. The Lie algebra L6,19(0) is written as L6,20 in Section 3, to minimize the difference

between our list and that in [5]. The expression for d̄ shows, in characteristic 2, that the vectors in the
Aut(L)-orbit of (0, 0, 0, 0, 1, 0) all have 4-th coordinate 0, and so 〈(0, 1, 0, 1, 0, ε)〉 and 〈(0, 0, 0, 0, 1, 0)〉 are
indeed in different orbits. Thus we only need to verify the isomorphisms among the algebras L6,19(ε)

with different values of ε. We claim that L6,19(ε) ∼= L6,19(ν) if and only if ε
∗
∼ ν. To prove one

direction of this claim assume that L6,19(ε) ∼= L6,19(ν). Then there is some A ∈ Aut(L) such that
〈(0, 1, 0, 1, 0, ε)〉 = 〈(0, 1, 0, 1, 0, ν)〉. Considering the equations for ā, b̄ and f̄ we obtain that

a222 + εa232 6= 0 (4)

and that

a22a23 + εa32a33 = 0; (5)

a223 + εa233 − νa222 − ενa232 = 0. (6)

If ε = 0 then (4) implies that a22 6= 0, and equations (5)–(6) give that a23 = 0 and that ν = 0. Thus
L6,19(0) is not isomorphic to L6,19(ν) with ν 6= 0. Therefore we may assume without loss of generality
that ε, ν 6= 0. Set δ = a222 + εa232. Then routine computation shows that

(a23a22 − εa23a22)(a22a23 + εa32a33) + (εa232 − δ)(a223 + εa233 − νa222 − ενa232) = δ(νa222 − εa233).

Since δ 6= 0, equations (5) and (6) imply that νa222 − εa233. Thus either a22 = a33 = 0 or ε
∗
∼ ν, as

required. Suppose that a22 = a33 = 0. Then a223 = ενa232. Since the matrix A is invertible, we obtain

that a23 6= 0 and a32 6= 0 and hence 1/ε
∗
∼ ν. Since 1/ε

∗
∼ ε, this gives that ε

∗
∼ ν.

Now we assume the converse; that is, let ε, ν ∈ F such that ε
∗
∼ ν. Let A be the automor-

phism of L5,8 represented by the diagonal matrix with the entries (1, 1, α, 1, α) in the diagonal. Then
A〈(0, 1, 0, 1, 0, ε)〉 = 〈(0, 1, 0, 1, 0, α2ε)〉 = 〈(0, 1, 0, 1, 0, ν)〉. Hence L6,19(ε) ∼= L6,19(ν).

L5,9

The group Aut(L) consists of the invertible matrices of the form

A =













a11 a12 0 0 0
a21 a22 0 0 0
a31 a32 u 0 0
a41 a42 a11a32 − a12a31 a11u a12u
a51 a52 a21a32 − a22a31 a21u a22u













,
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where u = a11a22 − a12a21. Then Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆1,5 + ∆2,4,∆2,3,∆2,5〉 and B2(L,F) =
〈∆1,2,∆1,3,∆2,3〉, and hence H2(L,F) = 〈∆1,4,∆1,5 +∆2,4,∆2,5〉. Further,

S = {〈(a, b, c)〉 | ac− b2 6= 0}.

Let ϑ = (a, b, c) ∈ H2(L,F). Then Aϑ = (ā, b̄, c̄) where

ā = (a211a+ 2a11a21b + a221c)u;

b̄ = (a11a12a+ (a11a22 + a12a21)b + a21a22c)u;

c̄ = (a212a+ 2a12a22b + a222c)u.

Choose S = 〈(a, b, c)〉 ∈ S. Let us consider three cases: a 6= 0; a = 0 and c 6= 0; a = 0, c = 0, and
charF 6= 2. Let, in these cases, B denote the first, the second, or the third of the following transformations,
respectively:













1 −b 0 0 0
0 a 0 0 0
0 0 a 0 0
0 0 0 a −ab
0 0 0 0 a2













,













0 −c 0 0 0
1 b 0 0 0
0 0 c 0 0
0 0 0 0 −c2

0 0 0 c bc













,













1 −1 0 0 0
1 1 0 0 0
0 0 2 0 0
0 0 0 2 −2
0 0 0 2 2













.

We obtain, in the first and the second case, that BS = 〈(1, 0, ac− b2)〉, while, in the third case, we find
that BS = 〈(1, 0,−1)〉.

To summarize, if charF 6= 2 then, as ac−b2 6= 0, the set formed by the subspaces 〈(1, 0, ε)〉 with ε 6= 0
contain a representative in each of the Aut(L)-orbits on S. The Lie algebra corresponding to 〈(1, 0, ε)〉
is L6,21(ε). If charF = 2 then the set consisting of the subspaces 〈(1, 0, ε)〉 and 〈(0, 1, 0)〉 contain such a

system of representatives. The Lie algebra corresponding to 〈(0, 1, 0)〉 is L
(2)
6,6.

The expressions for ā, b̄, c̄ give in characteristic 2 that 〈(0, 1, 0)〉 is fixed by Aut(L), and hence

L
(2)
6,6 6∼= L6,21(ε). We claim, for ε, ν ∈ F∗ that L6,21(ε) ∼= L6,21(ν) if and only if ε

∗
∼ ν. Suppose first that

L6,21(ε) ∼= L6,21(ν). Then there is some automorphism A ∈ Aut(L) such that A(1, 0, ε) = (1, 0, ν). Using
the equations for ā, b̄, and c̄ we obtain that

a11a12 + a21a22ε = 0; (7)

a212 + a222ε− a211ν − a221εν = 0. (8)

Simple computation shows that

(a12a22−νa11a21)(a11a12+a21a22ε)−a11a22(a
2
12+a

2
22ε−a

2
11ν−a

2
21εν) = (a11a22−a12a21)(a

2
11ν−a

2
22ε).

Since a11a22 − a12a21 6= 0, we obtain that equations (7) and (8) imply that a211ν − a222ε. Then either

ε
∗
∼ ν or a11 = a22 = 0. If a11 = a22 = 0, then equation (8) becomes a212 = a221εν. Since A is invertible,

we obtain, in this case, that 1/ε
∗
∼ ν. Since ε

∗
∼ 1/ε, this gives that ε

∗
∼ ν.

Conversely, let us suppose that ε, ν ∈ F∗ such that ε
∗
∼ µ. That is, there is some α ∈ F∗ such that

ν = α2ε. Then let A be the automorphism of L represented by the diagonal matrix with (1, α, α, α, α2)
as its diagonal. Then A〈(1, 0, ε)〉 = 〈(1, 0, α2ν)〉 = 〈(1, 0, ν)〉.

L4,1

The automorphism group of L is GL4(F) and H
2(L,F) = Z2(L,F) consists of all skew-symmetric bilinear

forms on L, and hence H2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆2,3,∆2,4,∆3,4〉. Note that H2(L,F) is naturally
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isomorphic to the wedge product Λ2(F4) as GL4(F)-modules; therefore we do not write the explicit
formulas for the action. The set of allowable subspaces S consists of the 2-dimensional subspaces S =
〈ϑ1, ϑ2〉 such that ϑ⊥1 ∩ ϑ⊥2 = 0. Let us compute the representatives of the Aut(L)-orbits on H2(L,F).
Let S ∈ S and write

S = 〈(a1, b1, c1, d1, e1, f1), (a2, b2, c2, d2, e2, f2)〉.

By Lemma 4.1(i), we may assume without loss of generality that a1 = 1. Then









1 0 d1 e1
0 1 −b1 −c1
0 0 1 0
0 0 0 1









S = 〈(1, 0, 0, 0, 0, f ′
1), (0, b

′
2, c

′
2, d

′
2, e

′
2, f

′
2)〉,

where f ′
1, b

′
2, c

′
2, d

′
2, e

′
2, f

′
2 ∈ F. Thus no generality is lost by assuming that

S = 〈(1, 0, 0, 0, 0, f1), (0, b2, c2, d2, e2, f2)〉.

We claim that there is B ∈ Aut(L) such that

BS = 〈(1, 0, 0, 0, 0, f1), (0, 1, 0, 0, ē2, f2)〉.

Consider the following list of matrices:








1 −d2 0 0
0 b2 0 0
0 0 1 −c2
0 0 0 b2









,









1 −e2 0 0
0 c2 0 0
0 0 0 −c2
0 0 1 b2









,









0 −d2 0 0
1 b2 0 0
0 0 1 −e2
0 0 0 d2









,









0 −e2 0 0
1 c2 0 0
0 0 0 −e2
0 0 1 d2









.

If (b2, c2, d2, e2) 6= (0, 0, 0, 0), then the list above contains at least one invertible matrix, and let B denote
this matrix. On the other hand, if (b2, c2, d2, e2) = (0, 0, 0, 0), then f2 6= 0 and set, in this case,

B =









1 −f2 f1 0
1 0 0 0
0 0 1 0
−1 0 0 f2









.

Having defined B as above, we obtain BS = 〈(1, 0, 0, 0, 0, f1), (0, 1, 0, 0, ē2, f2)〉 with some ē2, as claimed.
Let us hence suppose without loss of generality that S = 〈(1, 0, 0, 0, 0, f1), (0, 1, 0, 0, e2, f2)〉. Next consider
the following three cases: f1 6= 0; f1 = 0 and e2 6= 0; f1 = 0 and e2 = 0. Note that in the last case f2 6= 0,
as otherwise ϑ⊥1 ∩ ϑ⊥2 6= 0. Define C ∈ Aut(L) in these cases, respectively, as follows:









f1 0 0 0
0 f1 0 0
0 0 1 0
0 0 0 f1









,









1 0 0 0
0 f2 −1 0
0 −e2 0 0
0 0 0 1









,









1 0 0 0
0 f2 −1 0
0 0 1 0
0 0 0 1









.

We obtain, in each of these cases, that CS = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, e′2, f2)〉 where e′2 ∈ F. If f2 = 0
then CS = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε, 0)〉 with some ε ∈ F. On the other hand, if f2 6= 0 then









f2 0 0 0
0 1 0 0
0 0 f2 0
0 0 0 1









〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, e′2, f2)〉 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, e′′2, 1)〉,
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where e′′2 ∈ F. Suppose now that charF 6= 2, and let D be the first of the following two automorphisms
if e′′2 ∈ {0,−1/4}, while we let D be the second otherwise:









2e′′2 0 0 0
0 2 0 0
0 1 1 0
−1 0 0 4e′′2 + 1









,









1 0 0 1
0 2 0 0
0 1 1 0
0 0 0 2









.

Then D〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, e′′2, 1)〉 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε, 0)〉.
To summarize, in characteristic different from two, the set of 2-spaces 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε, 0)〉

where ε ∈ F contains at least one representative of each of the Aut(L)-orbits on S. In character-
istic 2, such a set of 2-spaces is formed by the spaces 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε, 0)〉 and the spaces

〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν, 1)〉 where ε, ν ∈ F. The corresponding Lie algebras are L6,22(ε) and L
(2)
6,7(ε),

respectively.
It remains to find the possible isomorphisms of the step-2 descendants of L. The group Aut(L)

preserves, modulo scalars, a quadratic form Q on H2(L,F), defined, for ϑ = (a, b, c, d, e, f) ∈ H2(L,F),
as

Q(ϑ) = af − be+ cd. (9)

Let f denote the symmetric bilinear form associated with Q. It is easy to see that Q is indeed preserved
by the action of GL(V ) modulo scalars; namely, for A ∈ GL(V ) and v ∈ V we have that Q(Av) =
(detA)Q(v).

Assume first that charF 6= 2. and consider two subspaces S1 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε, 0)〉 and
S2 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν, 0)〉 such that S1 and S2 are in the same Aut(L)-orbit. Since the de-
terminants of the Gram matrices of the form f restricted to S1 and S2 are 4ε and 4ν, respectively,
Lemma 4.2(2) implies that ν = α2ε with some α ∈ F∗. Conversely if ν = γ2ε with some γ ∈ F∗ and A is
the automorphism of L4,1 represented by the diagonal matrix with the entries (1, γ, 1, γ) in the diagonal,
then AS1 = S2.

Suppose now that the characteristic of F is 2. Set S1 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε, 0)〉 and S2 =
〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν, 1)〉 where ε, ν ∈ F. Since the restriction of f is identically zero on S1

while it is non-singular on S2, we obtain that S1 and S2 cannot be in the same Aut(L)-orbit. Sup-
pose now that S1 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε1, 0)〉 and S2 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε2, 0)〉 such that
S1 and S2 are in the same Aut(L)-orbit. Since f is identically zero on S1 and S2 and, for i = 1, 2,
Q(1, 0, 0, 0, 0, 1)Q(0, 1, 0, 0, εi, 0) = εi, we obtain from Lemma 4.2(iii) that ε2 = α2ε1 + β2 with some
α ∈ F

∗ and β ∈ F. Assume, conversely that ε2 = α2ε1 + β2 with some α ∈ F
∗ and β ∈ F. Since there

is nothing to prove if ε1 = ε2 = 1, we may assume without loss of generality that ε1 6= 1. Let A be the
automorphism of L4,1 represented by the matrix









ε1 β 1 ε1β
0 α 0 α
1 β 1 β
0 α 0 ε1α









.

Then detA = α2(ε21 + 1) which, by assumption, is non-zero, and so A does define an isomorphism.
Further, A〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε1, 0)〉 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ε2, 0)〉.

Finally if S1 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν1, 1)〉 and S2 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν2, 1)〉, then the
restriction of f on S1 and on S2 is non-singular, and the given bases of S1 and S2 are symplectic. Further,
the Arf invariants of S1 and S2 with respect to these bases are ν1 and ν2, respectively. Thus Lemma 4.2(iii)
gives that ν1 + ν2 ∈ {α2 + α | α ∈ F∗}. Assume, conversely, that α2 + α+ ν1 + ν2 = 0 with some α. Let
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A denote the isomorphism of L4,1 represented by the matrix








1 0 0 α
0 1 0 0
0 α 1 0
0 0 0 1









Then A〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν1, 1)〉 = 〈(1, 0, 0, 0, 0, 1), (0, 1, 0, 0, ν2, 1)〉.
The argument presented in this section give rise to the proof of Theorem 4.4.

Proof of Theorem 4.4. Let V be the vector space as in the statement of the theorem and let L be the
4-dimensional abelian Lie algebra L4,1. As noted before, there is an isomorphism between the GL(4,F)-
modules V ∧ V and H2(L,F) realized by the mapping bi ∧ bj 7→ ∆i,j , and so we will identify V ∧ V with
H2(L,F). If S is a 2-dimensional subspace of H2(L,F), then the corresponding central extension LS of L
is a 6-dimensional nilpotent Lie algebra with 4 generators and central derived subalgebra of dimension 2.
In addition if S is not allowable then LS = K⊕F, which, using the classification of 5-dimensional nilpotent
Lie algebras, gives that LS

∼= L5,8 ⊕ F. Hence GL(4,F) has a single orbit on the set of not allowable
2-dimensional subspaces. Since the orbits on the allowable 2-dimensional subspaces were determined in
this section, the theorem follows.

L4,2

The group Aut(L) consists of the invertible matrices of the form

A =









a11 a12 0 0
a21 a22 0 0
a31 a32 u a34
a41 a42 0 a44









,

where u = a11a22 − a12a21. We have Z2(L,F) = 〈∆1,2,∆1,3,∆1,4,∆2,3,∆2,4〉, B2(L,F) = 〈∆1,2〉, and
so H2(L,F) = 〈∆1,3,∆1,4,∆2,3,∆2,4〉. The set of allowable subspaces S consists of the 2-dimensional
subspaces S = 〈ϑ1, ϑ2〉 such that ϑ⊥1 ∩ϑ⊥2 ∩〈x3, x4〉 = 0. If ϑ = (a, b, c, d) ∈ H2(L,F), then Aϑ = (ā, b̄, c̄, d̄)
where

ā = (a11a+ a21c)u;

b̄ = a11a34a+ a11a44b+ a21a34c+ a21a44d;

c̄ = (a12a+ a22c)u;

d̄ = a12a34a+ a12a44b+ a22a34c+ a22a44d.

Choose a 2-dimensional subspace S = 〈ϑ1, ϑ2〉 of S where ϑ1 = (a1, b1, c1, d1) and ϑ2 = (a2, b2, c2, d2).
If a1 = c1 = 0 and a2 = c2 = 0 then x3 ∈ ϑ⊥1 ∩ ϑ⊥2 , and hence S is not allowable. Thus, by possibly
swapping ϑ1 and ϑ2, we may assume without loss of generality that (a1, c1) 6= (0, 0). Let B be the first
of the following automorphisms if a1 6= 0 and let B be the second if a1 = 0 (which implies that c1 6= 0):









1 −c1 0 0
0 a1 0 0
0 0 a1 −a1b1
0 0 0 a21









,









0 1 0 0
−1 0 0 0
0 0 1 −d1
0 0 0 c1









.

Then the image BS is of the form 〈(1, 0, 0, d′1), (0, b
′
2, c

′
2, d

′
2)〉 which implies that we may assume without

loss of generality that S = 〈(1, 0, 0, d1), (0, b2, c2, d2)〉. We note that such an S is allowable if and only if
(d1, b2, d2) 6= (0, 0, 0).
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Suppose first that c2 = 0 and d2 6= 0. Then








d2 0 0 0
−b2 1 0 0
0 0 d2 d1b2
0 0 0 d2









S = 〈(1, 0, 0, 0), (0, 0, 0, 1)〉.

Next, we assume that c2 = 0 and d2 = 0. If d1 = 0 then S = 〈(1, 0, 0, 0), (0, 1, 0, 0)〉, while if d1 6= 0 then








d1 0 0 0
0 1 0 0
0 0 d1 0
0 0 0 d1









S = 〈(1, 0, 0, 1), (0, 1, 0, 0)〉.

Now suppose that c2 6= 0 and d2 = 0 and let C be the first or the second of the following matrices,
depending on whether b2 = 0 or not:









0 1 0 0
b2 0 0 0
0 0 −b2 0
0 0 0 −b2c2









,









d1 0 0 0
0 1 0 0
0 0 d1 0
0 0 0 d1









.

Then CS = 〈(1, 0, 0, 1), (0, ε, 1, 0)〉. Finally, assume that c2 6= 0 and d2 6= 0 and let D be the first or the
second of the following matrices depending on whether b2 6= 0:









d2 −d2 0 0
−b2 0 0 0
0 0 −b2d2 0
0 0 0 −b2c2









,









c2 (d1 − 1)c2 0 0
0 d2 0 0
0 0 c2d2 0
0 0 0 c22









.

Then DS = 〈(1, 0, 0, 1), (0, b̄2, 1, 1)〉, with b̄2 ∈ F. If charF 6= 2 then this gives no new orbit as








2 0 0 0
1 1 0 0
0 0 2 −2
0 0 0 4









〈(1, 0, 0, 1), (0, b̄2, 1, 1)〉 = 〈(1, 0, 0, 1), (0, 4b̄2 + 1, 1, 0)〉,

If charF = 2 then we obtain that S = 〈(1, 0, 0, 1), (0, ν, 1, 1)〉.
To summarize, if charF 6= 2 then the list of 2-spaces 〈(1, 0, 0, 0), (0, 0, 0, 1)〉, 〈(1, 0, 0, 0), (0, 1, 0, 0)〉,

〈(1, 0, 0, 1), (0, 1, 0, 0)〉, and 〈(1, 0, 0, 1), (0, ε, 1, 0)〉 with ε ∈ F contains at least one representative for each
of the Aut(L)-orbits on S. The corresponding Lie algebras are L6,27, L6,25, L6,23, and L6,24(ε). In charac-
teristic 2, such a set is formed by the subspaces above in addition to the subspaces 〈(1, 0, 0, 1), (0, ν, 1, 1)〉

with ν ∈ F. The Lie algebra that corresponds to the subspace 〈(1, 0, 0, 1), (0, ν, 1, 1)〉 is L
(2)
6,8(ν).

Finally, in this section we have to determine the possible isomorphisms of the Lie algebras in the

previous paragraph. First we note, for L = L6,24(ε) and L = L
(2)
6,8(ν), that C(L) = L3, while this equation

is not valid for L6,27, L6,23, or L6,25. In order to separate the Lie algebras L6,27, L6,25, L6,23 we use the
geometry of the Aut(L)-action on H2(L,F). The expressions for ā, b̄, c̄, and d̄ above give that the action
of the automorphism A on H2(L,F) is represented, with respect to the basis {∆1,3,∆1,4,∆2,3,∆2,4}, by
the matrix









a11u a11a34 a12u a12a34
0 a11a44 0 a12a44

a21u a21a34 a22u a22a34
0 a21a44 0 a22a44









=

(

a11 a12
a21 a22

)

⊗

(

u a34
0 a44

)

. (10)
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It is well-known that GL(2,F)⊗GL(2,F) preserves a quadratic form modulo scalars in its natural action
on F4. To exploit this fact in our situation, define a quadratic form Q on H2(L,F) as

Q(ϑ) = α1α4 − α2α3 where ϑ = (α1, α2, α3, α4).

Let A ∈ Aut(L) and decompose A as g1 ⊗ g2 as in (10). Then we have, for all ϑ ∈ H2(L,F), that

Q(Aϑ) = Q((g1 ⊗ g2)ϑ) = (det g1)(det g2)Q(ϑ).

Now to show that the subspaces obtained above are in different Aut(L)-orbits, notice that the sub-
space 〈(1, 0, 0, 0), (0, 1, 0, 0)〉 is totally singular. On the other hand, the singular vectors of the subspace
〈(1, 0, 0, 1), (0, 1, 0, 0)〉 are the elements of the 1-space 〈(0, 1, 0, 0)〉, and hence two singular vectors are
linearly dependent. Moreover, the singular vectors of the subspace 〈(1, 0, 0, 0), (0, 0, 0, 1)〉 are the ele-
ments of the 1-spaces 〈(1, 0, 0, 0)〉 and 〈(0, 0, 0, 1)〉, which shows that there is a pair of linearly inde-
pendent singular vectors. Thus these three subspaces are in different Aut(L)-orbits. Let us consider
now two subspaces of the form S1 = 〈(1, 0, 0, 1), (0, ε, 1, 0)〉 and S2 = 〈(1, 0, 0, 1), (0, ν, 1, 0)〉 and assume
that they are in the same Aut(L)-orbit; that is S2 = AS1 with some A ∈ Aut(L). If charF 6= 2,
then the Gram determinants of S1 and S2 with respect to the given bases are ε and ν, respectively.
Lemma 4.2(i) gives that ε

∗
∼ ν. Conversely, assume that charF 6= 2 and that ε

∗
∼ ν; that is ν = εα2

with some α ∈ F∗. Let A be the diagonal automorphism of L with (α, 1, α, α2) in the diagonal.
Then A〈(1, 0, 0, 1), (0, ε, 1, 0)〉 = 〈(1, 0, 0, 1), (0, ν, 1, 0)〉. Hence the subspaces 〈(1, 0, 0, 1), (0, ε, 1, 0)〉 and

〈(1, 0, 0, 1), (0, ν, 1, 0)〉 are in the same Aut(L)-orbit if and only if ε
∗
∼ ν. This settles the isomorphisms

among the possible step-2 descendants of L4,2 in the cases when charF 6= 2.
Suppose next that charF = 2 and let

S1 = 〈(1, 0, 0, 1), (0, ε1, 1, 0)〉 and S2 = 〈(1, 0, 0, 1), (0, ε2, 1, 0)〉,

as above. Since f is identically zero on S1 and S2 and, for i = 1, 2, Q(1, 0, 0, 0, 0, 1)Q(0, 1, 0, 0, εi, 0) = εi,
we obtain from Lemma 4.2(iii) that ε2 = α2ε1 + β2 with some α ∈ F∗ and β ∈ F. Suppose conversely

that charF = 2 and that ε1
∗+
∼ ε2; that is ε2 = α2ε1 + β2 with some α ∈ F∗ and β ∈ F. Let A be the

automorphism of L represented by the matrix








α 0 0 0
β 1 0 0
0 0 α αβ
0 0 0 α2









.

Then AS1 = S2, which gives, when charF = 2, that 〈(1, 0, 0, 1), (0, ε1, 1, 0)〉 and 〈(1, 0, 0, 1), (0, ε2, 1, 0)〉

are in the same Aut(L)-orbit if and only if ε1
∗+
∼ ε2.

Suppose now that S1 = 〈(1, 0, 0, 1), (0, ν1, 1, 1)〉 and S2 = 〈(1, 0, 0, 1), (0, ν2, 1, 1)〉 and assume that
S1 and S2 are in the same Aut(L)-orbit; that is, there is some A ∈ Aut(L) such that S1A = S2. The
restriction of f on S1 and on S2 is non-singular, and the given bases of S1 and S2 are symplectic. Further,
the Arf invariants of S1 and S2 with respect to these bases are ν1 and ν2, respectively. Thus Lemma 4.2(iii)
gives that ν1 + ν2 ∈ {α2 +α | α ∈ F}. Conversely, suppose that ν1, ν2 ∈ F such that x2 + x+ ν1 + ν2 has
a solution α in F. Let A denote the automorphism represented by the matrix









1 0 0 0
α 1 0 0
0 0 1 α
0 0 0 1









.

Then AS1 = S2, and so two subspaces 〈(1, 0, 0, 1), (0, ν1, 1, 1)〉 and 〈(1, 0, 0, 1), (0, ν2, 1, 1)〉 are in the same
Aut(L)-orbit if and only if the polynomial x2 + x+ ν1 + ν2 has a root in F.
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