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CLASSES OF EXTENSION MODULES BY SERRE SUBCATEGORIES

TAKESHI YOSHIZAWA

Abstract. In [5], R. Takahashi showed an existence of isomorphism of lattices between the
set of all Serre subcategories of the category consisting of all finitely generated modules and
the set of all specialization closed subsets of the set of all prime ideals. In this paper, to
find a way of constructing Serre subcategories of the modules category, we consider classes of
extension modules of Serre subcategory by another one and study when these classes are Serre
subcategory.

1. Introduction

Let R be a commutative noetherian ring, R-Mod be the category of all R-modules and R-mod
be the full subcategory of all finitely generated R-modules.

In [4], A. Neeman showed that there exists an isomorphism of lattices between the set of
all smashing subcategories of the derived category of R-Mod and the set of all specialization
closed subsets of Spec(R). After of this, R. Takahashi constructed a module version of Neeman’s
theorem in [5]. Specifically, he showed that there exists an isomorphism of lattices between the
set of all Serre subcategories of R-mod and the set of all specialization closed subsets of Spec(R).

A Serre subcategory is defined to be a full subcategory which is closed under submodules,
quotients and extensions. Recently, many authors study the Serre subcategory not only in
the category theory but also local cohomology theory. (For example see [1].) By the above
Takahashi’s result, we can give all Serre subcategories of R-mod. However, we want to find
a way of constructing examples of Serre subcategory of R-Mod with a view of treating Serre
subcategory in local cohomology theory. Therefore, one of the main purposes of this paper is to
give a this way by considering the classes of extension modules of Serre subcategory by another
one.

To be more precise, for two Serre subcategories S1 and S2 of R-Mod, we consider a following
class of extension modules

(S1,S2) =

{

M ∈ R-Mod | there are S1 ∈ S1 and S2 ∈ S2 such that
0 −→ S1 −→ M −→ S2 −→ 0 is exact.

}

.

For example, a class (Sf.g.,SArtin) is known the set of all Minimax modules where Sf.g. is the
set of all finitely generated R-modules and SArtin is the set of all Artinian modules. In [2],
K. Bahmanpour and R. Naghipour showed that this class is a Serre subcategory. However,
in general, a class (S1,S2) is not Serre subcategory. In fact, a class (SArtin,Sf.g.) is not it.
In this paper, we shall give a necessary and sufficient condition that a class (S1,S2) is Serre
subcategory and several examples of Serre subcategory (S1,S2). In particular, we shall see that
the following classes are Serre subcategories:

(1) A class (S1,S2) for Serre subcategories S1 and S2 of R-mod;

(2) A class (Sf.g.,S) for any Serre subcategory S of R-Mod;

(3) A class (S,SArtin) for any Serre subcategory S of R-Mod.
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The organization of this paper is as follows.
In section 2, we shall give the definition of classes (S1,S2) of extension modules related to

Serre subcategories S1 and S2 of R-Mod and study basic properties.
In section 3, we shall treat Serre subcategories of R-mod. In particular, we show the above

example (1) is Serre subcategory of R-mod. (Theorem 3.3.)
The section 4 is a main part of this paper. We give a necessary and sufficient condition for

a class (S1,S2) is Serre subcategory. (Theorem 4.2.)
In section 5, we apply our argument to the local cohomology theory involving the condition

CI for an ideal I of R which is defined in [1].

2. The definition of classes of extension modules by Serre subcategories

Throughout this paper, all rings are commutative noetherian ring and all modules are unitary.
We assume that all full subcategories S of R-Mod and R-mod are closed under isomorphisms,
that is if M ∈ S and R-module N is isomorphic to M then N ∈ S.

In this section, we shall give the definition of classes of extension modules by Serre subcate-
gories and study basic properties.

Recall that a class S of R-Mod is said to be a Serre subcategory of R-Mod if S is closed
under submodules, quotients and extensions. We also say that a Serre subcategory S of R-Mod
is a Serre subcategory of R-mod if S consists of finitely generated R-modules.

Definition 2.1. Let S1 and S2 be Serre subcategories of R-Mod. We denote by (S1,S2) the
class of all R-modules M with some R-modules S1 ∈ S1 and S2 ∈ S2 such that a sequence
0 → S1 →M → S2 → 0 is exact, that is

(S1,S2) =

{

M ∈ R-Mod | there are S1 ∈ S1 and S2 ∈ S2 such that
0 −→ S1 −→ M −→ S2 −→ 0 is exact.

}

.

We shall refer to (S1,S2) as a class of extension modules of S1 by S2.

Remark 2.2. Let S1 and S2 be Serre subcategories of R-Mod.

(1) Since the zero module belongs to any Serre subcategory, it holds S1 ⊆ (S1,S2) and S2 ⊆
(S1,S2).

(2) It holds S1 ⊇ S2 if and only if (S1,S2) = S1.

(3) It holds S1 ⊆ S2 if and only if (S1,S2) = S2.

(4) A class (S1,S2) is closed under finite direct sums.

Example 2.3. We denote by Sf.g. the set of all finitely generated R-modules and by SArtin the
set of all Artinian modules. Then a class (Sf.g.,SArtin) is the set of all Minimax R-modules and
a class (SArtin,Sf.g.) is the set of all Maxmini R-modules.

Proposition 2.4. Let S1 and S2 be Serre subcategories of R-Mod. Then a class (S1,S2) is

closed under submodules and quotients.

Proof. Let 0 → L → M → N → 0 be an exact sequence of R-modules and assume that M is
in (S1,S2). We shall show that L and N are in (S1,S2).

There exists S1 ∈ S1 and S2 ∈ S2 such that

0 −→ S1
ϕ
−→ M −→ S2 −→ 0

is an exact sequence. Then we can construct a following commutative diagram
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0 0 0




y





y





y

0 −−−→ S1 ∩ L −−−→ S1 −−−→
S1

S1 ∩ L
−−−→ 0





y





y

ϕ





y

ϕ

0 −−−→ L −−−→ M −−−→ N −−−→ 0




y





y





y

0 −−−→
L

S1 ∩ L
−−−→ S2 −−−→ N ′ −−−→ 0





y





y





y

0 0 0

with exact rows and columns where ϕ is a natural map induced by ϕ and N ′ = Coker(ϕ).
Since S1 and S2 are Serre subcategories, we see that S1 ∩L , S1/(S1 ∩L) ∈ S1 and L/(S1 ∩L),
N ′ ∈ S2. Therefore, L and N are in (S1,S2). �

A natural question arises.

Question. For any Serre subcategory S1 and S2, is the class (S1,S2) Serre subcategory?

For example, K. Bahmanpour and R. Naghipour showed that the class (Sf.g.,SArtin) is a Serre
subcategory in [2, Lemma 2.1]. The Proposition 2.4 says that a class (S1,S2) is a Serre sub-
category if this class is closed under extension. However, the conclusion in above question does
not hold in general.

Example 2.5. We shall see the class (SArtin,Sf.g.) is not necessary closed under extension.
Let (R,m) be a Gorenstein local ring of dimension one with maximal ideal m. Then we have

a minimal injective resolution

0 → R →
⊕

p ∈ Spec(R),

htp = 0

ER(R/p) → ER(R/m) → 0

of R. (For an R-module M , E(M) denotes the injective hull of M .) We note R and ER(R/m)
are in (SArtin,Sf.g.).

Now, we suppose that (SArtin,Sf.g.) is closed under extension. Then ER(R) = ⊕htp=0ER(R/p)
is in (SArtin,Sf.g.), and so there exists an Artinian R-submodule N of ER(R) with ER(R)/N
is a finitely generated R-module. But, since R is a Gorenstein local ring of dimension one, N
must be zero module. Thus ER(R) is a finitely generated injective R-module. By the Bass
formula, it holds dimR = depthR = inj dimER(R) = 0. This is a contradiction.

3. Classes of extension modules by Serre subcategories of R-mod

In this section, we shall see that a class (S1,S2) is a Serre subcategory for Serre subcategories
S1 and S2 of R-mod.

Recall that a subset W of Spec(R) is said to be a specialization closed subset if p ∈ W and
p ⊆ q ∈ Spec(R) imply q ∈ W . ΓW denotes the section functor with support in a specialization
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closed subset W of Spec(R), that is

ΓW (M) = {x ∈M | Supp(Rx) ⊆W}

for each R-module M .

Let us start to prove following two lemmas.

Lemma 3.1. Let M be an R-module and W be a specialization closed subset of Spec(R). Then
Ass(ΓW (M)) and Ass(M/ΓW (M)) are disjoint, and that

Ass(M) = Ass(ΓW (M)) ∪Ass(M/ΓW (M)).

Proof. It is clear that Ass(ΓW (M)) ⊆ W and Ass(M/ΓW (M)) ∩W = ∅. Thus Ass(ΓW (M)) ∪
Ass(M/ΓW (M)) is disjoint union.

To see the equality, it is enough to show that Ass(M/ΓW (M)) ⊆ Ass(M). Let ER(M) be an
injective hull of M . Then ΓW (ER(M)) is also an injective R-module. (Also see [6, Theorem
2.7].) We consider the following commutative diagram

0 −−→ ΓW (M) −−→ M −−→ M/ΓW (M) −−→ 0




y

ΓW (ϕ)=ϕ|ΓW (M)





y

ϕ





y

ϕ

0 −−→ ΓW (ER(M)) −−→ ER(M) −−→ ER(M)/ΓW (ER(M)) −−→ 0

with exact rows where ϕ is an inclusion map from M to ER(M) and ϕ is a homomorphism
induced by ϕ. It follows from the injectivity of ΓW (ER(M)) that the second row is a split exact
sequence, so that it holds

ER(M) = ΓW (ER(M))⊕ ER(M)/ΓW (ER(M))

and ER(M)/ΓW (ER(M)) is an injective R-module.
Here, we note that ϕ is monomorphism. Actually, we assume m ∈ M such that ϕ(m +

ΓW (M)) = 0 ∈ ER(M)/ΓW (ER(M)). Then m ∈ M ∩ ΓW (ER(M)) = ΓW (M). Thus m +
ΓW (M) = 0 ∈M/ΓW (M).

By properties of injective hulls, it holds

Ass(M/ΓW (M)) = Ass
(

ER(M/ΓW (M))
)

⊆ Ass
(

ER(M)/ΓW (ER(M))
)

⊆ Ass(ER(M))

= Ass(M).

The proof is completed. �

If Serre subcategories S1 and S2 are related to specialization closed subsets, then the structure
of a class (S1,S2) is clear.

Lemma 3.2. For specialization closed subsets W1 and W2 of Spec(R), the following assertions

hold.

(1) We set Si = {M ∈ R-Mod | Supp(M) ⊆Wi} for i = 1, 2. Then it holds

(S1,S2) = {M ∈ R-Mod | Supp(M) ⊆W1 ∪W2}.

(2) We set Si = {M ∈ R-mod | Supp(M) ⊆Wi} for i = 1, 2. Then it holds

(S1,S2) = {M ∈ R-mod | Supp(M) ⊆W1 ∪W2}.

In particular, (S1,S2) in (1) and (2) are Serre subcategories.
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Proof. (1) If M is in (S1,S2), then there exists a short exact sequence 0 → S1 → M → S2 → 0
with S1 ∈ S1 and S2 ∈ S2. Then Supp(M) = Supp(S1) ∪ Supp(S2) ⊆W1 ∪W2.

Conversely, let M be an R-module with Supp(M) ⊆ W1 ∪W2. We consider a short exact
sequence

0 → ΓW1(M) → M → M/ΓW1(M) → 0.

We note Supp(ΓW1(M)) ⊆ W1. Therefore, to prove our assertion, it is enough to show that it
holds Ass(M/ΓW1(M)) ⊆W2. It follows from Lemma 3.1 that we have

Ass(M/ΓW1(M)) ⊆ Ass(M) ⊆ Supp(M) ⊆W1 ∪W2.

Furthermore, we note Ass(M/ΓW1(M)) ∩W1 = ∅. Consequently, it holds Ass(M/ΓW1(M)) ⊆
W2, so M is in (S1,S2).
(2) We can show the assertion by the same argument in (1). �

Now, we can prove the purpose of this section.

Theorem 3.3. Let S1 and S2 be Serre subcategories of R-mod. Then a class (S1,S2) is a Serre

subcategory of R-mod.

Proof. By [5, Theorem 4.1], there is a bijection between the set of all Serre subcategories
of R-mod and the set of all specialization closed subsets of Spec(R). Thus, there exists a
specialization closed subset W1 (resp. W2) of Spec(R) corresponding to the Serre subcategory
S1 (resp. S2). In particular, we can denote

Si = {M ∈ R-mod | Supp(M) ⊆Wi} and Wi =
⋃

M∈Si

Supp(M)

for each i. By lemma 3.2, it holds

(S1,S2) = {M ∈ R-mod | Supp(M) ⊆W1 ∪W2}

and this is a Serre subcategory of R-mod. �

4. The condition of closed under extension for (S1,S2)

Let S1 and S2 be Serre subcategories of R-Mod. In this section, we shall give a necessary
and sufficient condition that a class (S1,S2) is Serre subcategory and several examples of Serre
subcategory (S1,S2).

We start to prove the following lemma. If a class (S1,S2) is Serre subcategory, then we have
already seen (S1, (S1,S2)) = ((S1,S2),S2) = (S1,S2) in Remark 2.2. However, we can see that
the following assertion holds without such an assumption.

Lemma 4.1. Let S1 and S2 be Serre subcategories of R-Mod. We suppose that a sequence

0 → L→M → N → 0 of R-modules is exact. Then the following assertions hold.

(1) If L ∈ S1 and N ∈ (S1,S2), then M ∈ (S1,S2).

(2) If L ∈ (S1,S2) and N ∈ S2, then M ∈ (S1,S2).

Proof. (1) We assume L ∈ S1 and N ∈ (S1,S2). Since N is in (S1,S2), there exists an exact
sequence 0 → S → N → T → 0 with S ∈ S1 and T ∈ S2. Then we have a pull buck diagram
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0 0




y





y

0 −−−→ L −−−→ S ′ −−−→ S −−−→ 0

‖




y





y

0 −−−→ L −−−→ M −−−→ N −−−→ 0




y





y

T T




y





y

0 0

with exact rows and columns. Since S1 is a Serre subcategory, it follows from the first row that
S ′ is in S1. Thus, by the middle column, we see that M is in (S1,S2).
(2) We assume L ∈ (S1,S2) and N ∈ S2. Since L is in (S1, S2), there exists an exact sequence
0 → S → L→ T → 0 with S ∈ S1 and T ∈ S2. Then we have a push out diagram

0 0




y





y

S S




y





y

0 −−−→ L −−−→ M −−−→ N −−−→ 0




y





y
‖

0 −−−→ T −−−→ T ′ −−−→ N −−−→ 0




y





y

0 0

with exact rows and columns. Since S2 is a Serre subcategory, it follows from the third row
that T ′ is in S2. Thus, by the middle column, we see that M is in (S1,S2). �

Now, we can show the main purpose of this paper.

Theorem 4.2. For Serre subcategories S1 and S2 of R-Mod, the following conditions are

equivalent:

(1) A class (S1,S2) is Serre subcategory;

(2) It holds (S2,S1) ⊆ (S1,S2).

Proof. (1) ⇒ (2) We assume that M is in (S2,S1). By the definition of the class (S2,S1), there
exists an exact sequence

0 → S2 →M → S1 → 0

where S1 ∈ S1 and S2 ∈ S2. We note S1 ∈ S1 ⊆ (S1,S2) and S2 ∈ S2 ⊆ (S1,S2). Since a class
(S1,S2) is closed under extension by the assumption (1), we see that M is in (S1,S2).

(2) ⇒ (1) We only have to prove that a class (S1,S2) is closed under extension by Proposition
2.4. Let 0 → L → M → N → 0 be an exact sequence such that L and N are in (S1,S2). We
shall show that M is also in (S1,S2).
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It follows from L ∈ (S1,S2) that there exists a short exact sequence

0 → S → L→ L/S → 0

where S ∈ S1 with L/S ∈ S2. We have a push out diagram

0 0




y





y

S S




y





y

0 −−−→ L −−−→ M −−−→ N −−−→ 0




y





y
‖

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0




y





y

0 0

with exact rows and columns. Next, it follows from N ∈ (S1,S2) that there exists a short exact
sequence

0 → T → N → N/T → 0

where T ∈ S1 with N/T ∈ S2. We have a pull back diagram

0 0




y





y

0 −−−→ L/S −−−→ P ′ −−−→ T −−−→ 0

‖




y





y

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0




y





y

N/T N/T




y





y

0 0
with exact rows and columns.

In the first row of the second diagram, it follows from L/S ∈ S2 and T ∈ S1 that we see
P ′ ∈ (S2,S1). Now here, by the assumption (2), P ′ is in (S1,S2). Next, in the middle column
of the second diagram, we have the short exact sequence with P ′ ∈ (S1,S2) and N/T ∈ S2.
Therefore, it follows from Lemma 4.1 that P is in (S1,S2). Finally, in the middle column of
the first diagram, we have the short exact sequence with S ∈ S1 and P ∈ (S1,S2). Thus, we
see that M is in (S1,S2) by Lemma 4.1.

The proof is completed. �

In the rest of this section, we shall give several examples of Serre subcategory (S1,S2). The
first example is a generalization of [2, Lemma 2.1] which states that (Sf.g.,SArtin) is a Serre
subcategory.

Corollary 4.3. A class (Sf.g.,S) is a Serre subcategory for any Serre subcategory S of R-Mod.
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Proof. Let S be a Serre subcategory of R-Mod. To prove our assertion, it is enough to show
(S,Sf.g.) ⊆ (Sf.g.,S) by Theorem 4.2. LetM be in (S,Sf.g.). Then there exists an R-submodule
L ∈ S of M with M/L ∈ Sf.g.. It is easy to see that there exists a finitely generated R-
submodule K of M such that M = K + L. Since K ⊕ L ∈ (Sf.g.,S) and M is a homomorphic
image of K ⊕ L, M is in (Sf.g.,S). �

Example 4.4. Let R be a domain but not a field, and Q be a field of fractions of R. We set
STor the set of all torsion R-modules, that is STor = {M ∈ R-Mod | M ⊗R Q = 0}. Then we
shall see that it holds

(STor,Sf.g.) $ (Sf.g.,STor) = {M ∈ R-Mod | dimQM ⊗R Q <∞}.

So (Sf.g.,STor) is a Serre subcategory, but (STor,Sf.g.) is not closed under extension by theorem
4.2.

First of all, we shall show that the above equality holds. We suppose thatM is in (Sf.g.,STor).
Then there exists a short exact sequence

0 −→ L −→ M −→ N −→ 0

with L ∈ Sf.g. and N ∈ STor. We apply an exact functor − ⊗R Q to this sequence, then we
see that M ⊗R Q ∼= L⊗R Q is a finite Q-vector space. Conversely, let M be an R-module with
dimQM ⊗R Q < ∞. Then we can denote M ⊗R Q =

∑n
i=1Q(mi ⊗ 1Q) with mi ∈ M and the

unit element 1Q of Q. We consider a short exact sequence

0 −→
∑n

i=1Rmi −→ M −→ M/
∑n

i=1Rmi −→ 0.

It is clear that
∑n

i=1Rmi ∈ Sf.g. and M/
∑n

i=1Rmi ∈ STor. So M is in (Sf.g.,STor).
Next, it is clear that M ⊗R Q has a finite dimension as Q-vector space for M ∈ (STor,Sf.g.).

Thus it holds (STor,Sf.g.) ⊆ (Sf.g.,STor).

Finally, we shall see (STor,Sf.g.) $ (Sf.g.,STor). We fix a non-inverse element r 6= 0 of R

and consider M = R +
∑

n∈NR
1

rn
. Then it holds dimQM ⊗R Q = 1, so M is in (Sf.g.,STor).

We suppose that M is in (STor,Sf.g.). Since R is domain and M is R-submodule of Q, torsion
R-submodule of M is only zero module. This means that M must be a finitely generated
R-module. But, this is a contradiction. Consequently, it holds M ∈ (Sf.g.,STor) \ (STor,Sf.g.).

We note that SArtin is a Serre subcategory with closed under injective hulls. Therefore we
can see that a class (S,SArtin) is also Serre subcategory for any Serre subcategory of R-Mod
by a following assertion.

Corollary 4.5. Let S2 be a Serre subcategory of R-Mod with closed under injective hulls. Then

a class (S1,S2) is a Serre subcategory for any Serre subcategory S1 of R-Mod.

Proof. By Theorem 4.2, it is enough to show (S2,S1) ⊆ (S1,S2).
We assume that M is in (S2,S1) and shall show that M is in (S1,S2). Then there exists a

short exact sequence

0 −→ S2
i
−→ M −→ S1 −→ 0

with S1 ∈ S1 and S2 ∈ S2. Since S2 is closed under injective hulls, the injective hull ER(S2)
of S2 is in S2. It follows from the injectivity of ER(S2) that there exists a homomorphism
ϕ :M → ER(S2) such that j = ϕ ◦ i where j is the inclusion map from S2 to ER(S2). Here, we
consider a push out diagram
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0 0




y





y

Ker(ϕ)
η=ψ|Ker(ϕ)
−−−−−−→ Ker(β)





y





y

0 −−−−−→ S2
i

−−−−−→ M
ψ

−−−−−→ S1 −−−−−→ 0




y

j=ϕ|S2





y

ϕ





y

β

0 −−−−−→ Ker(α) −−−−−→ Im(ϕ)
α

−−−−−→ T




y

0

with exact rows and columns where

T = (Im(ϕ)⊕ S1)/{
(

ϕ(m),−ψ(m)
)

| m ∈M},

α(t) = (t, 0) for t ∈ Im(ϕ) and β(s) = (0, s) for s ∈ S1.
To prove our assertion, we shall show that Ker(ϕ) is in S1 and Im(ϕ) is in S2. Since Im(ϕ) is

R-submodule of ER(S2), Im(ϕ) is in S2. To prove the first, all we have to see that η is injective.
Indeed, it follows from the injectivity of η that we see Ker(ϕ) ⊆ Ker(β) ⊆ S1 ∈ S1.

We shall see that η is injective. Letm ∈ Ker(ϕ) such that η(m) = 0. Then ϕ(m) = 0 ∈ Im(ϕ)
and ψ(m) = 0 ∈ S1, and so m ∈ S2 and 0 = ϕ(m) = ϕ ◦ i(m) = j(m). It follows from the
injectivity of j that we have m = 0. Consequently, η is injective.

The proof is completed. �

Remark 4.6. If S1 and S2 be Serre subcategories of R-Mod with closed under injective hulls,
then we can see that a class (S1, S2) is also a Serre subcategory with closed under injective
hulls as following.

Let M be in (S1,S2) and we shall prove that ER(M) is also in (S1,S2). There exists a short
exact sequence 0 → L → M → N → 0 with L ∈ S1 and N ∈ S2. We consider a commutative
diagram

0 0 0




y





y





y

0 −−−→ L
ϕ

−−−→ M
ψ

−−−→ N −−−→ 0




y

σ





y

η





y

τ

0 −−−→ ER(L) −−−→ ER(L)⊕ER(N) −−−→ ER(N) −−−→ 0

with exact rows and columns. (For m ∈M , we define η(m) = (µ(m), τ ◦ψ(m)) where µ :M →
ER(L) is a homomorphism induced by the injectivity of ER(L) such that σ = µ◦ϕ.) Therefore,
ER(M) is a direct summand of ER(L) ⊕ ER(N) ∈ (S1,S2), and so ER(M) is in (S1,S2) by
Proposition 2.4.
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5. On conditions CI for (S1, S2)

Let I be an ideal of R. The following conditions CI were defined for Serre subcategories of
R-Mod by M. Aghapouranahr and L. Melkersson in [1]. Here, we shall apply this conditions to
classes of R-modules.

Definition 5.1. Let C be a class of R-modules and I be an ideal of R. We say that C satisfies
the condition CI if the following condition satisfied:

(CI) If M = ΓI(M) and (0 :M I) is in C, then M is in C.

If the class (S1,S2) is a Serre subcategory, we have already seen that it holds (S2,S1) ⊆
(S1,S2). In this section, we shall see that the condition CI for a class (S2,S1) induces the
condition CI for a Serre subcategory (S1,S2).

Lemma 5.2. Let S1 and S2 be subcategories of R-Mod. We suppose that N is a finitely

generated R-module and M is in (S1,S2). Then ExtiR(N,M) ∈ (S1,S2) for all integer i.

Proof. Since (S1,S2) is closed under finite direct sums, submodules and quotients, this is clear.
�

Theorem 5.3. Let I be an ideal of R and S1,S2 be Serre subcategories of R-Mod. We suppose

that (S1,S2) is a Serre subcategory of R-Mod. If a class (S2,S1) satisfies the condition CI , then
(S1,S2) also satisfies the condition CI .

Proof. Suppose that M = ΓI(M) and (0 :M I) ∈ (S1,S2). Then we have to show M ∈ (S1,S2).
Since (0 :M I) ∈ (S1,S2), there exists an R-submodule L ∈ S1 of (0 :M I) such that

(0 :M I)/L ∈ S2. We consider a commutative diagram

0 −−−→ L −−−→ (0 :M I) −−−→ (0 :M I)/L −−−→ 0

‖




y





y

0 −−−→ L −−−→ M −−−→ M/L −−−→ 0

with exact rows. To prove our assertion, it is enough to show that

ΓI(M/L) =M/L and (0 :M/L I) ∈ (S2,S1).

Indeed, if we can show these, then M/L is in (S2,S1) by the condition CI for (S2,S1). Fur-
thermore, since (S1,S2) is a Serre subcategory, it holds (S2,S1) ⊆ (S1,S2) by Theorem 4.2.
Therefore it follows from L ∈ S1 and M/L ∈ (S1,S2) that M is in (S1,S2).

The first is clear by Supp(M/L) ⊆ Supp(M) ⊆ V (I). To see the second, we apply a functor
HomR(R/I,−) to the short exact sequence

0 → L→ M → M/L→ 0.

Then there exists an exact sequence

0 −→ (0 :L I) −→ (0 :M I)
ϕ

−→ (0 :M/L I) −→ Ext1R(R/I, L).

It follows from L ⊆ (0 :M I) that we have (0 :L I) = L, so that Im(ϕ) ∼= (0 :M I)/L ∈ S2.
Moreover, we have Ext1R(R/I, L) ∈ S1 by Lemma 5.2. Consequently, we see (0 :M/L I) ∈
(S2,S1).

The proof is completed. �

Finally, we try to apply the notion of (S1,S2) to the local cohomology theory. It seems that
we can rewrite several results of it concerned with Serre subcategories. However, we shall only
rewrite [3, 7.1.6 Theorem] as demonstration here.
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Proposition 5.4. Let (R,m) be a local ring and I be an ideal of R. For non-zero Serre

subcategories S1 and S2 of R-Mod, we suppose that a class (S1,S2) satisfies the condition CI .
Then HdimM

I (M) ∈ (S1,S2) for any finitely generated R-module M .

Proof. We use induction on n = dimM . If n = 0,M has finite length. Since it is clear that finite
length R-modules are in any non-zero Serre subcategory, it holds ΓI(M) ∈ S1 ∪ S2 ⊆ (S1,S2).

Now suppose that n > 0 and we have established the result for finitely generated R-modules
of dimension smaller than n. It is clear that H i

I(M) ∼= H i
I(M/ΓI(M)) for all i > 0. Thus we

may assume that ΓI(M) = 0. Then the ideal I contains an M-regular element x. Therefore
there exists a short exact sequence

0 −→ M
x

−→ M −→ M/xM −→ 0,

and this sequence induces an exact sequence

Hn−1
I (M/xM) −→ Hn

I (M)
x

−→ Hn
I (M) −→ 0.

By the induction hypothesis, Hn−1
I (M/xM) ∈ (S1,S2). Here, since (S1,S2) is closed under

quotients, (0 :Hn
I
(M) x) is in (S1,S2). Furthermore, since (0 :Hn

I
(M) I) ⊆ (0 :Hn

I
(M) x) and

(S1,S2) is closed under submodules, (0 :Hn
I
(M) I) is in (S1,S2). It follows from the condition

CI for (S1,S2) that H
n
I (M) is in (S1,S2).

The proof is completed. �
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