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A GEOMETRIC REFINEMENT OF A THEOREM OF CHEKANOV

FRANÇOIS CHARETTE

Abstract. We prove a conjecture of Barraud and Cornea ([BaC2]) in the monotone set-

ting, refining a result of Chekanov on the Hofer distance between two Hamiltonian isotopic

Lagrangian submanifolds.

1. Introduction

Given L and L′ two monotone Hamiltonian isotopic Lagrangian submanifolds of a sym-

plectic manifold (M2n, ω), consider an embedded symplectic ball of radius r with real part

lying on L which is disjoint from L′. The main result of this article relates the radius of this

ball to the Hofer distance ∇(L, L′) between the two Lagrangians:

Theorem 1.1. Let r be as above, then π
2
r2 ≤ ∇(L, L′).

The main ingredient we will use in the proof is the following

Theorem 1.2. Let L, L′ be two monotone Hamiltonian isotopic Lagrangian submanifolds

of a tame symplectic manifold M . Then for every generic almost complex structure J and

every x ∈ L\L′, there exists a map u that is either a J-holomorphic strip with boundary on

L and L′, or a J-holomorphic disk with boundary on L, such that µ(u) ≤ n, x ∈ Im(u) and
∫

u∗ω ≤ ∇(L, L′).

This solves a conjecture of Barraud and Cornea [BaC2], which was stated in the more

general non-monotone case. It also shows that the Hofer distance is non-degenerate, thus

recovering a result of Chekanov [C].

Applying Theorem 1.2 to a displaceable Lagrangian, we recover the well known result that

through every point of L there is a pseudo-holomorphic disk of symplectic area less than the

disjunction energy. This implies yet another result of Chekanov [C2], claiming that the

energy needed to hamiltonialy displace a Lagrangian submanifold is at least the symplectic

area of the smallest non constant pseudo-holomorphic disk or sphere.
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Our theorem also recovers a result of Barraud and Cornea ([BaC], [BaC2]) saying that

when the distance between two Lagrangians is smaller than the bubbling threshold, or if

there are neither pseudo-holomorphic disks nor spheres, then through every point of L there

is a strip of Maslov index at most n whose symplectic area is smaller than ∇(L, L′).

These direct applications of theorem 1.2 can be thought of as two extreme cases, one in

which there are no strips, and one in which there are no disks. The novelty of our result lies

in the intermediate case, where it is a priori not clear if a strip or a disk exist. Theorem 1.2

tells us that one of them exists and has a small enough energy.

The tricky part in showing such a result is that it is not enough to look at the Lagrangian

Floer homology of L, nor its quantum homology, as they might vanish. However, we find

strips or disks of a given energy by working directly at the chain level. The main ingredients

we will use are an action of the pearl complex on the Floer complex (see §3.5) combined

with a chain homotopy between the identity and the composition PSS−1◦PSS (see §3.4).

We will define all the relevant structures to prove the main theorem in the next section,

then proceed with the proof of the theorem and give some energy estimates needed therein.

The reader familiar with Lagrangian quantum homology should go to §4 and come back to

the previous sections for the relevant definitions.
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3. Algebraic structures

3.1. Definitions and conventions. We will only consider connected tame symplectic man-

ifolds (M,ω) of dimension 2n. The set of all ω-compatible almost complex structures is

denoted J and gω,J(·, ·) := ω(·, J ·) is the associated Riemannian metric, sometimes written

as a scalar product < ·, · >.

Let H(M) := {H :M × [0, 1] → R | supp H is compact} endowed with the norm

||H|| =

∫ 1

0

maxHt −minHtdt.
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The symplectic gradient of H ∈ H is the unique one-parameter family of vector fields

defined by

ıXt

H
ω = −dHt.

These vector fields generate the Hamiltonian flow Ψt by the differential equation

d

dt
Ψt = X t

H ◦Ψt, Ψ0 = id.

The set of all time-1 Hamiltonian flows is called the group of Hamiltonian diffeomorphisms

(or isotopies) and is denoted by Ham(M,ω). The energy of a Hamiltonian isotopy φ ∈

Ham(M,ω) is

E(φ) = inf
H|ΨH

1
=φ
{||H||}.

A submanifold L ⊂ M is Lagrangian if dimL = n =
1

2
dimM and ω|T∗L = 0. We

only consider closed (i.e. connected and compact) Lagrangians. There are two important

homomorphisms associated to such a submanifold, namely the symplectic area of disks with

boundary on L:

ω :π2(M,L) → R

u 7→

∫

D2

u∗ω

and the Maslov index:

µ : π2(M,L) → Z.

The Maslov index maps a disk to the homotopy class of a loop in Λ(R2n), which is the set of

all Lagrangian subspaces of R2n, by following the tangent space of L along the boundary of

the disk. See [MS] for a precise definition. The image of this morphism is then NLZ, where

NL ≥ 0 is called the minimal Maslov class.

In this article, all Lagrangians are monotone , which means that NL ≥ 2 and that

there is a constant τ > 0 satisfying

ω(A) = τµ(A) ∀A ∈ π2(M,L).

Moreover, we only consider non-degenerate Hamiltonians, i.e. we require that L and Ψ1(L)

intersect transversally. As is now well known, these are standard requirements for the defi-

nition of Lagrangian Floer homology as well as Lagrangian quantum homology.
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Given a fixed Lagrangian submanifold L, let L(L) := {φ(L) | φ ∈ Ham} be the set of all

Lagrangians that are Hamiltonian isotopic to L. The Hofer distance on this set is defined

by

∇ : L × L → R

∇(L, L′) = inf
φ∈Ham|φ(L)=L′

{E(φ)}.

3.1.1. Simple and absolutely distinct pseudo-holomorphic disks. In order to define various

algebraic structures, we need to consider spaces of pseudo-holomorphic disks with Lagrangian

boundary conditions satisfying some incidence relations, e.g. the boundary should intersect

some unstable manifolds transversally. The general procedure usually go as follows. First,

we define a space involving disks, Floer strips and other objects and compute its virtual

dimension. Second, we show that when the virtual dimension is at most one, then this space

is a manifold whose actual dimension is equal to its virtual one. The key step will often

amount to showing that the disks involved are simple and absolutely distinct, which is done

by an induction on the total Maslov class and relies on a technical result of Lazarrini (see

[BiC3] and [La]).

As this has been treated thoroughly by Biran and Cornea, we will not insist on these

conditions, but the reader should bear them in mind when considering the various moduli

spaces.

3.1.2. Morse theory. Given a Morse-Smale function f and ρ a Riemannian metric, we denote

by Crit(f) the set of all critical points of f , φt the negative gradient flow and W u(x) (resp.

W s(x)) the unstable (resp. stable) manifold of a critical point x. The Morse index of a

critical point x is defined by |x| = dimW u(x) and induces a grading on Crit(f).

3.2. Lagrangian quantum homology.

3.2.1. The pearl complex. We recall briefly the construction of the pearl complex, first sug-

gested by Oh and developed by Biran and Cornea, whose homology is called Lagrangian

quantum homology and is denoted by QH(L). The reader is invited to read the articles

[BiC], [BiC2] and [BiC3] for a more detailed exposition.

We denote Λ = Z2[t, t
−1] the ring of Laurent polynomials with grading given by deg t =

−NL.
4



Let f : L→ R be a Morse-Smale function and J ∈ J . The pearl complex associated to f

is the graded ring

C∗(f, ρ, J) = (Z2 < Crit(f) > ⊗Λ)∗

where the index of a critical point is the Morse index.

The differential is defined by counting (modulo 2) Morse flow lines as well as so-called

pearly trajectories, where one follows Morse flow lines connecting J-holomorphic disks with

boundary on L (see figure 1). This differential splits as a sum d =
∑

k dk, where dk counts

the number (modulo 2) of pearly trajectories with total Maslov class kNL, k ≥ 0.

u1 uk
x y

Figure 1. A pearl!

To be able to count the number of pearl trajectories, one must first show that they form

a manifold of dimension 0 (with suitable index restriction). This is shown in [BiC3] and

relies heavily on monotonicity. Biran and Cornea then show that d2 = 0 by using a gluing

argument for products of 0-dimensional pearls. Finally, they show, by an adaptation of

standard Morse cobordism arguments, that quantum homology is independent of generic

choices of J and f .

Without the monotonicity assumption, it would be necessary to enlarge the pearl complex

and consider so-called clusters (see [CL]), or alternatively consider the A∞ machinery of

Fukaya, Oh, Ohta, Ono [FOOO].

3.2.2. The Lagrangian quantum product. In this section, we recall how to endow quantum

homology with a unitary ring structure, which coincides with the Morse-theoretic intersection

product when there are no pseudo-holomorphic disks. There are examples where this ring is

non-commutative (see e.g. [BiC]).

Fix two Morse-Smale functions f, g. Let x ∈ Crit(f), and y, z ∈ Crit(g). We will consider

the space of tripods of total Maslov class kNL, Px,y
z (k), as shown on figure 2. The top left

"pearl" leaves from y and connects pseudo-holomorphic disks with flow lines of −∇g until

it reaches a possibly constant pseudo-holomorphic disk v. The bottom left pearl leaves from
5



x and uses the flow of −∇f instead, until it reaches the same disk v. As for the pearl on

the right, it leaves v using the flow of −∇g and eventually goes into z. Notice that when

no disks appear, we recover the standard Morse intersection product. The product seen on

figure 2 is then x ◦ y = z ⊗ tk, where kNL is the total Maslov class of the disks.

u2

u2

u1

u3v

y

x

z

Figure 2. A tripod

The same technical considerations as before allow us to count (modulo 2) the number of

tripods of dimension 0. This is then used to define the quantum product

◦ : (C(f)⊗Λ C(g))∗ → C(g)∗−n.

By looking at a suitable compactification of one-dimensional tripods and using a gluing

argument (once again, see [BiC3]), one shows that it induces a product in homology, also

called the quantum product. Standard cobordism arguments also show that the product is

independent of generic choices.

It is readily verified, by dimensional arguments, that Mf is a unit on the chain level

for this product, where f is a Morse-Smale function having a unique maximum Mf , i.e.

Mf ◦ y = y ∀y ∈ Crit(g). However, Mg would be a unit only in homology.

3.3. Lagrangian Floer homology. We now recall the construction of (a version of) mono-

tone Lagrangian Floer homology (see also [O]).

Fix a non-degenerate Hamiltonian H ∈ H whose Hamiltonian flow is Ψt. We will be

interested in the set of contractible Hamiltonian orbits starting and ending on L. First

consider the set P0(L) = {γ ∈ C∞([0, 1],M) | γ(0) ∈ L, γ(1) ∈ L, [γ] = 1 ∈ π1(M,L)} and

write OH = {γ ∈ P0(L) | γ′(t) = X t
H(γ(t))} the subset of Hamiltonian orbits therein. As
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H is non-degenerate, there are only a finite number of such orbits, which also correspond to

the points of L ∩Ψ1(L).

Define by D2
− = {z ∈ C | |z| ≤ 1, Re(z) ≤ 0} the left part of the complex unit disk. We

split its boundary into two paths parametrized by [0, 1], γ1 = D2
− ∩ S1 and γ2 = D2

− ∩ iR ,

oriented in such a way that γ1#γ2 runs counter-clockwise.

Now let γ ∈ OH and consider u : (D2
−, γ1, γ2) → (M,L, γ) with γ2(t) = γ(t), that is, u

is a half-disk capping γ (as γ ∈ P0(L), such a half-disk exists). Trivializing the symplectic

bundle u∗TM , we obtain a path of Lagrangian subspaces of R2n by following the path

Tγ1(t)L#(Ψt)∗(Tγ1(1)L). We may associate a Maslov index to such a path (see [RS]) by first

choosing Tγ2(0)L as a reference Lagrangian subspace. With this choice, the Maslov index of

a pair (u, γ) satisfies µ(u, γ) + n/2 ∈ Z ([RS], Theorem 2.4). It is a half integer that verifies

µ(u, γ) + µ(−u2, γ) = µ(u#(−u2)) ∈ NLZ, so it generalizes the Maslov index of a loop.

We define an equivalence relation on these pairs by (u, γ1) ∼ (v, γ2) ⇐⇒ γ1 = γ2 and

µ((u, γ1)) = µ((v, γ2)). The quotient set is denoted by ÕH . Notice that ÕH is in one-to-one

correspondence with OH ×Λ because there is a transitive action of π2(M,L) on it (given by

the connected sum) with stabilizer ker µ and π2(M,L)/ ker µ ∼= Λ. So for each γ ∈ OH , we

fix a representative γ̃ := [uγ, γ] ∈ ÕH .

The Floer complex is defined by

CF (L,H, J) = Z2 < γ̃ | γ ∈ OH > ⊗Λ,

and the grading is given by |γ̃| := n/2 − µ(γ̃). With this choice of grading, the PSS and

PSS−1 morphisms (see §3.4) preserve the degree (this is not a serious issue, but it makes the

notations easier to follow).

The differential is defined by counting (modulo 2, as usual) strips u : R× [0, 1] → M such

that u(t, i) ∈ L, i = 0, 1, satisfying Floer’s equation

∂su+ J(u)∂tu+∇Ht(u) = 0(1)

and the asymptotic conditions

lim
s→±∞

u(s, t) = γ±(t) ∈ OH .(2)

7



Set

M(γ̃−, γ̃+, k) =







u : R× [0, 1] →M

∣

∣

∣

∣

∣

u verifies (1) and (2)

µ(uγ−#u#− uγ+) = kNL







.

For generic choices of hamiltonian H and of J ∈ J , M(γ̃−, γ̃+, k) is a manifold of di-

mension |γ̃−| − |γ̃+| + kNL. Notice that R acts by translation on each strip, i.e. u(s, t) 7→

u(s0 + s, t), s0 ∈ R. We denote the quotient space by M̃(γ̃−, γ̃+, k).

We define the Floer differential by

∂ : CF∗(L,H, J) → CF∗−1(L,H, J)

γ̃− 7→
∑

γ̃+,k

|γ̃−|+kNL−|γ̃+|−1=0

#2M̃(γ̃−, γ̃+, k)γ̃+ ⊗ tk

which we extend by linearity.

This is indeed a differential and the Lagrangian Floer homology of the complex is inde-

pendent of generic H and J (see for example [O]).

3.4. Lagrangian PSS and PSS−1 morphisms. We have now defined two homologies

associated to a Lagrangian submanifold. The next step is to recall the comparison map

between them by defining suitable morphisms between the respective complexes. It is not so

surprising that we are actually computing the same homology and we recall in this section

how to prove this, using the so called PSS and PSS−1 morphisms.

These morphisms were first introduced in Hamiltonian Floer homology by Piunikhin,

Salamon and Schwarz ([PSS]) and were then studied independently by Albers ([A2] and [A])

in the Lagrangian monotone case and by Katić and Milinković ([KM]) for the zero section

of the cotangent bundle. Barraud and Cornea ([BaC2]) also obtained some of their results

by studying them in the non-monotone case under the bubbling threshold. They appear in

full generality in [CL].

As always, some moduli spaces will be needed. Since we want to compare the pearl complex

with the Floer complex, the geometric idea is to consider a space of pearls where the last disk

is a perturbed half-disk which converges to a Hamiltonian orbit. These perturbed half-disks

can be seen as strips u : R× [0, 1] →M satisfying the PSS equation

us + Jut + β(s)∇H = 0,(3)

8



where β(s) is 0 for s ≤ 0, 1 for s ≥ 1 and β ′ ≥ 0. Thus u interpolates between the Cauchy-

Riemann equation ∂Ju = 0 and Floer’s equation (1). We also require the following boundary

and asymptotic conditions (see figure 3):























u(s, i) ∈ L, s ∈ R, i = 0, 1;

u(−∞, t) = l0 for some l0 ∈ L;

u(∞, ·) ∈ OH .

(4)

γ
L

u

Figure 3. Half-disk for the PSS

Under these conditions, u can be thought of as a map u : (D2
−, γ1, γ2) → (M,L, γ).

We denote M(x, γ̃,m) the space of pearls leaving from x where the last disk converges to

γ and verifies (3) and (4). The integer mNL is the total Maslov class of the disks plus the

Maslov class of −uγ (see figure 4). As always, under genericity assumptions, this space is

a manifold whose virtual dimension is v := |x| + mNL − |γ̃| (see [BiC3] and [A2]). When

v ≤ 1, then M(x, γ̃,m) is a manifold of dimension v. The PSS morphism is then

PSS : C(f) → CF (L;H)

x 7→
∑

γ̃,m
|x|+mNL−|γ̃|=0

#2M(x, γ̃,m)γ̃ ⊗ tm.

It can be shown to be a chain morphism by compactifying the one dimensional spaces

M(x, γ̃,m) and using a gluing argument.

x

u1 u2
ur

γ

Figure 4. A pearl converging to an orbit
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The inverse morphism is defined in a similar fashion: we start from an orbit γ and use a

half-disk to follow a pearl up to a critical point x. The half-disk satisfies the PSS−1 equation

us + Jut + β(−s)∇H = 0.(5)

The space of pearls leaving from γ using a PSS−1 half-disk and going into x is denoted

M(γ̃, x,m) and its (virtual) dimension is |γ̃| +mNL − |x|, where mNL is the total Maslov

class of the disks plus the Maslov class of uγ. The inverse morphism is then

PSS−1 : CF (L,H) → C(f)

γ̃ 7→
∑

γ̃,m
|γ̃|+mNL−|x|=0

#2M(γ̃, x,m)x⊗ tm.

The remaining step is to show that there is a chain homotopy ψ : C∗(f) → C∗+1(f) verifying

id− PSS−1PSS = (dψ − ψd).(6)

The chain homotopy is constructed in essentially the same way as in [A2], which is adapted

from [PSS] in the Hamiltonian case. We still recall how to construct it, because it will allow

us to define relevant moduli spaces used in the proof of Theorem 1.2. As we will not need

the fact that PSS−1 is the right inverse of PSS, we will not prove it.

By gluing together along an orbit two half-disks verifying the PSS and PSS−1 equations,

we get an element of π2(M,L) satisfying a perturbed Cauchy-Riemann equation. This disk

should then be used in a one parameter family to interpolate between the identity and

PSS−1 ◦ PSS. More formally, let u : R × [0, 1] → M satisfy u(s, i) ∈ L, i = 0, 1, and the

equation

us + J(u)ut − αR(s)∇H = 0, E(u) :=

∫

ω(us, Jus) <∞,(7)

where R ≥ 1 and αR : R → R is smooth and is such that αR(s)























= 1 if |s| ≤ R

= 0 if |s| ≥ R + 1

−1 ≤ α′
R(s) ≤ 1.
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We also set αR = Rα1 when R ∈ (0, 1). As E(u) <∞, we can show that u induces a map

u : (D2, S1) → (M,L). In contrast to holomorphic disks, these disks might have a negative

Maslov index.

Consider next x, y ∈ Crit(f) and a pearl going from x to y, where one of the disks satifies

(7) for some R depending on the disk and the other disks are J-holomorphic. Quotient by

the automorphism group and denote the set of all those disks by M(x, y,m), where mNL

is the total Maslov class of all the disks (once again, m might be negative). The virtual

dimension of this set is v := |x| +mNL − |y|+ 1 and when v ≤ 1, it is a smooth manifold

of dimension v. The parameter R increases the dimension by 1, hence the term +1 in the

formula.

The desired chain homotopy is then given by

ψ : C∗(f) → C∗+1(f)

x 7→
∑

y,m
|x|+mNL−|y|+1=0

#2M(x, y,m)y ⊗ tm.

To show that this is indeed a chain homotopy, we compactify spaces M(x, y,m) of dimen-

sion 1 and look at their boundary components. This gives the desired property.

3.5. Structure of QH(L)-module. In this section, we provide HF (L) with a QH(L)-

module structure. This structure has been used to define spectral invariants by Schwarz (see

[Sc]) in symplectic Floer homology (when M is symplectically aspherical) and by Leclercq

([Le]) in Lagrangian Floer homology when there is no bubbling.

The geometric picture is simply to connect a pearl to a strip as on figure 5. Let x ∈ Crit(f)

and γ̃ ∈ ÕH . We then denote by M(x, γ̃, α̃, k) the set of pearls leaving from x such that

the last flow line enters a Floer strip v connecting γ to α at the point v(0, 0), where k is the

total Maslov index of the pseudo-holomorphic disks, plus the Maslov class of uγ#v#− uα.

Under genericity assumptions and when the virtual dimension is at most one, this space

is a smooth manifold of dimension |x| + |γ̃| + k − |α̃| − n. We outline here a proof of this

fact, as it has not been treated by Biran and Cornea. We will only point to the references,

as the details appear in various locations in the literature.

The key idea concerns two transversality arguments. The first one shows that unstable

manifolds intersect Floer strips transversally at the point (0, 0). To do this, one must allow
11



Figure 5. x ⋆ γ

the complex structure to vary and consider universal moduli space of strips (see [FHS]). This

was used already by Leclercq [Le].

The second argument shows that the evaluation of a pseudo-holomorphic disk at the

point 1 intersects Floer strips at the point (0, 0) transversally. Here again, one must allow

the complex structure to vary and adapt the proof of [MS2], Proposition 3.4.2. One then

chooses a complex structure that agrees on a neighbourhood of the intersection point. This

is then used to glue together a disk and a strip into a strip on one side, and into a flow line

connecting a disk and a strip on the other side.

Once these two technical steps have been taken care of, an induction argument as the one

used in Proposition 3.1.3 of [BiC3], shows that when the virtual dimension is at most one, all

disks involved are actually simple and absolutely distinct, thus M(x, γ̃, α̃, k) is a manifold

of the right dimension.

The action of the pearl complex on the Floer complex is then given by

⋆ : (C(f)⊗Λ CF (L,H))∗ → CF (L,H)∗−n

x⊗ γ̃ 7→
∑

α̃,k
|x|+|γ̃|+k−|α̃|−n=0

#2M(x, γ̃, α̃, k)α̃⊗ tk.

It is a chain map by the gluing argument above, and one can show it makes HF (L) into

a (left) QH(L)-module. The proof that (x ◦ y) ⋆ γ = x ⋆ (y ⋆ γ) in homology is a bit tricky

to verify. However, it is quite similar to the proof of (8) given below.

It has already been shown that Lagrangian quantum homology is isomorphic to Lagrangian

Floer homology via the PSS morphism. Moreover, quantum homology has an obvious

QH(L)-module structure given by the quantum product. It is thus natural to ask if the
12



isomorphism preserves the module structures. It turns out to be the case and it will be

shown in the next section.

3.6. The PSS is a QH(L)-module isomorphism. This property of the PSS has been

shown in [Le] when there is no bubbling. The proof given here is a generalization. Namely,

we show that given f, g two generic Morse-Smale functions, there is a chain homotopy

η : (C(f)⊗ C(g))∗ → CF (L)∗−n+1

satisfying

PSS(x ◦ y) = x ⋆ PSS(y) + (∂η − η∂)(x⊗ y).(8)

We first notice that PSS(x ◦ y) counts the number of points (mod 2) in
⋃

z P
x,y
z (k1) ×

M(z, γ̃, k2). We can glue such a configuration along the two flow lines going into and out of

z, thus obtaining a one parameter family of spaces that can break on the term PSS(x ◦ y).

Let us denote this new space by S for now (see figure 6).

gluing

Figure 6. Gluing PSS(x ◦ y) to remove z

As for x ⋆ PSS(y), we can glue along the orbit γ thus removing the Floer strip and

keeping only a perturbed half-disk satisfying (5). We denote for now by S ′ the space of such

configurations.

The point is now to use these two new spaces to define the desired chain homotopy. Before

doing so, we observe that they are actually part of the same space. Indeed, consider a one-

parameter family of elements of S ′ where a disk with two marked points bubbles out of

M(H, α̃, k) in the limit. Using standard gluing arguments, one can then glue back this disk
13



in the space S. Hence the two spaces should actually be used simultaneously to define the

chain homotopy. See figure 7.

gluing

gluing

bubbling

Figure 7. Gluing x ⋆ PSS(y) into S ′ and going into S

This leads us to define the chain homotopy as

η : (C(f)⊗ C(g))∗ → CF (L)∗−n+1

x⊗ y 7→
∑

α̃,k
|x|+|y|+k−|α̃|−n=0

#2P
x,y
α̃ (k)α̃⊗ tk

The space Px,y
α̃ (k) is defined as in the quantum product, except for the last (half) disk u

which satisfies the PSS equation (3) and converges to α. Moreover, kNL is the Maslov class

of all the disks plus the one of −uα. Note that we allow for a pearl leaving from x to end

anywhere on u((−∞,∞), 0), as in the top-right part of figure 7.

Looking at spaces Px,y
α̃ (k) of dimension 1 and their boundary combined with the previous

discussion proves that η is indeed a chain homotopy between PSS(x ◦ y) and x ⋆ PSS(y).
14



4. Proof of the theorems 1.2 and 1.1

We have now everything needed to prove Theorem 1.2. It follows directly from the follow-

ing

Theorem 4.1. Let L ⊂ (M2n, ω) be a monotone Lagrangian submanifold and H ∈ H a

non-degenerate Hamiltonian. Then for every J ∈ J , x0 ∈ L, there exists a map u that is

either a Floer strip with boundary on L, or a J-holomorphic disk with boundary on L, such

that u goes through x0, 0 ≤ µ(u) ≤ n and E(u) ≤ ||H||.

To prove Theorem 1.2 from this, simply apply the flow Ψt to the map u in case it is a

Floer strip, thus obtaining a J-holomorphic strip with boundary on L and the desired energy

bound.

Proof Let f, g be two generic Morse-Smale functions, each having a unique minimum (resp.

maximum) mf and mg (resp. Mf and Mg). It might not be possible to choose mf = x0, the

point through which we would like a strip or a disk to go. The reason is that W u(x0) might

not intersect the space of Floer strips transversally. However, by genericity arguments, we

may take mf as close as we want to x0 and then use a sequence of strips/disks converging

to x0 to get the result. This also explains why we may not choose the Maslov index to be

exactly n, but at most n. So we assume mf = x0.

Combining formulas (6) and (8), we get

x ◦ y = PSS−1(x ⋆ PSS(y)) + PSS−1(∂η − η∂)(x⊗ y) + (dψ − ψd)(x ◦ y)

Taking x = mf and y =Mg yields

mg ⊗ t0 + h.o.t = PSS−1(mf ⋆ PSS(Mg))

+ PSS−1(∂η − η∂)(mf ⊗Mg)

+ (dψ − ψd)(mf ◦Mg)

:= (1) + (2) + (3).

The expression h.o.t stands for higher order terms and represents terms whose projection

in the ring of Laurent polynomials gives polynomials of degree at least one. Note that there
15



might not be any such terms, but that mg ⊗ t0 certainly appears on the left hand side, by

standard Morse homology arguments. Thus it also appears on the right hand side, hence

in one of the expresssions (1), (2) or (3). We conclude that one of the moduli spaces used

to define these expressions must be non-empty. We now show that in any case, we get the

desired bound on the energy:

Case (1): As mf is the minimum, W u(mf ) contains only the point mf , so mf touches a

Floer strip starting on PSS(Mg) and ending on an orbit connected to mg ⊗ t0 via PSS−1.

Denote u1 the half-disk satisfying the PSS equation, u2 the Floer strip and u3 the half-disk

used in the PSS−1. Notice also that no holomorphic disks appear, for dimensional reasons.

Using the energy estimates (10), (9) and (11) of §5, we get

0 <
3

∑

1

E(ui)

≤
∑

ω(ui) + ||H||

= ||H||,

where the last equality comes from the fact that the total Maslov class (hence the total

symplectic area, by monotonicity) is zero, as we are considering the term mg ⊗ t0.

Case (2): First, note that mg ⊗ t0 cannot be a boundary, because it is the unique mini-

mum, so we can ignore the ∂η part of the term (2) and consider only the η∂(mf ⊗Mg) part.

Moreover, Mg is a cycle by Morse theory arguments as well as for degree reasons, hence we

simplify again and the only non zero term is η(dmf) ⊗ Mg. As mf is the minimum and

dmf 6= 0, we conclude that a holomorphic disk goes through mf . The same energy estimates

arguments as in case (1) give the energy bound.

Case (3): The proof uses the energy estimate (12) and is identical to case (2). �

Proof of theorem 1.1 This argument is standard and goes back to Gromov. Consider a

map u as in theorem 1.2, i.e. u is either a strip or a disk. Now let e : (B(r), ω0, J0) →

(M\L′, ω, e∗J0) be a symplectic embedding whose real part lies on L. Taking the pull-back
16



of u by e gives a J0-holomorphic curve whose area, by the Schwarz reflexion principle and by

the theory of minimal surfaces, is at least π
2
r2. By the choice of u, this area is also bounded

above by ∇(L, L′). �

5. Energy estimates

As these are by now quite standard and can be found in the appendix of [A2], we provide

only the statement of the energy estimates used in the proof of Theorem 4.1. We refer to

the previous sections for the relevant definitions. The only one we recall is the definition of

the energy of a continuous function u depending on two variables (s, t):

E(u) :=

∫

ω(us(s, t), Jus(s, t))dsdt.

Proposition 5.1. Given a Floer strip u ∈ M(γ̃−, γ̃+, k), we have

E(u) = ω(u)−

∫

Ht(γ
+(t))dt +

∫

Ht(γ
−(t))dt.(9)

Proposition 5.2. Let u be a half-disk satisfying equation (4) and converging to an orbit γ,

then

E(u) ≤ ω(u)−

∫

Ht(γ(t)) +

∫

sup
M

Ht(·)dt.(10)

In a similar fashion, we obtain a bound on the energy of a half u disk satisfying equation

(5):

E(u) ≤ ω(u) +

∫

Ht(γ(t))−

∫

inf
M
Ht(·)dt.(11)

Proposition 5.3. Let u be a disk satisfying equation (7), then

E(u) ≤ ω(u) + ||H||.(12)
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