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A note on Kuczek’s argument for non nearest

neighbor contact processes

Achilleas Tzioufas

Abstract

We are concerned with the supercritical process on the integers. The
extension of the argument of Kuczek [11] to this case is due to Mountford and
Sweet [13]. Their approach is based on proving that there is a positive chance
that the right endpoint descends for all times from the origin; we obtain a new
proof of this as a consequence of the following new result: There is a positive
chance that the processes started from all sites and from any finite set agree
on this set for all times; notably this result extends for the process on Z

d. Our
approach allows us to give an independent proof of the existence of random
points (termed break points) among which the behavior of the right endpoint
stochastically replicates. Finally, an improved large deviations result than
that of Lemma 3 in [13] is derived via the work of Durrett and Schonmann
[8].

1 Introduction and Results

In the present paper S will be a set of spatial locations which will be taken to be
either Z, the integers, or Z-, the non positive integers. The non nearest neighbors
contact process on S, with parameter µ > 0 and uniform range of interaction M ,
where M ≥ 1 is some finite constant, is a continuous time Markov process ξt on the
set of subsets of S. The process is thought of as the evolution of particle’s offspring;
each site in ξt is regarded as being occupied by a particle, while all other sites are
regarded as being vacant. In this interpretation, the process evolves according to
the following local prescription: (i) Particles die at rate 1. (ii) A particle at site x
gives birth to new ones at rate µ at each site of S within the interval [x−M,x+M ].
(iii) There is at most one particle per site, i.e. particles being born at a site that is
occupied coalesce for all subsequent times.

We denote by ξVt the process with V as a starting set, i.e. ξVt is thought of as the
descendants of the particles initially placed in V . When V ∈ R, where R denotes
the real numbers, then the initial state should be taken to be V ∩ S, no confusion
should arise from this common practice.

Since its introduction by Harris [9] in 1974 the contact process has been extensively
studied in the literature, for a recent detailed account we refer to Part I of Liggett
[12]. We note that the family of processes under consideration when S is taken to be
the integers, Z, is also named in the literature as the symmetric finite range contact
processes, see e.g. [4].

We will say that the process is supercritical if P(ξt survives) > 0, where we use the
shorthand {ξt survives} for {ξt 6= ∅ for all t ≥ 0}. A fundamental known fact for

1

http://arxiv.org/abs/1011.0420v1


the contact process is that if it is supercritical on Z then it is supercritical on Z
- as

well (this was first established as a consequence of the construction in [6, 7], indeed,
it is part of a general result, concerning orthands of Zd, see [1, 2]). This fact will be
the key for connecting Proposition 1.1 below with the contact process on Z, which
we will subsequently consider.

The following is the first principle result of this paper.

Proposition 1.1. Consider the supercritical non nearest neighbors contact processes

on Z
-, (ξZ

-
t )t≥0 and (ξFt )t≥0, where F is any finite subset of Z

-; we have that,

P
(

ξFt ∩ F = ξZ
-

t ∩ F, for all t ≥ 0
)

> 0.

Proposition 1.1 can be intuitively interpreted as the result of coalescence among
the descendants of particles initially placed at F and those placed at Z-\F on the
event {ξFt survives}. Notably, the proof given below provides us the extension of this
result for the process on all graphs for which what is known as a shape theorem
holds (most prominently, Zd, see e.g. [1]).

Consider the supercritical non nearest neighbors contact processes on Z, (ξ0t )t≥0 and

also (ξ
(−∞,0]
t )t≥0; further, define their respective right endpoints to be rt = sup ξ0t

and Rt = sup ξ
(−∞,0]
t , t ≥ 0. The following statement is Theorem 3 in [13], the proof

there goes through a sophisticated block construction argument. We provide an
elementary proof of this as a consequence of Proposition 1.1.

Corollary 1.2. P(rt = Rt, for all t ≥ 0) > 0.

By use of Corollary 1.2 we shall also obtain an independent proof of the following
result.

Theorem 1.3. There exist almost surely finite random (but not stopping) times
0 := ψ−1 < ψ0 < ψ1 < . . . such that on {ξ0t survives}, (rψn

− rψn−1
, ψn − ψn−1),

n ≥ 1, are i.i.d. random vectors.

A result stronger than Theorem 1.3 is provided by Mountford and Sweet [13]; how-
ever, our proof is an improvement in the sense that it is simpler and shorter.

In the next section of this paper we introduce the graphical representation. In
section 3 we prove Proposition 1.1, while Corollary 1.2 and Theorem 1.3 are proved
in section 4. In the final section, as a consequence of a result in [8], we establish a
large deviations result for the density of occupied sites in oriented percolation which
is an improvement of Lemma 3 in [13].

2 Preliminaries

The graphical representation (introduced by Harris [10]) is a way to embed the
process in a graphical construction over S × [0,∞), where × will denote Cartesian
product. The space S × [0,∞) should be thought of as giving a time line to each
site of S.

Recall that we denote by M ≥ 1 the (constant) range of interaction. To carry out
the construction, assign a Poisson process N(x,y) of rate µ to each ordered pair of
sites of S, (x, y), such that |y − x| ≤ M ; assign also a Poisson process Nx of rate 1
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to each site x ∈ S. For the arrival times t of N(x,y) we place a directed arrow from
x× t to y × t, this will indicate that a birth will occur at y if x is occupied at time
t. For the arrival times t of Nx we place a δ-symbol at x× t, this will indicate that
a death will occur at x if it is occupied at time t.

Given any realization of the graphical representation, which we will typically denote
below by ω, we say that a path exists from V × s to U × t, t ≥ s, and write
V × s → U × t if for some n ≥ 0 there exists an increasing sequence of times
(sk)

n+1
k=0, s0 = s, sn+1 = t and a sequence of sites (xk)

n
k=0, for some x0 ∈ V and

some xn ∈ U , such that: (i) there is an arrow from xk−1 to xk at time sk, for all
k = 1, . . . , n, and (ii) there is no δ-symbol on the vertical segments xk × (sk, sk+1),
for all k = 0, 1, . . . , n. Letting ξVt = {x : V ×0 → x× t}, t ≥ 0, we have that (ξVt )t≥0

is a version of the process on S with V as a starting set.

The graphical representation provides a joint coupling of processes with various
starting sets two consequences of which are the following. The property that for any
set of sites such that U ⊆ V we have that ξUt ⊆ ξVt is known as monotonicity; while
the property that ξFt =

⋃

x∈F ξ
x
t , for any finite F ∈ S, is known as additivity.

3 The process on Z
-

The purpose of this section is to prove Proposition 1.1. Consider the graphical
representation for the supercritical non nearest neighbors contact process on Z

-.

Theorem 3.1, which we demonstrate below, is known as a shape theorem; it is a
consequence of the construction provided in [7], or in [1], due to the general theorem
in [5] and additivity. We introduce some necessary notation. For two events A,B
we write that for all ω ∈ A, ω ∈ B a.e. whenever P({ω : ω ∈ A, ω 6∈ B}) = 0,
where a.e. stands for almost everywhere (on A). We also denote by 1A the indicator
function of A.

Theorem 3.1. Consider the processes (ξZ
-

t )t≥0 and also (ξFt )t≥0, for F any finite
set in Z

-. Define lt = inf ξFt and consider the set of sites,

Ct =
{

y ≥ inf
s≤t

ls : 1{y∈ξF
t
} = 1

{y∈ξZ
-

t
}

}

,

t ≥ 0. There exists an a > 0 such that for all ω ∈ {ξFt survives} there exists
t′ = t′(ω, a) such that ω ∈

{

[−at, 0] ∩ Z
- ⊂ Ct, for all t ≥ t′

}

a.e..

The preceding theorem is necessary in the following proof.

Proof of Proposition 1.1. Let F be any fixed finite subset of Z-, consider the events,

Bn = {ξFs ∩ F = ξZ
-

s ∩ F, for all s ∈ [n,∞)},

for all integer times n ≥ 0; we want to prove that P(B0) > 0.

By Theorem 3.1 we have that for all ω ∈ {ξFt survives} there exists a t0 = t0(ω, a)

such that ω ∈ {ξZ
-

s ∩ [−at, 0] = ξFs ∩ [−at, 0], for all s ≥ t0} a.e., and, further,
there exists t1 = t1(ω, a, F ) such that ω ∈ B⌈t1⌉ a.e. as well, since we have that,
[−at, 0] ⊃ F for all t sufficiently large. Thus, P

(
⋃

n≥0Bn

)

= P(ξFt survives) and,
due to the process being supercritical, we have (e.g. by contradiction) that:

there exists some n0 ≥ 0 such that P(Bn0
) > 0. (3.1)
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We show that the last statement implies that P(B0) > 0, hence, completing the
proof. Let n0 be as in (3.1) and define the event B′

n0
as follows: ω′ ∈ B′

n0
if

and only if there exists ω ∈ Bn0
such that ω and ω′ are identical realizations

except perhaps from any δ-symbols in F × (0, n0]. We further define the event
E = {no δ-symbols exists in F × (0, n0]}. By independence of the Poisson processes
used in the graphical representation and then because B′

n0
⊇ Bn0

, we have that,

P(B′
n0

∩ E) = P(B′
n0
)P(E)

≥ P(Bn0
)e−|F |n0 > 0. (3.2)

However, we also have that
B0 ⊇ B′

n0
∩ E, (3.3)

to prove (3.3), note that if ω and ω′ are identical realizations, except that ω′ does not
contain any δ-symbols that possibly exist for ω in F × (0, n0], then ω ∈ Bn0

implies
that ω′ ∈ Bn0

and, indeed ω′ ∈ B0. From (3.2) and (3.3) the proof is complete.

4 The process on Z

The purpose of this section is to prove Corollary 1.2 and then Theorem 1.3. Con-
sider the graphical representation for the supercritical non nearest neighbors contact
process on Z. In this section we shall be concerned with rt = sup{x : 0×0 → x× t},
t ≥ 0, i.e. the right endpoint of (ξ0t ).

In the next proof we will need to use the following definition. Let S
′ be a subset

of Z, we write V × s
S
′

→ U × t to denote the existence of a path in our graphical
representation which is restricted over S′ , i.e. in the definition of paths, we impose
the additional restriction that all elements of (xk)

n
k=0 there are in S

′.

Proof of Corollary 1.2. Define Rt = sup{y : (−∞, 0]× 0 → y × t}, t ≥ 0, we want
to prove that P(rt = Rt, for all t ≥ 0) > 0. Recall that M denotes the range of
interaction; considering the event,

{ξ01 ⊇ [−M, 0]} ∩ {0 ∈ ξ0s and Rs ≤ 0, for all s ∈ (0, 1]},

from the Markov property and monotonicity, we have that it is sufficient to prove
that

P(r
[−M,0]
t = Rt, for all t ≥ 0) > 0, (4.1)

where r
[−M,0]
t := sup{y : [−M, 0]× 0 → y × t}, t ≥ 0.

We prove (4.1). Define the event,

A = {(−∞,−M−1]×0
Z
-

→ [−M, 0]×t and [−M, 0]×0 → [−M, 0]×t, for all t ≥ 0},

and also the event,

B = {(−∞,−M−1]×0
Z-
→ [−M, 0]×t and [−M, 0]×0

Z-
→ [−M, 0]×t, for all t ≥ 0}.

Because the process on Z
- is also supercritical, by Proposition 1.1 we have that

P(B) > 0. From this and noting that B ⊆ A ⊆ {r
[−M,0]
t = Rt, for all t ≥ 0}, the

proof is complete.
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For proving Theorem 1.3 below we will need the following definitions. For any given
space time point x× s define

Rx×s
t = sup{y : (−∞, x]× s→ y × t+ s},

and also
rx×st = sup{y : x× s→ y × t+ s},

for t ≥ 0; we also define the events,

{x× s c.s.e.} := {Rx×s
t = rx×st , for all t ≥ 0},

where c.s.e. stands for ”controls subsequent edges”. Define also,

p := P(0× 0 c.s.e.) > 0, (4.2)

where p > 0 due to Corollary 1.2.

Proof of Theorem 1.3. Consider the non stopping time,

ψ = inf{t ≥ 1 : rt × t c.s.e.}

we will prove that, conditional on either {ξ0t survives} or {0 × 0 c.s.e.}, ψ and rψ
are a.s. finite. This is sufficient to complete the proof because along with (4.2) gives
us that the proof of Lemma 7 in [13] applies as it is and implies that: Conditional
on the event {ξ0t survives}, defining ψn = inf{t ≥ 1 + ψn−1 : rt × t c.s.e.}, n ≥ 0,
and ψ−1 := 0, we have that (rψn

− rψn−1
, ψn − ψn−1), n ≥ 1, are i.i.d. vectors.

We use what is known as a restart argument. Define T0 = inf{t : ξ0t = ∅} and then,
inductively, for all n ≥ 0, on {Tn < ∞}, define ξn+1

t = {x : 0 × Tn → x × t} and
rn+1
t = sup ξn+1

t , t ≥ Tn, define also, Tn+1 = inf{t ≥ Tn : ξn+1
t = ∅}.

Consider the process r′t := rnt for all t ∈ [Tn−1, Tn), n ≥ 0, where r0t := rt, for all
t ∈ [0, T0). Define τ1 := 1 and then, inductively, for all n ≥ 1, on {τn < ∞}, let
σn :=

∑n

k=1 τk and define

τn+1 = inf{t ≥ 0 : R
r′σn×σn
t > r

r′σn×σn
t };

while on {τn = ∞} define τl = ∞ for all l ≥ n. Define further the associated random
variable, N = inf{n ≥ 1 : τn = ∞}.

We will prove that σN , r
′
σN

are a.s. finite; from the restart argument and the defi-
nitions above, this completes the proof because on {ξ0t survives}, and on its subset
{0× 0 c.s.e.}, we have that ψ = σN and r′σN = rψ.

By translation invariance and the Markov property, we have that, for all n ≥ 1,
the event {τn+1 = ∞} has probability p > 0, as in (4.2), and is independent of the
graphical representation up to time σn. Hence, because

{N = n} = {τk <∞ for all k = 1, . . . , n and τn+1 = ∞}, (4.3)

we have that P(N = n) = p(1 − p)n−1, n ≥ 1, and thus N is a.s. finite. From this
and (4.3), we further have that σN is a.s. finite. However, because |r′t| is bounded
above in distribution by the number of events by time t of a Poisson process at rate
Mµ, we also have that r′σN is a.s. finite.

5



5 Large deviations result

In this section derive a large deviations result which is an improvement of Lemma
3 of Mountford and Sweet [13].

Define the set sites L = {(y, n) ∈ Z
2 : n ≥ 0 and y + n is even}. We shall refer to a

collection of Bernoulli random variables {w(y, n); (y, n) ∈ L} as 1-dependent (site)
percolation with density at least 1− ǫ whenever it satisfies the following condition:
For any (yi)

I
i=1, I ≥ 1 any finite integer, such that |yi−yi′| > 2 for all i, i′ ∈ {1, . . . , I}

we have that

P
(

w(yi, n+ 1) = 0 ∀i = 1, . . . , I|{w(y,m);m ≤ n}
)

≤ ǫI ,

for all n ≥ 1.

Consider a realization of 1-dependent site percolation. A site (y, n) is regarded as
open if w(y, n) = 1, otherwise, it is regarded as closed. We shall write (x,m) → (y, n)
whenever there exists a sequence of open sites in L, (x,m) ≡ (y0, m), . . . , (yn−m−1, n)
such that and |yi − yi−1| = 1 for all i = 1, . . . , n−m− 1 and |yn−m−1 − y| = 1.

We will need the following definition. Given ℓ an interval in R, and n ≥ 1 an
integer, we will denote by V(ℓ× n) the set of sites of L within the region ℓ× n, i.e.,
V(ℓ× n) := {ℓ× n} ∩ L.

Define the process started with all sites closed, W n = {y : (V(R× 0), 0) → (y, n)},
n ≥ 1. The next lemma will be used in the proof of Proposition 5.2, following below,
which is the aim of this section.

Lemma 5.1. For all ρ < 1 we can choose ǫ > 0 sufficiently small such that for any
n ≥ 1 and any Y ⊆ V(R× n),

P

(

∑

y∈Y

1{y∈Wn}
< ρ|Y |

)

≤ Ce−γ|Y | (5.1)

where C, γ are strictly positive and finite constants independent of n.

Proof. Consider supercritical independent bond percolation process on L with pa-
rameter p > ρ. For general information and standard terminology concerning this
well studied process we refer to [3]. Define the process (B̄n)n≥0, started from
B̄0 = V(R × 0), and the process (B̃n)n≥0, started from B̃0, a random subset of
V(R × 0) distributed according to the upper invariant measure with density p, in-
dependently of the bond percolation.

By coupling of the two processes and monotonicity we have that B̃n ⊆ B̄n, for all
n ≥ 0; using this and then invariance of the distribution of (B̃n), the large deviation
result (concerning the density of the upper invariant measure) of Theorem 1 in [8]
gives that, for any n ≥ 1 and any Y ⊆ V(R× n),

P

(

∑

y∈Y

1{y∈B̄n} < p|Y |

)

≤ P

(

∑

y∈Y

1{y∈B̃n}
< p|Y |

)

≤ Ce−γ|Y |, (5.2)

for some C, γ strictly positive and finite constants independent of n. The result
follows from (5.2) because for all p < 1 we can choose ǫ > 0 sufficiently small such
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thatW n ⊇ B̄n for all n ≥ 1, a.s.; this comparison is a consequence of the comparison
of independent bond percolation with independent site percolation, see Theorem
B24 in [12], and of the comparison of the latter with 1-dependent percolation, see
Theorem B26 in the aforementioned reference.

Define Wn := {y : (0, 0) → (y, n)}, n ≥ 1, we are concerned with (Wn)n≥0. Define
the endpoints Rn = sup{y : y ∈ Wn} and Ln = inf{y : y ∈ Wn}, n ≥ 0; define also
the stopping time τ = inf{n : Wn = ∅}. In the proof of the next proposition we will
need two well known results, see e.g. [3],[12], regarding (Wn), which we now state.
For any β < 1, we can choose ǫ > 0 sufficiently small such that,

P
(

[Ln, Rn] ⊆ [−βn, βn]
)

≤ Ce−γn, (5.3)

and that,
P(n ≤ τ <∞) ≤ Ce−γn (5.4)

n ≥ 1, for some C, γ strictly positive and finite constants.

We now give our final result.

Proposition 5.2. For any ρ, β < 1 we can choose ǫ > 0 sufficiently small such that
for all b ∈ (0, β], considering the events,

Fn =

{

bn
∑

k=1

1{yk∈Wn} < ρbn for some (yk)
bn
k=1 ∈ V([−βn, βn]× n)

such that |yk+1 − yk| = 2 ∀k = 1, . . . , bn− 1

}

, (5.5)

n ≥ 1, we have that
P
(

Fn,Wn 6= ∅
)

≤ Ce−γbn (5.6)

for all n ≥ 1, where C, γ are strictly positive and finite constants independent of n
and b.

Proof. Choose ǫ > 0 sufficiently small such that (5.1), (5.3), and (5.4) are all satis-
fied. Because for any b ≤ β ′ the number of (yk)

bn
k=1, as in (5.5), is of polynomial order

in both n and b, it is sufficient to prove that for any set of sites Y ⊆ V([−βn, βn]×n),

P

(

∑

y∈Y

1{y∈Wn} < ρ|Y |, τ ≥ n

)

≤ C(e−γn + e−γ|Y |), (5.7)

n ≥ 1, for some C, γ strictly positive and finite constants. From this, using (5.3)
and (5.4), we have that it is sufficient to prove that the probability of the event
{
∑

y∈Y 1{y∈Wn} < ρ|Y |} on {[Ln, Rn] ⊇ [−βn, βn]} ∩ {τ = ∞} decays exponentially
in |Y | ≥ 1; however, this is immediate by (5.1) because by coupling we have that,
Wn =W n ∩ [Ln, Rn] on {τ = ∞}.
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