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WEITZENBÖCK DERIVATIONS OF NILPOTENCY 3

DAVID L. WEHLAU

Abstract. We consider a Weitzenböck derivation ∆ acting on a
polynomial ring R = K[ξ1, ξ2, . . . , ξm] over a field K of character-
istic 0. The K-algebra R∆ = {h ∈ R | ∆(h) = 0} is called the
algebra of constants. Nowicki considered the case where the Jor-
dan matrix for ∆ acting on R1, the degree 1 component of R, has
only Jordan blocks of size 2. He conjectured ([N]) that a certain
set generates R∆ in that case. Recently Koury ([Kh]), Drensky
and Makar-Limanov ([DM]) and Kuroda ([K]) have given proofs of
Nowicki’s conjecture. Here we consider the case where the Jordan
matrix for ∆ acting on R1 has only Jordan blocks of size at most
3. Here we use combinatorial methods to give a minimal set of
generators G for the algebra of constants R∆. Moreover, we show
how our proof yields an algorithm to express any h ∈ R∆ as a
polynomial in the elements of G.
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1. Introduction

Let K be a field of characteristic zero and let R = K[ξ1, ξ2, . . . , ξm]
be a polynomial ring over K in m variables each of degree 1. The
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2 WEHLAU

ring R is graded by polynomial degree: R = ⊕∞
d=0Rd. A K-linear

operator ∆ : R→ R is called a derivation if ∆(ab) = a∆(b)+∆(a)b. A
derivation d : R→ R is called locally nilpotent if for every a ∈ R there
exists a positive integer k such that ∆k(a) = 0. A derivation whose
matrix representation on R1 is a Jordan matrix with the zeros on the
main diagonal is called a Weitzenböck derivation. It is clear that if ∆
is a locally nilpotent derivation then by an appropriate choice of basis
we may suppose that ∆ is a Weitzenböck derivation. The kernel of
∆ is a subalgebra of R called the algebra of constants and denoted by
R∆. Weitzenböck’s Theorem ([We]) asserts that if ∆ is a Weitzenböck
derivation then R∆ is a finitely generated K-algebra.
Recently the case where the Jordan matrix of ∆ on R1 consists con-

sist of entirely 2×2 blocks has been studied. Nowicki ([N]) conjectured
that for this case R∆ is generated by certain linear and quadratic poly-
nomials. This was proved by Koury ([Kh]), by Drensky and Makar-
Lima ([DM]) and also Kuoda ([K]). Here we consider the case where
the Jordan matrix of ∆ on R1 has blocks of size at most 3 and ex-
hibit a set of generators for R∆ in that case. Furthermore, we give an
algorithm for expressing any element of R∆ as a polynomial in those
generators.
Rather than studying the kernel of ∆ we may shift perspective and

consider σ := eσ = 1+δ+δ2/2!+δ3/3!+ . . . . Then σ acts invertibly on
R1 and R. We consider the infinite cyclic group G of algebra automor-
phisms of R generated by σ. The R∆ = RG, the ring of G invariants.
We may use Robert’s isomorphism to show that R∆ = RG ∼= SSL2(K) for
a certain polynomial ring S on which SL2(K) acts linearly. This allows
us to use the classical invariant theory of SL2(C) to derive properties
of R∆. For a discussion of this approach see [W] or [B]. For a modern
treatment of Robert’s isomorphism see [P, Ch. 15 §1.3 Theorem 1] and
[BK].
Another way to proceed is to use Z[ξ1, ξ2, . . . , ξm] in the role of R

and then reduce modulo a prime p. In this setting the cyclic group
generated by σ is Cp, the cyclic group of order p and we study its
ring of invariants Z/pZ[ξ1, ξ2, . . . , ξr]

Cp . From this perspective compute

Z[ξ1, ξ2, . . . , ξr]
∆ = lim

←−
Z/pZ[ξ1, ξ2, . . . , ξr]

Cp

<p. See [W] for a discussion
of, and examples of this approach.
Here we use a simple combinatorial method. This is a generalization

of the method used in [CSW] where we considered a question related
to Weitzenböck derivations with Jordan blocks of size 2.
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2. Main Theorem

Theorem 2.1 (Main Theorem). Suppose the Weitzenböck derivation

acts on on a polynomial ring R via a Jordan matrix on R1 consisting

entirely of Jordan blocks of size 3. Write

R = K[x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn]

and write

∆ =
n

∑

i=1

(

xi
∂

∂yi
+ yi

∂

∂zi

)

.

Then the algebra of constants R∆ is minimally generated as a K-algebra

by the following elements:

(1) f(i) := xi where 1 ≤ i ≤ n;
(2) f(i,j) := xiyj − xjyi where 1 ≤ i < j ≤ n;
(3) g(i,j) := xizj − yiyj + zixj where 1 ≤ i ≤ j ≤ n;

(4) g(i,j,k) = det





xi yi zi
xj yj zj
xk yk zk



 where 1 ≤ i < j < k ≤ n.

Remark 2.2. If n = 2 we only get three generators f(1) = x1, f(2) = x2
and f(1,2) = x1y2 − x2y1. If n = 1 we only get the single generator

f(1) = x1.

Remark 2.3. Note that if the Weitzenböck derivation ∆ acts on a

polynomial ring P via a Jordan matrix on P1 consisting of blocks of size

at most 3 then we have a surjective algebra homomorphism ψ : R→ P
which commutes with the action of ∆. Then ψ : R∆ → P∆ is also

surjective and Ψ(G) forms a generating set for P∆.

In addition to the usual polynomial degree we will multi-grade R =
K[x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn] by N

n where the multi-degree
of the monomial xa11 y

b1
1 z

c1
1 x

a2
2 · · · z

cn
n is (a1+b1+c1, a2+b2+c2, . . . , an+

bn + cn). We say a polynomial h is multi-linear if it is homogeneous of
degree (d1, d2, . . . , dn) where each di ≤ 1.
We will work with monomial orders. For a discussion of lead mono-

mials and monomial orders we refer the reader to [CLO, Ch. 2]. All
tensor products are over the base field K.
Let G denote the set of elements listed in Theorem 2.1. It is easy to

verify that each of these elements is annihilated by ∆. Furthermore,
by considering multi-degrees it is easy to show that the elements of
G minimally generate some K-algebra Q. We begin by sketching the
main steps in our proof that Q = R∆.
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Suppose that h ∈ R∆ is a homogeneous polynomial of multi-degree
(d1, d2, . . . , dn). We consider the polynomial ring

S = K[X1, Y1, Z1, X2, Y2, Z2, . . . , Xd, Yd, Zd]

where d = d1 + d2 + · · ·+ dn. By abuse of notation we consider ∆ to
be a Weitzenböck derivation on S. via ∆(Zi) = Yi, ∆(Yi) = Xi and
∆(Xi) = 0 for i = 1, 2, . . . , d.
We will use the classical techniques of polarization and restitution.

In the next section we briefly describe these two techniques in a setting
tailored to our needs. For a detailed discussion in a general setting, we
refer the reader to the excellent book of Procesi ([P, Ch. 3 §2]). Po-
larization is a K-linear operator P : R(d1, d2, . . . , dn)

∆ → S∆
(1,1,...,1) and

restitution gives a K-linear operator RS∆
(1,1,...,1). These two operators

are inverses of one another.
The full polarizationH := R(h) ∈ S∆

(1,1,...,1). We find an explicit basis

Bd for S∆
(1,1,...,1) and so may write H =

∑

E∈Bd
cEE for scalars cE ∈ K.

Then restituting H yields h =
∑

E∈Bd
cER(E). The theorem then

follows from the fact that each R(E) may be expressed as a polynomial
in the elements of G. Since we may give these polynomial expressions
explicitly and since we have an algorithm to compute the scalars cE we
get an algorithm for expressing h as a polynomial in the elements of G.
The main difficultly in the proof as outlined above is to find the basis
Bd of S

∆
(1,1,...,1). We will construct a directed graph, in fact a rooted tree,

Γ and consider the set of paths Pathd of length d starting from the
root. Naturally associated to each such path γ we have a multi-linear
monomial Λ(γ) ∈ S. We will construct a set map θ : Pathd → S∆

(1,1,...,1)

such that LM(θ(γ)) = Λ(γ). Then showing that dimS∆
(1,1,...,1) = |Pathd|

proves that θ(Pathd) is a basis of S∆
(1,1,...,1).

3. Polarization and Restitution

Here we give a brief description of the classical techniques of polar-
ization and restitution. Our discussion tailored to our needs. For a
complete discussion in a general setting, see Procesi [P, Ch. 3 §2].
Suppose that f(x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn) ∈ R is a homoge-
neous polynomial of multi-degree (d1, d2, . . . , dn). We consider the poly-
nomial rings T = K[x1, y1, . . . , zn, X1, Y1, Z1, X2, Y2, Z2, . . . , Zd] and
S = K[X1, Y1, Z1, X2, Y2, Z2, . . . , Zd] where d = d1 + d2 + · · ·+ dn. We
view both S and R as subalgebras of T . By abuse of notation we con-
sider ∆ to be a Weitzenböck derivation on both T and S by declaring
that ∆(Zi) = Yi, ∆(Yi) = Xi and ∆(Xi) = 0 for i = 1, 2, . . . , d.



WEITZENBÖCK DERIVATIONS OF NILPOTENCY 3 5

Let Di,j denote the differential operator

Di,j := Xri+j

∂

∂xi
+ Yri+j

∂

∂yi
+ Zri+j

∂

∂zi
where ri = d1 + d2 + · · ·+ di−1. Then the full polarization of f is the
element

P(f) :=
1

d1!d2! · · · dn!

n
∏

i=1

di
∏

j=1

Di,jf .

The full polarization P(f) is multi-linear, i.e., it lies in S(1,1,...,1). Note
that

S(1,1,...,1)
∼= K[X1, Y1, Z1]1 ⊗ · · · ⊗K[Xd, Yd, Zd]1 ∼= V3 ⊗ V3 ⊗ · · · ⊗ V3 .

Corresponding to the full polarization is restitution. This is the
algebra map R : S → R determined by R(Xj) = xi, R(Yj) = yi and
R(Zj) = zi where j is defined by ri < j ≤ ri+1 and ri = d1 + d2 +
· · ·+ di−1. Thus we have a full polarization operator and a restitution
homomorphism for each multi-degree (d1, d2, . . . , dn) of R.
The following theorem summarizes the properties of polarization and

restitution we will use. Proofs may be found in [P, Ch.3 §2].

Theorem 3.1.

(1) P : R(d1,d2,...,dn) → S(1,1,...,1) is a K-linear operator.

(2) R : S → R is an algebra hommorphism.

(3) P : R∆
(d1,d2,...,dn)

→ S∆
(1,1,...,1).

(4) R : S∆
(1,1,...,1) → R∆

(d1,d2,...,dn)
.

(5) R(P(f)) = f and P(R(F )) = F , i.e., P and R are inverse set

maps.

4. Tensor Products of Jordan Matrices

We seek to find the Jordan form for ∆ on ⊗dV3 where d is a positive
integer. Let Jn(λ) denote the n×n Jordan matrix with a single Jordan
block and eigenvalue λ.
The derivation ∆ on S(1,1,...,1)

∼= ⊗dV3 has Jordan decomposition

⊕∞
h=1µ

d(h)Jh(0)

for some integers µd(h) ∈ N . Here we write tJh(0) to denote the direct
sum of t Jordan blocks of size h and eigenvalue 0.
It is not hard to see that the action of σ = e∆ on ⊗dV3 has Jordan

matrix given by ⊕∞
h=1µ

d(h)Jh(1). In particular, the matrix of σ on V3
has Jordan form J3(1). To determine the numbers µd(h) we work with
σ rather than with ∆ directly. Hence we need to find the Jordan form
for the Kronecker power ⊗dJ3(1). To do this inductively it suffices to
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decompose the Kronecker product Jm(1)⊗ Jn(1) into a sum of Jordan
blocks.
The question of the Jordan decomposition of the Kronecker product

of Jordan matrices was considered early in the last century. The follow-
ing theorem which provides the solution for the Jordan decomposition
of Jn(λ)⊗Jm(µ)was ennunciated at that time (see [A, L, R]). However,
it was not until rather later that a correct proof of this result [Br, MR]
was given. For a discussion of the history of this problem see [Br] or
[W].

Theorem 4.1. Let 1 ≤ m ≤ n. Then

Jm(1)⊗Jn(1) = Jn−m+1(1)⊕Jn−m+3(1)⊕Jn−m+5(1)⊕· · ·⊕Jn+m−1(1) .

This yields the following.

Lemma 4.2. Suppose h is an odd positive integer. Then

µ0(h) = δ1h,

and

µd+1(h) =

{

µd(3), if h = 1;

µd(h− 2) + µd(h) + µd(h+ 2), if 3 ≤ h.

for d ≥ 1.

5. The Representation Graph

In this section we introduce a directed graph Γ which encodes the
Jordan decomposition of tensor powers of J3(1). In order to simplify
the exposition, we will consider Γ as embedded in the xy-plane in the
first quadrant.
Γ is tree with root at the point (1, 0). The vertices of Γ are the

integer lattice points in (h, d) in the first quadrant with h odd and
which lie on or above the line y = x−1, i.e., the points (2a+1, d) with
a, d ∈ Z and 0 ≤ 2a ≤ d. We will also attach labels to the edges of
Γ. Every vertex (2a + 1, d) of Γ has a directed edge going up and to
the right to the vertex at (2a + 3, d+ 1). We label this edge with the
symbol Xd+1. If 2a+ 1 ≥ 3 there is also a directed edge going straight
up from (2a + 1, d) to (2a + 1, d + 1). This vertical edge is labelled
Yd+1. Finally , if 2a + 1 ≥ 3 there is also an edge from (2a + 1, d) up
and leftward to (2a− 1, d+ 1). This edge is labelled Zd+1.
Consider a path in the directed graph from the root (1, 0) to a vertex

(2a + 1, d). Reading the edge labels of this path yields d labels, each
from the set {X1, Y1, Z1, X2, Y2, Z2, . . . , Xd, Yd, Zd}. Furthermore each
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of the subscripts 1, 2, . . . , d occurs exactly once. Multiplying these la-
bels together yields a monomial of degree d in S(1,1,...,1)

∼= ⊗dV3. Thus
to each path γ of length d originating from the root we have associated
a monomial which we denote by Λ(γ). We call the monomials which
can be constructed in this manner, path monomials and we denote by
Md the path monomials arising from paths of length d.. We will show
that these path monomials are exactly the lead monomials of elements
of S∆

(1,1,...,1)
∼= (⊗dV3)

∆.

We begin by counting paths in Γ. Let νd(h) denote the number of
distinct paths in Γ from the root (1, 0) to the vertex (h, d). With this
notation we have the following lemma whose proof is left to the reader.

Lemma 5.1.

ν0(h) = δ1h,

and

νd+1(h) =

{

νd(3), if h = 1;

νd(h− 2) + νd(h) + νd(h+ 2), if 3 ≤ h.

The following corollary is immediate.

Corollary 5.2. For all d ∈ N and all odd positive integers h we have

µd(h) = νd(h) .

6. A Vector Space Basis for S∆
(1,1,...,1)

We define the following multi-linear elements of S∆:

(1) F{i} := Xi where 1 ≤ i ≤ n;
(2) F{i,j} := XiYj −XjYi where 1 ≤ i < j ≤ n;
(3) G{i,j} := XiZj − YiYj + ZiYj where 1 ≤ i < j ≤ n;

(4) G{i,j,k} = det





Xi Yi Zi

Xj Yj Zj

Xk Yk Zk



 where 1 ≤ i < j < k ≤ n.

From these elements we inductively construct two families of multi-
linear elements of S∆ as follows.

(1) F{i1,i2,...,it} := F{i2,i4,i5,i6...,it}G{i1,i3} − F{i1,i4,i5,i6...,it}G{i2,i3}

where 1 ≤ i1 < i2 < · · · < it ≤ n and t ≥ 3.
(2) G{i1,i2,...,it} := G{i2,i4,i5,i6...,it}G{i1,i3} −G{i1,i4,i5,i6...,it}G{i2,i3}

where 1 ≤ i1 < i2 < · · · < it ≤ n and t ≥ 4.

We denote the union of these families by B and we write Bd to denote
those products of elements of B which have total degree d and lie in
S(1,1,...,1).
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We use the lexicographic order on S determined by

Zn > Yn > Xn > Zn−1 > Yn−1 > Xn−1 > · · · > Z1 > Y1 > X1 .

The following lemma exhibits the two largest terms for elements of B.

Lemma 6.1. Let 1 < i1 < i2 · · · < it ≤ n. Then

(1) F{i1,i2,...,it} = Xi1Yi2Yi3Yi4 · · ·Yit − Yi1Xi2Yi3Yi4 · · ·Yit + l.o.t.,
if t ≥ 2.

(2) G{i1,i2,...,it} = Xi1Yi2Yi3Yi4 · · ·Yit−1
Zit − Yi1Xi2Yi3Yi4 · · ·Yit−1

Zit

+ l.o.t., if t ≥ 3.

Proof. The proof is by induction on t. The result is straightforward to
verify for t = 2, 3. For higher values of t we have (using induction)

f{i1,i2,...,it} = f{i2,i4,i5...,it}g{1,3} − f{i1,i4,i5,i6...,it}g{i2,i3}

= (Xi2Yi4Yi5 · · ·Yt − Yi1Xi2Yi3 · · ·Yit + l.o.t.)(Xi1Zi3 − Yi1Yi3 + Zi1Yi3)

− (Xi1Yi4Yi5 · · ·Yt − Yi1Xi4Yi5 · · ·Yit + l.o.t.)(Xi2Zi3 − Yi2Yi3 + Zi2Yi3)

= Xi1Xi2Zi3Yi4Yi5 · · ·Yit −Xi1Yi2Zi3Yi4Yi5 · · ·Yit + l.o.t.

− Yi1Xi2Yi3Yi4Yi5 · · ·Yit + Yi1Yi2Yi3Xi4Yi5 · · ·Yit + l.o.t.

+ Zi1Xi2Xi3Yi4Yi5 · · ·Yit − Zi1Yi2Xi3Xi4Yi5 · · ·Yit + l.o.t.

−Xi1Xi2Zi3Yi4Yi5 · · ·Yit + Yi1Xi2Zi3Xi4Yi5 · · ·Yit + l.o.t.

+Xi1Xi2Zi3Yi4Yi5 · · ·Yit − Yi1Yi2Yi3Xi4Yi5 · · ·Yit + l.o.t.

−Xi1Zi2Xi3Yi4Yi5 · · ·Yit + Yi1Zi2Xi3Xi4Yi5 · · ·Yit + l.o.t.

= Xi1Yi2Yi3Yi4Yi5 · · ·Yit − Yi1xi2Yi3Yi4Yi5 · · ·Yit + l.o.t.

The proof for (2) is similar with the cases t = 3, 4 being easily verified.

G{i1,i2,...,it} = G{i2,i4,i5...,it}G{1,3} −G{i1,i4,i5,i6...,it}G{i2,i3}

= (Xi2Yi4Yi5 · · ·Yt − Yi1Xi2Yi3 · · ·Yit−1
Zit + l.o.t.)(Xi1Zi3 − Yi1Yi3 + Zi1Yi3)

− (Xi1Yi4Yi5 · · ·Yt − Yi1Xi4Yi5 · · ·Yit−1
Zit + l.o.t.)(Xi2Zi3 − Yi2Yi3 + Zi2Yi3)

= Xi1Xi2Zi3Yi4Yi5 · · ·Yit−1
Zit −Xi1Yi2Zi3Yi4Yi5 · · ·Yit−1

Zit + l.o.t.

− Yi1Xi2Yi3Yi4Yi5 · · ·Yit−1
Zit + Yi1Yi2Yi3Xi4Yi5 · · ·Yit−1

Zit + l.o.t.

+ Zi1Xi2Xi3Yi4Yi5 · · ·Yit−1
Zit − Zi1Yi2Xi3Xi4Yi5 · · ·Yit−1

Zit + l.o.t.

−Xi1Xi2Zi3Yi4Yi5 · · ·Yit−1
Zit + Yi1Xi2Zi3Xi4Yi5 · · ·Yit−1

Zit + l.o.t.

+Xi1Xi2Zi3Yi4Yi5 · · ·Yit−1
Zit − Yi1Yi2Yi3Xi4Yi5 · · ·Yit−1

Zit + l.o.t.

−Xi1Zi2Xi3Yi4Yi5 · · ·Yit−1
Zit + Yi1Zi2Xi3Xi4Yi5 · · ·Yit−1

Zit + l.o.t.

= Xi1Yi2Yi3Yi4Yi5 · · ·Yit−1
Zit − Yi1Xi2Yi3Yi4Yi5 · · ·Yit−1

Zit + l.o.t.

�
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In Proposition 8.1, we will prove that Bd is a vector space basis for
S∆
(1,1,...,1).

7. Definition of θ and φ

We will define a set maps

φ :Md → S∆
(1,1,...,1)

and

θ : Pathd → S∆
(1,1,...,1)

such that LM(θ(γ)) = Λ(γ). Furthermore, θ(γ) will be a product of
elements from B and so θ(γ) ∈ Bd. Since θ = φ ◦ Λ it will suffice to
define φ.
Let α be a monomial in S. Put suppX(α) = {i | Xi divides α},

suppY (α) = {i | Yi divides α}, suppZ(α) = {i | Zi divides α} and
supp(α) = suppX(α) ∪ suppY (α) ∪ suppZ(α). Suppose that α ∈ Md.
Note that supp(α) is the interval [1, d].
We define φ(α) as follows. Write suppZ(α) = {k1, k2, . . . , ks} where

k1 < k2 < · · · < ks. We begin by defining {i1, i2, . . . , is} ⊂ suppX(α)
with i1 > i2 > · · · > is. Let i1 := max{i ∈ suppX(α) | i < k1} and put
Ii := [i1, k1] (an interval). Let i2 := max{i ∈ suppX(α) | i < i1} and
I2 := [i2, k2] \ I1. In general, iq := max{i ∈ suppX(α) | i < iq−1} and

Iq := [iq, kq] \ (⊔
q−1
ℓ=1Iℓ) for q = 2, . . . , s.

Define α := α/(
∏s

ℓ=1 LM(GIℓ)). Then supp(α) = [1, d] \ (⊔sℓ=1Iℓ).
For each j ∈ suppY (α) we define succ(j) := min{i ∈ supp(α) | i > j}.
Let {j1, js, . . . , jt} = {j ∈ suppY (α) | succ(j) /∈ suppY (α)} where
j1 < j2 < · · · < jt. Next we define {i′1, i

′
2, . . . , i

′
t} ⊂ suppX(α)} with

i′1 > i′2 > · · · > i′t as follows. Let i′1 := max{i ∈ suppX(α) | i < j1}
and I ′1 := [i′1, j1] ∩ supp(α). Let i′2 := max{i ∈ suppX(α) | i < i2} and
I ′2 := ([i′2, j2] \ I

′
1) ∩ supp(α). In general, i′q := max{i ∈ suppX(α) |

iq < iq−1} and I ′q := ([i′q, jq] \ (⊔
q−1
ℓ=1I

′
ℓ)) ∩ supp(α). We put I ′′ :=

[1, d] \ ((⊔sℓ=1Iℓ) ⊔ (⊔tℓ=1I
′
ℓ)). Note that I ′′ ⊆ suppX(α).

Finally, we define

φ(α) := (

s
∏

ℓ=1

GIℓ) · (

t
∏

ℓ=1

FI′
ℓ
) · (

∏

i∈I′′

F{i}) .

For each ℓ = 1, 2, . . . , s we have min Iℓ = iℓ and max Iℓ = kℓ. Define
Jℓ := {j ∈ Iℓ | iℓ < j < kℓ}. Then LM(GIℓ) = Xiℓ · (

∏

j∈Jℓ
Yj) · Zkℓ.

For each ℓ = 1, 2, . . . , t we have min I ′ℓ = i′ℓ and max I ′ℓ = jℓ. Define
J ′
ℓ := I ′ℓ \ {i

′
ℓ}. Then LM(FI′

ℓ
) = Xi′

ℓ
· (
∏

j∈J ′

ℓ
Yj).
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Therefore LM(φ(α)) = α as required. Furthermore, φ(α) is a product
of elements of B and thus φ(α) ∈ Bd.

8. Proof of the Main Theorem

We now prove that path monomials are exactly the lead monomials
of multi-linear constants and so θ provides a bijection between paths
of length d and a basis of the degree d multi-linear constants, S∆

(1,1,...,1)

Proposition 8.1.

Md = {LM(f) | deg(f) = d, f ∈ S∆
(1,1,...,1)} .

Moreover, {θ(γ) | γ ∈ Pathd} is a vector space basis for S∆
(1,1,...,1).

Proof. Since LM(φ(α)) = α for all α ∈ Md it follows that Md ⊆
{LM(f) | deg(f) = d, f ∈ S∆

(1,1,...,1)}. Since #Md = #Pathd =
∑

h odd,h≤d νh(d) =
∑

h odd,h≤d µh(d) = dimS∆
(1,1,...,1)} = #{LM(f) |

deg(f) = d, f ∈ S∆
(1,1,...,1)}, we see that Md = {LM(f) | deg(f) = d, f ∈

S∆
(1,1,...,1)}.

Furthermore, LM(φ(α)) = α for all α ∈ Md implies that the set
φ(Md) = θ(Pathd) is linearly independent. Therefore θ(Pathd) is a
basis of S∆

(1,1,...,1). �

Remark 8.2. In fact it is possible to show that if γ is a path from

the root to (h, d) then θ(γ) is an eigenvector corresponding to a Jordan

block of size h.

Suppose h lies in the algebra of constants R∆. Further suppose
that h is homogeneous of multi-degree (d1, d2, . . . , dn) and put d :=
d1 + d2 + · · ·+ dn. Let H denote the full polarization P(f) of h. Then
H ∈ S∆

(1,1,...,1). Thus H =
∑

E∈Bd
cEE. In fact we may compute these

coefficients cE as follows. We know LM(H) = Λ(γ1) for some γ1 ∈
Pathd. Then the lead term of H is cγ1Λ(γ1) for some scalar cγ1 . Thus
LM(H) > LM(H− cγ1θ(γ1)). By induction on lead monomials we may
may compute the coefficients cγi in the expansion H =

∑r

i=1 cγiθ(γi).
Then h = R(H) =

∑r
i=1 cγiR(θ(γi)) where each θ(γi) ∈ Bd. Each

E ∈ Bd is of the form E =
∏

I∈A FI ·
∏

I′∈A′ GI′ for some index sets A
and A′. Thus R(E) =

∏

I∈AR(FI) ·
∏

I′∈A′R(GI′).

Lemma 8.3. Let Q denote the K-algebra generated by G.

(1) R(FI) ∈ Q for all index sets I.
(2) R(GI′) ∈ Q for all index sets I ′ with #I ′ ≥ 2.
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Proof. We prove the first assertion; the proof of the second is similar.
The proof is by induction on #I. If #I = 1 then R(FI) = xi ∈ G for
some i. If #I = 2 then R(FI) = xiyj−xjyi for some i ≤ j and so either
R(FI) ∈ G or R(FI) = 0. If #I ≥ 3 then FI = FAGB−FCGD for some
index sets A,B,C,D and R(FI) = R(FA)R(GB) −R(FC)R(GD) lies
in Q by induction. �

This lemma completes the proof that R∆ is the K-algebra generated
by G. Moreover, the proof of the above lemma provides an inductive
algorithm for writing any element of B as a polynomial in the elements
of G.
I thank Megan Wehlau for a number of useful discussions which led

to this work. The computer algebra program Magma ([BCP]) was
very helpful in my early explorations of this problem. The author was
partially supported by grants from NSERC and ARP.
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derivations Serdica Math. J. 35 (2009), 311-316.
[Br] Richard A. Brualdi, Combinatorial verification of the elementary divisors

of tensor products, Linear Algebra Appl., 71 (1985) 31–47.
[BK] Roger M. Bryant and Gregor Kemper, Global degree bounds and the transfer

principle for invariants, J. Algebra 284 (2005), no. 1, 80–90.
[CSW] H.E.A. Campbell, R.J. Shank and David L. Wehlau, Vector invari-

ants for the two dimensional modular representation of a cyclic group

of prime order, Advances in Mathematics 225 (2010) no. 2, 1069–1094
(doi:10.1016/j.aim.2010.03.018, arXiv:0901.2811).

[CLO] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms, Springer-
Verlag, 1992.

[DM] Vesselin Drensky and Leonid Makar-Limanov, The conjecture of Nowicki on

Weitzenbck derivations of polynomial algebras, J. Algebra Appl. 8 (2009),
no. 1, 41-51.

[Kh] J. Khoury, A Groebner basis approach to solve a conjecture of Nowicki, J.
Symbolic Comput. 43 (2008), no. 12, 908–922.

[K] Shigeru Kuroda, A simple proof of Nowicki’s conjecture on the kernel of an

elementary derivation, Tokyo J. Math. 32 (2009), no. 1, 247–251.
[L] D.E. Littlewood, On induced and compound matrices, Proc. London Math.

Soc. 40 (1936) 370–381.
[MR] Marvin Marcus and Herbert Robinson, Elementary divisors of tensor prod-

ucts, Comm. ACM 18 (1975) 36–39.

http://arxiv.org/abs/0901.2811


12 WEHLAU

[N] A. Nowicki, Polynomial Derivations and Their Rings of Constants

(Uniwersytet Mikolaja Kopernika, Torun, 1994). [Available at: www-
users.mat.umk.pl/∼anow/ps-dvi/pol-der.pdf.]

[P] Claudio Procesi, Lie groups. An approach through invariants and repre-

sentations, Universitext. Springer, New York, 2007. xxiv+596 pp. ISBN:
978-0-387-26040-2; 0-387-26040-4.

[R] W.E. Roth, On direct product matrices, Bull. AMS 40 (1934) 461–468.
[W] David L. Wehlau, Invariants for the Modular Cyclic Group of Prime Order

via Classical Invariant Theory, (preprint) arXiv:0912.1107.
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