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POISSON SMOOTH STRUCTURES ON STRATIFIED

SYMPLECTIC SPACES

HÔNG VÂN LÊ, PETR SOMBERG AND JIŘI VANŽURA

Abstract. In this note we introduce the notion of a Poisson smooth structure
on a symplectic stratified space. We show that under a mild condition many
properties of a symplectic manifold can be extended to a symplectic stratified
space, e.g. the existence and uniqueness of a Hamiltonian flow, the isomor-
phism between the Brylinski-Poisson homology and the de Rham homology,
the Hodge structure on a symplectic stratified space. We give many examples
of symplectic stratified spaces satisfying these properties.
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1. Introduction

Many classical problems on various classes of topological spaces reduce to the
quest for its appropriate functional structure. Examples of topological spaces we
are interested in comprise stratified spaces equipped with an additional structure
of geometrical origin. Due to the lack of canonical notion of the sheaf of smooth
(or analytic) functions on such spaces one is free to introduce such a structure with
all derived smooth (or analytical) notions, e.g. the tangent space, the vector field
or the de Rham complex.

In this note we continue the study of Poisson smooth structures on singular
spaces called symplectically stratified spaces along the lines of ideas developed in
[8], where smooth structure was generated by canonical smooth structure on its
regular part together with controlled behavior on the singular locus.

The structure of this short note is as follows. First of all, we discuss the exten-
sion of a notion of (Poisson) smooth structure on conical pseudomanifolds to the
category of stratified spaces. This extension then leads to a rather straightforward
extension of variety of basic notions on symplectic manifolds, e.g. the existence and
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uniqueness of a Hamiltonian flow, the isomorphism between the Brylinski-Poisson
homology, the de Rham homology and the symplectic Hodge structure, to the wider
framework of symplectic stratified spaces.

2. Stratified spaces and their smooth structures

In this section we introduce the notion of a stratified space following Goresky’s
and MacPherson’s concept [6, p.36], see also [13, §1]. We introduce the notion of
a smooth structure on a stratified space. Our concept of a smooth structure on a
stratified space is a natural extension of our concept of a smooth structure on a
pseudomanifold with conical singularities given in [8, §2]. We prove the existence
of a locally smoothly contractible, resolvable smooth structure on pseudomanifolds
with edges, see Lemma 2.8, and the infinite generatedness of a resolvable smooth
structure satisfying a mild condition, see Proposition 2.10 for details.

Definition 2.1. ([6, p.36], [13, Definition 1.1]) Let X be a Hausdorff and paracom-
pact topological space and let S be a partially ordered set with ordering denoted by
≤. An S-decomposition of X is a locally finite collection of disjoint locally closed
manifolds Si ⊂ X (one for each i ∈ S) called strata such that

1) X = ∪i∈SSi;
2) Si ∩ S̄j 6= ∅ ⇐⇒ Si ⊂ S̄j ⇐⇒ i ≤ j.
We define the depth of a stratum S as follows

depthX S := sup{n| there exist pieces S = S0 < S1 < · · · < Sn}.

We define the depth of X to be the number depthX := supi∈S depth Si. The
dimension of X is defined to be the maximal dimension of its strata.

Given a space L a cone cL over L is the topological space L× [0,∞)/L×{0}. If
L has a S-decomposition with depth n the cone cL has an induced decomposition
with depth (n+ 1) [13, p.379].

Definition 2.2. (cf. [5], [13, Definition 1.7]) A decomposed space X is called
a stratified space if the pieces of X , called strata, satisfy the following condition
defined recursively. Given a point x in a piece S there exists an open neighborhood
U of x in X , an open ball B around x in S, a compact stratified space L, called
the link of x, and a stratified diffeomorphism φ : B × cL → U that preserves the
decomposition.

A homeomorphism φ : X → Y from a stratified space X to a stratified space Y
is called a stratified diffeomorphism, if φ maps a stratum of X onto a stratum of Y
and the restriction of φ to each stratum is a diffeomorphism on its image.

Let Xn be a stratified space of dimension n. A stratum S is called regular, if
S ∩Xn \ S = ∅. Denote by Xreg the union of all regular strata. Then Xreg is an
open subset of X and X = Xreg. A point x ∈ Xreg is called a regular point. Set
Xsing := X \Xreg. A point x ∈ Xsing is called a singular point.

Example 2.3. A connected stratified space X of depth 1 is a disjoint union of a
regular stratum Xreg and a countable number of strata Si such that Si ∩ Sj = ∅ if

i 6= j, and Si ⊂ Xreg. We always assume that a stratum is connected space. Strata
Si are called edges of X , and X is also called a pseudomanifold with edges. A
pseudomanifold X with edges is called a pseudomanifold with conical singularities,
if its edges Si are points si of X .
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Let N be a smooth manifold which is fibered over a smooth base B. Then we
say that B is a fiberwise contraction of N . A stratified space X of depth k can
be constructed from a stratified space Y of depth (k + 1) by fiberwise contracting
certain proper submanifolds Nij of a stratum Sj of depth k. Here we assume that
Nij is a smooth fibration over some smooth base Bij , and Y is obtained by gluing
X \Nij with Bij with help of the smooth projection from Nij to Bij . In this case
we say that M is a covering of X with depth k.

Now let us introduce the notion of a smooth structure on a stratified space, which
is an immediate extension of our notion of a smooth structure on a pseudomanifold
with conical singularities in [8]. We denote by C∞(Xreg) (resp. C∞

0 (Xreg)) the
union of the spaces of smooth functions on each smooth stratum of Xreg (resp. the
space of smooth functions with compact support).

Definition 2.4. (cf. [8, Definition 2.3]) A smooth structure on a stratified space
Xn of dimension n is a choice of a subalgebra C∞(X) of the algebra C0(X) (over
R) of all continuous functions on X satisfying the following five properties.

1. C∞(X) is a C∞-ring.
2. For any stratum S ⊂ X we have C∞

0 (S) ⊂ C∞(X)|S ⊂ C∞(S). Here C∞
0 (S)

denotes the space of smooth functions with compact support in S.
3. C∞

0 (Xreg) ⊂ C∞(X).
4. C∞(X) is complete in the following sense. If fi ∈ C∞(X), and a family

{sppt fi} is a locally finite open sets (i.e. for any x ∈ X there is only a finite
number of fi such that x ∈ sppt fi), then

∑
fi ∈ C∞(X).

5. C∞ is partially invertible in the following sense. If f ∈ C∞(X) is nowhere
vanishing, then 1/f ∈ C∞(X).

Since X ⊂ Xreg the condition 2 in Definition 2.4 allows us to regard C∞(X) as
a subalgebra of C∞(Xreg). Furthermore any function f ∈ C∞

0 (Xreg) has a unique
extension to a continuous function on X by setting f(x) = 0 if x ∈ X \ Xreg.
The condition 2 implies that C∞

0 (Xreg) is a subalgebra of C∞(X). Thus we have
inclusions C∞

0 (Xreg) ⊂ C∞(X) ⊂ C∞(Xreg).
A continuous map f between smooth stratified spaces (X,C∞(X)) and (Y,C∞(Y ))

is called a smooth map, if f∗(C∞(Y )) ⊂ C∞(X).
The following Lemma is a generalization of [8, Lemma 2.8].

Lemma 2.5. For any locally finite open covering {Ui} of X there exists a smooth
partition of unity subordinate to Ui (i.e. there are nonnegative smooth functions
fi ∈ C∞(X) with support in Ui satisfying

∑
fi = 1).

Proof. This Lemma is proved in the same way as in [8]. Mimicking the proof of the
existence of a partition of unity on a smooth manifold, it suffices to show that for
any open neighborhood U(s), s ∈ (X \ Xreg), and for any open set V (s) ⊂ U(s)

containing s such that V (s) ⊂ U(s) there exists a nonnegative function f ∈ C∞(X)
with support in U(s) such that f|V (s) = 1. Let χ be the smooth constant function
onX taking value 1. Here we use essentially conditions 4 and 5 in our Definition 2.4.
Since C∞

0 (Xreg) ⊂ C∞(X), there exists a function χU(s) ∈ C∞
0 (Xreg) ⊂ C∞(X)

with support in Xreg \ V (s) such that 0 ≤ χU(s)(x) ≤ 1 and χU(s)(x) = 1 if

x ∈ Xreg \U(s). Since U(s) is open and Xreg = X we get Xreg \ U(s) = X \U(s).
Hence χU(s)(x) = 1 if x ∈ X \ U(s). The function f := χ − χU(s) is the required
smooth function. �
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Let D be an open subset of X . A continuous function f : D → R is called
smooth, if for each x ∈ D there is an open neighborhood U(x) ⊂ D and a function
fU ∈ C∞(X) such that f|U(x) = (fU )|U(x). The set of all smooth functions on D
is denoted by C∞(D). It is easy to see that the collection U 7→ C∞(U) over open
sets U ⊂ X is a sheaf. We call it the sheaf of smooth functions on X . Denote by
C∞

x (X) the germs of smooth functions on X at x. For x ∈ Xreg conditions 2 and
3 in Definition 2.4 imply that C∞

x (X) = C∞
x (Xreg).

Corollary 2.6. 1.(cf. [8, Corollary 2.9]) The sheaf of smooth functions on X
defined by letting D = X in our definition above coincides with the original algebra
C∞(X), that is our smooth structure is germ determined.
2. Smooth functions on X separate points on X.

Proof. 1. The proof of the first assertion of Corollary 2.6 is identical with the proof
of Corollary 2.9 in [8]. For the convenience of the reader we rewrite the proof
here. Let us prove that a function f ∈ C0(X) belongs to C∞(X) if and only if
for all x there is a neighborhood V (x) ∋ x such that f|V (x) ∈ C∞(V (x)). The
“only if” assertion follows from the definition of C∞(V (x)). Now let us prove the
“if” assertion, that is if f ∈ C0(X) and for any x there exists V (x) ∋ x such that
f|V (x) = G|V (x) for some G ∈ C∞(X) then f ∈ C∞(X). Without loss of generality
we can assume that there is a locally finite open covering of X such that for each
Vi there exists Gi ∈ C∞(X) satisfying f|Vi

= (Gi)|Vi
. Let λi be a smooth partition

of unity subordinate to Vi, whose existence follows from Lemma 2.5. Note that
f(x) =

∑
λif(x) (this sum is well-defined for each x since Vi is a locally finite open

covering). Since λi ∈ C∞(X) we have λiGi ∈ C∞(X) such that for each Vi there
exists Gi ∈ C∞(X) satisfying f|Vi

= (Gi)|Vi
. Clearly we have λif|Vi

= (λiGi)|Vi
.

Since spptλi ⊂ Vi we get λif(x) = λiGi(x) for all x ∈ X . Hence f =
∑

λiGi

belongs to C∞(X), since our ring of smooth functions is a complete C∞-ring.
2. The second assertion of Corollary 2.6 follows directly from the proof of Lemma

2.5. �

There are many ways to provide a stratified space X with a smooth structure,
most notably using the notion of the quotient smooth structure, i.e. the existence
of a continuous map M → X from a smooth manifold M to X (e.g. X is the
quotient of a manifold M under an action of a compact Lie group G), or using an
embedding of X into a smooth manifold M (e.g. the notion of Whitney smooth
functions see e.g. [13, Example 1.10].)

Definition 2.7. Assume that we have a continuous projection M
π
→ X from a

smooth manifold M with corner to a stratified space X such that for each stratum
Si ⊂ X the triple (π−1(Si), πi, Si) is a differentiable fibration, moreover for each
x ∈ Xreg the preimage π−1(x) consists of a single point. The smooth structure
C∞(X) := {f ∈ C0(N)|π∗f ∈ C∞(M)} is called a resolvable smooth structure.
The space M is called a resolution of M .

We say that C∞(M) is locally smoothly contractible, if for any x ∈ M there
exists an open neighborhood U(x) ∋ x together with a smooth homotopy σ :
U(x) × [0, 1] → U(x) joining the identity map with the constant map U(x) 7→ x
[12, §5]. Note that there is a natural smooth structure C∞(U(x)× [0, 1]) generated
by C∞(U(x)) and C∞([0, 1]) [12, §3], so that the projections from U(x) × [0, 1] to
U(x) and to [0, 1] are smooth maps.



POISSON SMOOTH STRUCTURES ON STRATIFIED SYMPLECTIC SPACES 5

Lemma 2.8. Every pseudomanifold X with edges has a resolvable smooth structure,
which is locally smoothly contractible.

Proof. Let Si be a singular stratum. By assumption there is an open neighborhood
U(Si) of S in X such that U(Si) is a topological fibration over S whose fiber is a
cone cLi, where Li is a compact smooth manifold. Now we consider a new space
M := X \ ∪iU(Si). Clearly M is a smooth manifold provided with a projection
π onto X contracting the boundary ∂U(Si) to Si such that the restriction of π
to M \ ∪i∂Ui(Si) is a diffeomorphism on its image. Let us consider the following
commutative diagram

I × V (∂U(Si))

(Id×π)

��

F̃
// V (∂U(Si))

π

��

I × U(Si)
F

// U(Si)

where V (∂U(Si)) is an open normal neighborhood of ∂U(Si) in M , and F̃ is a
smooth deformation retraction from V (∂U(Si)) to ∂U(Si), constructed using the
fibration [0, 1) → V (∂U(Si)) → ∂U(Si). We set

F (t, x) := π(F̃ (t, π−1(x))).

Since F̃|∂U(Si) = Id, the map F is well-defined. This proves Proposition 2.8. �

Next we introduce the notion of the cotangent bundle of a stratified space X ,
which is identical with the notion we introduced in [8] and similar to the notions
introduced in [13], [15]. Note that the germs of smooth functions C∞

x (X) is a
local ring with the unique maximal ideal mx consisting of functions vanishing at
x. Set T ∗

x (X) := mx/m
2
x. Since we have a direct sum C∞

x (X) = mx ⊕ R, it is
known that the space T ∗

xX can be identified with the space of Kähler differentials
d : C∞

x (X) → T ∗
xX , see e.g. [9, 26.1], or [15, Proposition B.1.2]. We call T ∗

xX
the cotangent space of X at x. Its dual space TZ

x X := Hom(T ∗
xX,R) is called the

Zariski tangent space of X at x. The union ∪x∈XT ∗
xX is called the cotangent bundle

of X . The union ∪x∈XTZ
x X is called the Zariski tangent bundle of X .

Let us denote by Ω1
x(X) the C∞

x (X)-module C∞
x (X) ⊗R mx/m

2
x. We called

Ω1
x(X) the germs of 1-forms at x. Set Ωk

x(X) := C∞
x (X) ⊗R Λk(mx/m

2
x). The

Kähler differential d : C∞
0 (X) := Ω0

x(X) → Ω1
x(X) induces the differential d :

Ωk
x(X) → Ωk+1

x (X).

Definition 2.9. A section α : X → ΛkT ∗(X) is called a smooth differential k-
form, if for each x ∈ X there exists U(x) ⊂ X such that α(x) can be represented
as

∑
i0i1···ik

fi0dfi1 ∧ · · · ∧ dfik for some fi0 , · · · , fik ∈ C∞(X).

Denote by Ω(X) the space of all smooth differential forms on X . By Definition
2.4 we can regard Ω(X) as a subspace in Ω(Xreg). The Kähler differential d extends
to a differential also denoted by d mapping Ω(X) to Ω(X).

Using the notion of cotangent space we will prove the following

Proposition 2.10. A resolvable smooth structure on X obtained from a smooth
manifold M is infinitely generated, if there exists x ∈ X such that dimπ−1(x) ≥ 1,
where π : M → X is the associated projection.
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Proof. Assume the opposite i.e. C∞(X) is generated by g1, · · · , gn. Then G =
(g1, · · · , gn) defines a smooth embedding X → R

n, so C∞(X) = C∞(Rn)/I, where
I is an ideal of C∞(Rn) of smooth functions on R

n vanishing on G(X) [10, p.21].
In particular, the cotangent space T ∗

xX is a finite dimensional linear space for all
x ∈ X .

Let S be a stratum of X such that dim(π−1(S)) ≥ dimS + 1. Let x ∈ S and
U(x) a small open neighborhood of x in X . Let f ∈ C∞(U((x))), so π∗(f) ∈
C∞(π−1U((x))), and by definition π∗(f) ∈ C∞(Ũ) for some open set Ũ ⊂ R

n

containing χ(π−1(U((x)))), where χ : π−1(U((x))) → R
k
+ × R

n−k is a coordinate

map on π−1(U((x))). Denote by S̃ the preimage χ ◦ π−1(S ∩ U(x)), which is a

submanifold of Ũ(x). Then π̃ = π ◦ ξ−1 : S̃ → S ∩ U(x) is a smooth fibration. We

note that (χ−1)∗π∗(f) belongs to the subalgebra C∞(Ũ , S̃, π̃) consisting of smooth

functions on Ũ which are constant along fiber π̃−1(x′) for all x′ ∈ U(x). Shrinking

U(x) we can assume that S̃ = Ũ ∩ R
k and π̃ is the restriction of a projection

π̄ : Rk → R
l ⊂ R

k. Let Rn−k with coordinate x̃ = (x̃1, · · · , x̃n−k) be a complement
to R

k in R
n, and let Rk−l ⊂ R

k with coordinate ỹ be the kernel of π̄. We also equip
the subspace Rl with coordinate z̃ = (z̃1, · · · , z̃l). The condition dim π−1(x) ≥ 1 in
Proposition 2.8 is equivalent to the equality k − l ≥ 1.

Lemma 2.11. A function g ∈ C∞(Ũ) belongs to C∞(Ũ , S̃, π̃) if and only if g has
the form

g(x̃1, · · · , x̃n−k, ỹ, z̃) = x̃1g1(x̃, ỹ, z̃) + · · ·+ x̃n−kgn−k(x̃, ỹ, z̃) + c(z̃),

where gi ∈ C∞(Ũ) and c(z̃) ∈ C∞(Rl).

Proof. We write for g ∈ C∞(Ũ , S̃, π̃)

g(x̃, ỹ, z̃)− g(0, ỹ, z̃) =

∫ 1

0

dg(tx̃, ỹ, z̃)

dt
dt =

∫ 1

0

n−k∑

i=1

∂g(tx̃1, · · · , tx̃n−k, ỹ, z̃)

∂x̃i
.

Setting

gi =

∫ 1

0

∂g(tx̃1, · · · , tx̃n−k, ỹ, z̃)

∂x̃i
,

we get g(x̃, ỹ, z̃) =
∑n−k

i=1 x̃igi(x̃, ỹ, z̃) + g(0, ỹ, z̃). Since g(0, ỹ, z̃) depends only on
z̃, we obtain Lemma 2.11 immediately. �

Now let us complete the proof of Proposition 2.10. Take a point s ∈ S and
s̃ ∈ π̃−1(s) such that x(s̃) = y(s) = z(s) = 0. By Lemma 2.11 the maximal ideal
ms is a linear space generated by functions of the form x̃igi,α(x̃, ỹ, z̃), i = 1, n− k,

z̃jfj,β(z̃), j = 1, l. Let us consider the sequence S := {x̃1ỹ1, · · · , x̃1ỹm1 ∈ ms},
m → ∞. If dim T ∗

s X = n, there exists a subsequence x̃1ỹk1 , · · · , x̃1ỹkn of S such
that x̃1ỹm is a linear combination of x̃1ỹkj for any m, which is a contradiction. �

Proposition 2.10 answers question 2 we posed in [8, §5]. We observe that there
are many quotient smooth structures which are finitely generated, i.e. a quotient
by a smooth group action. In this case the dimension of the fiber over singular
strata is smaller than or equal to the dimension of the generic fiber.
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3. Symplectic stratified spaces and compatible Poisson smooth

structures

In this section we introduce the notion of a symplectic stratified space (X,ω) and
a smooth structure compatible with ω. We also introduce the notion of a Poisson
smooth structure on X whose restriction to each symplectic stratum agrees with
the given Poisson structure defined by ω. We give new examples of symplectic
stratified spaces with compatible (Poisson) smooth structures, see Examples 3.4,
3.6 and Lemma 3.7. We prove that the Brylinski-Poisson homology of a symplectic
stratified space X with a compatible Poisson smooth structure is isomorphic to the
de Rham cohomology of X , see Theorem 3.9.

Definition 3.1. A stratified space X is called symplectic, if every stratum Si

is provided with a symplectic form ωi. The collection {ωi} is called a stratified
symplectic form or simply a symplectic form if no misunderstanding can occur.

Note that on each symplectic stratum (Si, ωi) there is a Poisson structure Gωi

which is a section of bundle Λ2TSi, such that Gωi
(x) = ∂y1∧∂x1+ · · ·+∂yn∧∂xn

if ωi(x) =
∑n

i=1 dx
i∧dyi [2, §1.1]. If we regard ωi as an element in End(TSi, T

∗Si)
and Gωi

as an element in End(T ∗Si, TSi), then Gωi
is the inverse of ωi.

Definition 3.2. (cf. [8, Remark 4.8]) Let (X,ω) be a symplectic stratified space
and C∞(X) be a smooth structure on X .

1. A smooth structure C∞(X) is said to be weakly symplectic, if there is a smooth
2-form ω̃ ∈ Ω2(X) such that the restriction of Ω to each stratum Si coincides with
ωi. In this case we also say that ω is compatible with C∞(X) and C∞(X) is
compatible with ω.

2. A smooth structure C∞(X) is called Poisson, if G(ω) extends to a smooth

section G̃ω of Λ2TZ(X) (i.e. the action G̃ω : Ω(X) → Ω(X), G̃ω(α)(V1∧· · ·∧Vk) :=
α(Gω ∧V1 ∧ · · · ∧ Vk) sends smooth differential forms to smooth differential forms).

Remark 3.3. The condition 2 in Definition 3.2 is equivalent to the condition that
there is the Poisson structure {, }ω on C∞(X) such that its restriction to each
subalgebra C∞

0 (S) is equal to the Poisson structure defined by ωi on Si. A typical
example of a symplectic stratified singular space equipped with a Poisson smooth
structure is a disjoint union X of symplectic leaves of a Poisson manifold M . The
Poisson smooth structure on X is induced by the embedding X → M .

Example 3.4. We assume that a Lie group G is compact and M is a Hamiltonian
G-space with moment map J : M → g

∗. For a subgroup H of G denote by M(H)

the set of all points whose stabilizer is conjugate to H, the stratum of M of orbit
type (H). Let Z = J−1(0). The quotient space M0 = Z/G is called a symplectic
reduction of M . If 0 is a singular value of J then Z is not a manifold and M0 is
called a singular symplectic reduction. Recall that the canonical smooth structure
on M0 is defined as follows C∞(M0)can := C∞(M)G/IG, where IG is the ideal of
G-invariant functions vanishing on Z [13, Example 1.11]. Denote by π the natural
projection Z → Z/G. Denote by C∞(Z) the space of smooth functions on Z defined
by the natural embedding of Z to M . Since Z is closed, C∞(Z) = C∞(M)/IZ ,
where IZ is the ideal of smooth functions on M vanishing on Z. We claim that
the space C∞(Z)G of G-invariant smooth functions on Z can be identified with
the space C∞(M0)can = C∞(M)G/IG. Clearly C∞(M)G/IG is a subspace of G-
invariant smooth functions on Z. On the other hand any smooth function f on G
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can be modified to a G-invariant smooth function fG ∈ C∞(M) by setting

fG(x) =

∫

G

f(g · x)µg

for a G-invariant measure µg on G normalizing by the condition vol(G) = 1. So
if g ∈ C∞(Z)G, then g is the restriction of a G-invariant function on M . In other
words we have an injective map C∞(Z)G → C∞(M)G/IG. Hence follows the
identity C∞(Z)G = C∞(M0)can. It s follows that C∞(M0)can is the quotient of
the smooth structure obtained from C∞(Z) via the projection π : Z → M0.

The symplectic form ω0 on M0 is defined by Sjamaar and Lerman as follows.

Proposition 3.5. [13, Theorem 2.1] Let (M,ω) be a Hamiltonian G-space with
moment map J : M → g

∗. The intersection of the stratum M(H) of orbit type (H)
with the zero level set Z of the moment map is a manifold, and the orbit space

(M0)(H) = (M(H) ∩ Z)/G

has a natural symplectic structure (ω0)(H) whose pullback to Z(H) := M(H) ∩ Z
coincides with the restriction to Z(H) of the symplectic form on M . Consequently
the stratification of M by orbit types induces a decomposition of the reduced space
M0 = Z/G into a disjoint union of symplectic manifolds M0 = ∪H<G(M0)(H).

The smooth structure C∞(M0)can is known to inherit the Poisson structure from
M , see [13, Proposition 3.1]. We observe that C∞(M0)can is also weakly symplectic,
since by Proposition 3.5 the pull back π−1(ω0) is equal to the restriction of the
symplectic form ω to Z.

Example 3.6. Let us consider the closure of a nilpotent orbit in a complex semisim-
ple Lie algebra g. For x ∈ g let x = xs + xn be the Jordan decomposition of x,
where xn 6= 0 is a nilpotent element, xs is a semisimple and [xs, xn] = 0. Denote
by G the adjoint group of g. The adjoint orbit G(x) is a fibration over G(xs)
whose fiber is ZG(xs)-orbit of xn and ZG(xs) denotes the centralizer of xs in G.

It is well-known that the closure ZG(xs)(xn) is a finite union of ZG(xs)-orbits of

nilpotent elements in the Lie subalgebra Zg(xs) [3, chapter 6], so the closure G(x)
is a finite union of adjoint orbits in g. It is a stratified symplectic space provided

with the Kostant-Kirillov symplectic structure. The embedding G(x) → g provides

G(x) with a natural finitely generated smooth structure C∞
1 (G(x)). This smooth

structure is Poisson, inherited from the Poisson structure on g. It is also compatible

with the symplectic structure on G(x), since the symplectic structure on G(x) is
the restriction of the smooth 2-form ωx(v, w) = 〈x, [v, w]〉 on g. In [14, Lemma 2]

Panyushev showed that G(x) possesses also a resolvable smooth structure which
is compatible with ω. The corresponding resolution is constructed as follows. Let
h be a characteristic of x and g(i) = {s ∈ g|[h, s] = is}, n2 = ⊕i≥2g(i) and P
a parabolic subgroup with the Lie algebra lP = ⊕i≥0g(i) and N− the connected

Lie subgroup of G with Lie algebra lN− = ⊕i<0g(i). It is known that Px = n2

and Gx = P . Hence there exists a natural map τ : G ∗P n2 → G(x) : g ∗ n 7→ gn

is a resolution of the singularity of G(x). Moreover it is shown in [14] that this
resolvable smooth structure is compatible with the given symplectic structure on

G(x). The form τ∗(ω) is symplectic if and only if x is even. If x is minimal, the

preimage τ−1(G(x) \ G(x)) is a Lagrangian submanifold in G ∗P n2 = T ∗(G/P ),
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see [1, §2], [14], thus this resolvable smooth structure is Poisson by the following
Lemma 3.7.

Lemma 3.7. Assume that X is a symplectic stratified space of depth 1 and (X̃, ω̃, π :

X̃ → X) a symplectic smooth resolution of X. If for each singular point x ∈ X

the preimage π−1(x) is a coisotropic submanifold in X̃, then the resolvable smooth
structure is Poisson.

Proof. We define the Poisson bracket by {g, f}ω(x) := {π∗g, π∗f}ω̃(x̃), for x̃ ∈
π−1(x). We will show that this definition does not depend on the choice of a
particular x̃. By definition {π∗g, π∗f}ω̃(x̃) := ω̃(Xπ∗g, Xπ∗f )(x̃). Since π

∗f and π∗g
are constant along the same coisotropic submanifold, we get ω̃(Xπ∗g, Xπ∗f )(x̃) = 0.
This proves Lemma 3.7. �

Let us study the Brylinski-Poisson homology of a stratified symplectic manifold
M equipped with a Poisson smooth structure. Set Ω(M) := ⊕m

p=0Ω
p(M). By

Lemma 2.9 we can regard Ω(M) as a linear subspace in Ω(M reg). Assume that
C∞(M) is a Poisson smooth structure.

We consider the canonical complex

→ Ωn+1(M)
δ
→ Ωn(M) → ...

where δ is a linear operator defined as follows. Let α ∈ Ω(M) and α =
∑

j f
j
0df

j
1 ∧

df j
p be a local representation of α as in Lemma 2.9. Then we set (see [7], [2]):

δ(f0df1 ∧ · · · ∧ dfn) =

n∑

i=1

(−1)i+1{f0, fi}ωdf1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfn

+
∑

1≤i<j≤n

(−1)i+jf0d{fi, fj}ω ∧ df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ d̂fj ∧ · · · ∧ dfn.

Lemma 3.8. The boundary operator δ fulfills
(1) δ = i(Gω) ◦ d− d ◦ i(Gω). In particular, δ is well-defined.
(2) δ2 = 0.

Proof. 1) This assertion has been proved in the case of a smooth Poisson manifold
M by Brylinski, [2, Lemma 1.2.1]. Since we also have {f, g}ω = Gω(df ∧ dg) on a
singular pseudomanifold M , the proof in [2] can be repeated word-by-word, so we
omit it. This proves the first assertion.

2) To prove the second assertion we note that δ2(α)(x) = 0 at all x ∈ M reg, since
δ is local operator by the first assertion. Hence δ2(α)(x) = 0 for all x ∈ M . �

In general it is very difficult to compute the Poisson homology of a Poisson
manifold M unless it is a symplectic manifold. The following theorem shows that
the isomorphism between the Poisson homology and the de Rham homology on M
is a consequence of ω-compatibility of the Poisson smooth structure C∞(M).

Theorem 3.9. Suppose (X,ω) is a stratified symplectic space equipped with a Pois-
son smooth structure C∞(M) compatible with symplectic form ω. Then the sym-
plectic homology of the complex (Ω(X), δ) is isomorphic to the de Rham cohomol-
ogy with inverse grading : Hk(Ω(X), δ) = Hm−k(Ω, d). If the smooth structure
is locally smoothly contractible, Hk(Ω(X), δ) is equal to the singular cohomology
Hm−k(X,R).
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We denote by ∗ω the symplectic star operator

∗ω : Λp(R2n) → Λ2n−p(R2n)

satisfying

β ∧ ∗ωα = Gk(β, α)vol,

where vol = ωn/n!. Now let us consider a stratified symplectic space (M2n, ω)
with a Poisson smooth structure C∞(M). The operator ∗ω : ΛpT ∗

xM
reg → Λ2n−pT ∗

xM
reg

extends to a linear operator ∗ω : Ωp(M reg) → Ω2n−p(M reg). By Definition 2.9 we
can regard the space Ωp(M) as a subspace of Ωp(M reg). In particular, we have
∗ω(Ωp(M)) ⊂ Ω2n−p(M reg).

Proposition 3.10. If ω is compatible with a Poisson smooth structure C∞(M),
then ∗ω(Ωk(M)) = Ω2n−k(M).

Proof. We set ΩA(M) := {γ ∈ Ω(M)| ∗ω γ ∈ Ω(M)}. To prove the claim it suffices
to show that ΩA(M) = Ω(M). Using Lemma 2.9 and taking into account that ω is
smooth w.r.t. C∞(M) we conclude that the C∞(M)-module Ω2n(M) is generated
by ωn. Thus ∗ωf = fvol. This proves ∗ω(C∞(M)) = Ω2n(M). In particular
Ω0(M) ⊂ ΩA(cL), and Ωn(M) ⊂ ΩA(M).

Lemma 3.11. We have

∗ω(ΩA(M)) = ΩA(M).

Proof. Let γ ∈ ΩA(M). By definition ∗ωγ = β ∈ Ω(M). Using the identity
∗2ω = Id, see [2, Lemma 2.1.2], we get ∗ωβ = γ. It follows β ∈ ΩA(M). This
proves that ∗ω(ΩA(M)) ⊂ ΩA(M). Taking into account ∗2ω = Id, this proves
Lemma(3.11). �

Lemma 3.12. ΩA(M) has the following properties:

(1) ΩA(M) is a C∞(M)-module.
(2) d(ΩA(M)) ⊂ ΩA(M).

Proof. 1. The first assertion follows from the identity ∗ω(f(x)φ(x)) = f(x) · ∗ωφ(x)
and the fact that Ω(M) is a C∞(M)-module.

2. We need to show that for any γ ∈ ΩA(M) we have ∗ω(dγ) ∈ Ω(M). Using
Lemma 3.11 we can write γ = ∗ωβ for some β ∈ ΩA(M). Regarding β as an element
in Ω(M reg), where we can apply the identity δβ = (−1)deg β+1 ∗ω d∗ω [2, Theorem
2.2.1], we have

∗ω(dγ) = ∗ωd ∗ω β = (−1)deg β+1δ(β) ∈ Ω(M).

Hence (dγ) ∈ Ω(M). This proves the second assertion. �

Let us complete the proof of Proposition 3.10. Since Ω1(M) is a C∞(M)-module
whose generators are differentials df , f ∈ C∞(M), using Lemma 3.12 we obtain that
Ω1(M) ⊂ ΩA(M). Inductively, we observe that Ωk(M) is a C∞(M)-module whose
generators are the k-forms d(f(x)φ(x)), where φ(x) ∈ Ωk−1(M). By Lemma 3.12,
Ωk(M) ⊂ ΩA(M) if Ωk−1(M) ⊂ ΩA(M). This completes the proof of Proposition
3.10.

�
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4. The existence of Hamiltonian flows

In this section we prove the existence and uniqueness of a Hamiltonian flow
associated with a smooth function H on a symplectic stratified space M equipped
with a Poisson smooth structure, see Theorem 4.2. This Theorem generalizes a
result by Sjamaar and Lerman in [13, §3].

Let (M,ω) be a stratified symplectic space and C∞(M) a Poisson smooth struc-
ture on M .

Lemma 4.1. For any H ∈ C∞(M) the associated Hamiltonian vector field XH

defined on M by setting

XH(f) := {H, f}ω for any f ∈ C∞(M)

is a smooth Zariski vector field on M . If x is a point in a stratum S, then XH(x) ∈
TxS.

Proof. By definition of a Poisson structure, the function XH(f) is smooth for all
f ∈ C∞(M). Hence XH is a smooth Zariski vector field. This proves the first
assertion of Lemma 4.1. To prove the second assertion it suffices to show that, if
the restriction of a function f ∈ C∞(M) to a neighborhood of x ∈ S is zero, then
XH(f)(x) = 0. But by definition XH(f)(x) is equal to the Poisson bracket of the
restriction of H and f to S. This completes the proof. �

The following theorem generalizes a result by Sjamaar and Lerman [13, §3].

Theorem 4.2. Given a Hamiltonian function H ∈ C∞(M) and a point x ∈ M
there exists a unique smooth curve γ : (−ε, ε) → M such that for any f ∈ C∞(M)
we have

d

dt
f(γ(t)) = {H, f}.

The decomposition of M is defined by the Poisson algebra of smooth functions.

Proof. For x ∈ S we define γ(t) to be the Hamiltonian flow on S defined by XH ,
which is by Lemma 4.1 a smooth vector field on S. This proves the existence of
the required Hamiltonian flow. Now let us prove the uniqueness of the Hamiltonian
flow using Sjamaar’s and Lerman’s argument in [13, §3]. Denote by Φt the Hamil-
tonian flow whose existence we just proved. Clearly for any x ∈ M and a compact
neighborhood U(x) of x ∈ M there exists ε > 0 such that Φt(x

′) is defined for all
t ≤ ε and for all x′ ∈ U(x). Let x ∈ M and γ(t), t ∈ (−ε1, ε1) be an integral curve
of XH with γ0(0) = x. We will show that Φt(γ(t)) = x0 for all 0 ≤ t ≤ min(ε, ε1).
By Corollary 2.6.2 smooth functions on M separate points. Therefore it suffices to
show that for all t ≤ min(ε, ε1) and all f ∈ C∞(M) we have

f(Φt(γt(t))) = f(x).

Now we compute

d

dt
f(Φt(γ(t))) = {H, f}ω(γ(t)) + {f,H}ω(γ(t)) = 0.

This completes the proof of the uniqueness of the Hamiltonian flow. The last
assertion of Theorem 4.2 follows from the inclusion XH(x) ∈ S, if x ∈ S. �
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5. Hodge structure on a compact stratified symplectic space

A stratified symplectic space (M,ω) equipped with a Poisson smooth structure
C∞(M,ω) is said to satisfy the hard Lefschetz condition, if the cup product

[ωk] : Hm−k(M) → Hm+k(M)

is an isomorphism for any k ≤ m = 1
2 dimM . A differential form α ∈ Ω(M) is

called harmonic, if dα = 0 = δα.

Theorem 5.1. Let (M,ω) is a compact stratified symplectic space and C∞(M) a
locally smoothly contractible Poisson smooth structure which is also compatible with
ω. Then the following two assertions are equivalent:

(1) Any cohomology class contains a harmonic cocycle.
(2) C∞(M,ω) satisfies the hard Lefschetz condition.

Proof. The proof of Theorem 5.1 for smooth symplectic manifold by Yan in [16,
Theorem 0.1] can be repeated word-by-word. In the proof we use the structure of

sl2(G̃ω, L, E) on Ω(M), where L is the wedge multiplication operator by ω and E =

[G̃ω, L] while taking into account the validity of Poicare Lemma as a consequence
of locally smoothly contractibility of C∞(M). �

Remark 5.2. The equivalence between the hard Lefschetz property and the for-
mality of the de Rham complex under the condition of Theorem 5.1 can be also
proved in the same way as in [11].
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