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COMPUTING LOCAL CONSTANTS FOR CM ELLIPTIC

CURVES

SUNIL CHETTY AND LUNG LI

Abstract. Let E/k be an elliptic curve with CM by O. We determine a
formula for (a generalization of) the arithmetic local constant of [4] at almost
all primes of good reduction. We apply this formula to the CM curves defined
over Q and are able to describe extensions F/Q over which the O-rank of E
grows1.

1. Introduction

Let p be an odd rational prime. Let k ⊂ K ⊂ L be a tower of number fields,
with K/k quadratic, L/K p-power cyclic, and L/k Galois with a dihedral Galois
group, i.e. a lift of 1 6= c ∈ Gal(K/k) acts by conjugation on g ∈ Gal(L/K) as
cgc−1 = g−1. In [4] Mazur and Rubin define arithmetic local constants δv, one for
each prime v of K, which describe the growth in Z-rank1 of E over the extension
L/K. Specifically (cf. [4, Theorem 6.4]), for χ : Gal(L/K) →֒ Q̄× an injective
character and S a set of primes containing all primes above p, all primes ramified
in L/K, and all primes where E has bad reduction,

(1.1) rankZ[χ]E(L)χ − rankZE(K) ≡
∑

v∈S

δv (mod 2) .

In [1], the theory of arithmetic local constants is generalized to address the O-
rank of varieties with complex multiplication (CM) by an order O, and we continue
in that direction with specific attention to the elliptic curve case. Following [1], we
assume that O ⊂ EndK(E) is the maximal order in a quadratic imaginary field K,
p is unramified in O, and Oc = O† = O where † indicates the action of the Rosati
involution (see [5, §I.14]).

Our present aim is to provide a simple formula for the local constants δv (see
Definition 2.2) for primes v ∤ p of good reduction. We then will use a result ([1, §6])
which generalizes (1.1), with Z replaced by O, to determine conditions under which
the O-rank of E will grow. In §3 we will describe, via class field theory, dihedral
extensions F/Q which satisfy those conditions, in order to give some concrete setting
to the results of §2.

Date: November 3, 2010.
A portion of this work was completed as part of the second author’s undergraduate capstone

research project at Colorado College.
1To phrase their result this way, we must assume the Shafarevich-Tate Conjecture, and we

will keep this assumption in the background throughout. Without this assumption all statements
regarding O-rank of E would be replaced by analogous statements regarding O ⊗ Zp-corank of
the p∞-Selmer group Selp∞(E/K) of E.
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2. Computing the local constant

Let pO = p1p2, where p1 6= p2 as p is unramified2 in O. We denote R = O/pO
and Ri = O/pi for i = 1, 2, so that R ∼= R1 ⊕R2.

Definition 2.1. If M is an O-module of exponent p, define the R-rank of M by

rankRM := (rankR1
M ⊗R R1, rankR2

M ⊗R R2).

The following definition is as in [1] and [4]. Fix a prime v of K and let u and w be
primes of k below v and of L above v, respectively. Denote ku, Kv, and Lw for the
completions of k, K, and L at u, v, and w, respectively. If Lw 6= Kv, let L′

w be the
extension of Kv inside Lw with [Lw : L′

w] = p, and otherwise let L′
w = Lw = Kv.

Definition 2.2. Define the arithmetic local constant δv := δ(v, E, L/K) by

δv ≡ rankRE(Kv)/(E(Kv) ∩NLw/L′

w
E(Lw)) (mod 2) .

Now, we will consider primes v of K such that E has good reduction at v, v ∤ p,
vc = v, and v ramifies in L/K (corresponding to Lemma 6.6 of [4]). Under these
conditions Theorem 5.6 of [4] shows that

(2.1) dimFp
E(Kv)/(E(Kv) ∩NLw/L′

w
E(Lw)) ≡ dimFp

E(Kv)[p] (mod 2) .

Proposition 2.4 below shows that we are able to replace dimFp
by rankR in (2.1).

We first need Lemma 2.3, which follows Lemmas 5.4-5.5 of [4], and our proof is
meant only to address the change from dimFp

to rankR.
Let K and L be finite extensions of Qℓ, with ℓ 6= p, and suppose L/K is a finite

extension.

Lemma 2.3. Suppose L/K is cyclic of degree p, E is defined over K and has good

reduction.

(i) rankRE(K)/pE(K) = rankRE(K)[p].
(ii) If L/K is ramified then E(K)/pE(K) = E(L)/pE(L) and

NL/KE(L) = pE(K).

(iii) If L/K is unramified then NL/KE(L) = E(K).

Proof. When ℓ 6= p we have E(K)/pE(K) = E(K)[p∞]/pE(K)[p∞]. Since E(K)[p∞]
is finite, (i) follows from the exact sequence of O-modules

0 → E(K)[p] → E(K)[p∞] → pE(K)[p∞] → 0.

The content of (ii) and (iii) is on the level of sets, so the proof is exactly as in
Lemma 5.5 of [4]. �

We return to the notation of Definition 2.2.

Proposition 2.4. If v ∤ p and Lw/Kv is nontrivial and totally ramified, then

δv ≡ rankRE(Kv)[p] (mod 2) .

Proof. As in [4], Lemma 2.3(ii) yields E(Kv)∩pE(L′
w) = pE(Kv). So by Definition

2.2 and Lemma 2.3(i)

δv ≡ rankRE(Kv)/pE(Kv) ≡ rankRE(Kv)[p] (mod 2) .

�

2The simpler case of p being inert in K/Q, i.e. O/pO is a field, is treated similarly.
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Now, fix a prime v of K. We denote κu for the residue field of ku, q = #κu for
the size of finite field κu, and Ẽ for the reduction of E to κu.

Proposition 2.5. Suppose v ∤ p, v is ramified in L/K, and vc = v. If E has good

reduction at v, then
(

δv ≡ 1 ⇔ p | #Ẽ(κu).
)

Proof. We follow the notation of Lemma 6.6 of [4]. Since vc = v we know that
Kv/ku is quadratic, and it is unramified by Lemma 6.5(ii) of [4]. Let Φ be the
Frobenius generator of Gal(Kur

v /ku), so Φ2 is the Frobenius of Gal(Kur
v /Kv).

The proof of Lemma 6.6 of [4] shows that the product of the eigenvalues α, β of

Φ is −1. Also, they show that (as sets) E(Kv)[p] = E[p]Φ
2=1 is equal to E[p] or

is trivial depending on whether or not {α, β} = {1,−1}, respectively. Since E has
CM by O, E[p] is a rank 1 R-module (see e.g. [7, §II.1]), so the former case yields

δv ≡ rankRE(Kv)[p] = 1.

By assumption v ∤ p, so p is prime to the characteristic of κu, and therefore the
reduction map restricted to p-torsion is injective ([6, §VII.3]). We also know E[p] is
unramified ([6, §VII.4]), and so the eigenvalues of Φ acting on E[p] coincide (mod p)

with the eigenvalues of the q-power Frobenius map ϕq on Ẽ[p]. We know ([6, §V])

that the characteristic polynomial of ϕq is T 2− aT + q, where a = q+1−#Ẽ(κu),
and from the above comments q ≡ −1 (mod p). Therefore, Φ having eigenvalues ±1

is equivalent to a ≡ 0 (mod p) and in turn equivalent to #Ẽ(κu) ≡ 0 (mod p). �

Define a set SL of primes v of K by

SL := {v | p, or v ramifies in L/K, or where E has bad reduction} .

Theorem 2.6 (Theorem 6.1 of [1]). Let χ : Gal(L/K) →֒ Q̄× be an injective char-

acter, and O[χ] the extension of O by the values of χ. Assuming the Shafarevich-

Tate Conjecture,

rankO[χ]E(L)χ − rankOE(K) ≡
∑

v∈SL

δv (mod 2) .

We now consider a dihedral tower k ⊂ K ⊂ F where F/K is p-power abelian.
Following [4, §3], we note that there is a bijection between cyclic extensions L/K in
F and irreducible rational representations ρL of G = Gal(F/K). The semisimple
group ring K[G] decomposes as

K[G] ∼= ⊕LK[G]L

where K[G]L is the ρL-isotypic component of K[G]. For each L, for us it suffices
deal with an injective character χ : Gal(L/K) →֒ Q̄× appearing in the direct-sum
decomposition of ρL ⊗ Q̄×, and rankO[χ]E(F )χ is independent3 of the choice of χ.

Theorem 2.7. Suppose that for every prime v satisfying vc = v and which ramifies

in F/K, we have v ∤ p and E has good reduction at v. For m equal to the number

of such v with p | #Ẽ(κu), if rankOE(K) +m is odd then

rankOE(F ) ≥ ([F : K], [F : K]).

3We could instead write that dimQ̄(E(F )⊗ Q̄)χ is independent of the choice of χ.
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Proof. Fix a cyclic extension L/K inside F . If v is a prime of K and vc 6= v then
δv + δvc ≡ 0 (mod 2) by Lemma 5.1 of [4]. If vc = v and v is unramified in L/K,
then v splits completely in L/K by Lemma 6.5(i) of [4]. It follows that NLw/L′

w
is

surjective and so δv ≡ 0 by Definition 2.2. By assumption, Proposition 2.5 applies
to the remaining primes v, and so

∑

v δv ≡ m (mod 2). Thus,

rankO[χ]E(L)χ ≡ rankOE(K) +m (mod 2)

and we have assumed that the right-hand side is odd.
From Corollary 3.7 of [4] it follows that

rankOE(F ) =
∑

L

(dimQρL) · (rankO[χ]E(L)χ).

As the previous paragraph applies for every cyclic L/K in F , we see from the
decomposition of K[G] that E(F ) ⊗ Q contains a submodule isomorphic to K[G]
and the claim follows. �

3. CM elliptic curves defined over Q

Here, we will consider the CM elliptic curves E defined over Q (as in [7, A.3]).
For each E, our aim is to determine4 examples of dihedral towers Q ⊂ K ⊂ F over
which, according to Theorem 2.7, the O-rank of E grows. As we have assumed
O ⊂ EndK(E), we will consider towers in which K = K (see §1). All of our
calculations will be done using Sage [8].

Let ED/Q be an elliptic curve5 defined over Q with CM by KD = Q(
√
−D).

We determine computationally6 rankZED(KD), and for D = 3 we see that this
group is finite. For D = 4, 7, the situation is less certain, as Sage only tells us
that ED(Q) is finite and rankZED(KD) ≤ 2. For each of the remaining CM curves
ED defined over Q, one can (provably) calculate that rankZED(Q) = 1. We also
have that rankZED(KD) ≥ rankZED(Q) = 1 and rankZED(KD) cannot be even,
so rankOED(KD) ≥ 1. For D = 8, 11, 19, 43, 67, and 163, Sage gives an upper
bound7 of 3 for rankZED(KD) and so for these D we can conclude that in fact
rankOED(KD) = 1.

3.1. Dihedral Extensions of Q. Recall that p is a fixed odd rational prime.
Presently, we also fix D ∈ {3, 4, 7, . . . , 163} and let E = ED, K = KD. We are
interested in abelian extensions F/K which are dihedral over Q, and these are
exactly the extensions contained in the ring class fields of K (see [3], Theorem
9.18).

Let Of be an order in OK of conductor f . We have a simple formula for the
class number h(Of ) of Of using, for example, Theorem 7.24 of [3], and noting that
we have h(OK) = 1,

h(Of ) =
f

[O×
K : O×

f ]
·

∏

primes ℓ|f

(

1−
(−D

ℓ

)

1

ℓ

)

.

For D 6= 3, 4 we have O×
K = {±1} and for D = 4 we have #O×

K = 4, so in both of

these cases [O×
K : O×

f ] is prime to p. For D = 3, one can show that [O×
K : O×

f ] = 3

4Determined up to the correspondence of class field theory.
5See p.483 of [7], with f = 1 (in Silverman’s notation), for a Weierstrauss equation.
6Specifically with Sage’s interface to John Cremona’s ‘mwrank’ and Denis Simon’s

‘simon_two_descent.’
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when f > 1. The following paragraphs require only minor adjustments for the case
p = D = 3.

Taking f to be an odd rational prime such that (−D/f) = ±1, the class num-
ber becomes h(Of ) = f ∓ 1 and so the ring class field HOf

associated to Of is
an abelian extension of K of degree f ∓ 1. Thus, for f ≡ ±1 (mod p) we have a
(non-trivial) p-power subextension F/K which is dihedral over Q.

Next we need to understand the ramification in F/K. As K has class number
1, we know there are no unramified extensions of K, and so we must ensure that
F satisfies the hypotheses of Theorem 2.7. A prime v of K ramifies in HOf

/K if
and only if v | fOK (see for example exercise 9.20 in [3] and recall f is odd). If
we choose f so that −D is not a square (mod f), f is inert in K/Q, and so fOK

is prime and moreover the only prime that ramifies in HOf
/K. If fOK does not

ramify in F/K then the p-extension F/K is contained in the Hilbert class field HK

of K. As HK = K, this is impossible, so fOK ramifies in F/K and no other primes
ramify in F/K. Taking f such that f ∤ D and −D is a square (mod f), we have
that f is not inert and does not ramify in K/Q. As in the previous case, the primes
of K above f both ramify in the p-extension F/K contained in HOf

.

Now, suppose rankOE(K) is odd7. To apply Theorem 2.7, we must have an even
number m of primes v such that vc = v, v ramifies in F/K, E has good reducation

at v and for which p | #Ẽ(Z/fZ). First, we can guarantee m = 0 if the only primes
v which ramify in F/K do not satisfy vc = v, e.g. taking f ∤ D with (−D/f) = 1.
Table 3.1 below gives, for each D and for p = 3, 5, 7, the smallest prime f which
gives an extension of degree p following this recipe. We note that we do not need
Proposition 2.5 for this case.

If we wish to allow for primes v satisfying vc = v, we choose two p-extensions
F1, F2 from two distinct rational primes fi as above with fi ≡ −1 (mod p) and
(−D/fi) = −1, for i = 1, 2. The compositum F = F1F2 will satisfy our require-
ments. Indeed, firstly F is an abelian p-extension of K and is contained in the ring
class field HOf1f2

, hence dihedral over Q with only f1OK and f2OK ramifying in

F/K. Secondly, as each fi is inert in K/Q, it is a supersingular prime for E (see,

for example, exercise 2.30 of [7]) and hence p divides #Ẽ(Z/fiZ) = fi+1. Thus, E
and the p-extension F/K satisfy the hypotheses of Theorem 2.7. Table 3.2 below
gives, for each D and for p = 3, 5, 7, the smallest pair of distinct primes f1, f2 which
give extensions of degree p2 following this recipe.

Next, suppose rankOE(K) is even.8 In this case, we need m to be odd in order
to apply Theorem 2.7. The same ideas as above still work, and in Table 3.3 we
list, for each D and for p = 3, 5, 7, the smallest prime f for which Theorem 2.7
guarantees rank ≥ p.

Remark 3.1. Though there are algorithms in the literature to compute the defining
polynomial of a class field (e.g. [2, §6], [3, §§11-3]) and such computational problems
are of interest independently, we make no attempt here to explicitly determine the
ring class fields HOf

. As is apparent from Table 3.2, our method of determining
a field to which Theorem 2.7 applies involves ring class fields of large degree in a
computationally inefficient way.

7The cases D = 8, 11, . . . , 163 and possibly D = 4, 7.
8The case D = 3 and possibly D = 4, 7.
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p = 3 p = 5 p = 7
D f [F : K] f [F : K] f [F : K]
4 13 3 41 5 29 7
7 43 3 11 5 29 7
8 43 3 11 5 43 7
11 31 3 31 5 71 7
19 7 3 11 5 43 7
43 13 3 11 5 127 7
67 103 3 71 5 29 7
163 43 3 41 5 43 7

Table 3.1. Case m = 0

p = 3 p = 5 p = 7
D f1 f2 [F : K] f1 f2 [F : K] f1 f2 [F : K]
4 11 23 9 19 59 25 83 139 49
7 5 41 9 19 59 25 13 41 49
8 5 23 9 29 79 25 13 167 49
11 2 29 9 29 79 25 13 41 49
19 2 29 9 29 59 25 13 41 49
43 2 5 9 19 29 25 223 349 49
67 2 5 9 79 109 25 13 41 49
163 2 5 9 19 29 25 13 139 49

Table 3.2. Case m = 2

p = 3 p = 5 p = 7
D f [F : K] f [F : K] f [F : K]
3 17 3 29 5 41 7
4 11 3 19 5 83 7
7 5 3 19 5 13 7

Table 3.3. Case m = 1
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