COMPUTING LOCAL CONSTANTS FOR CM ELLIPTIC CURVES

SUNIL CHETTY AND LUNG LI

Abstract

Let E / k be an elliptic curve with CM by \mathcal{O}. We determine a formula for (a generalization of) the arithmetic local constant of 4] at almost all primes of good reduction. We apply this formula to the CM curves defined over \mathbb{Q} and are able to describe extensions F / \mathbb{Q} over which the \mathcal{O}-rank of E grows ${ }^{1}$.

1. Introduction

Let p be an odd rational prime. Let $k \subset K \subset L$ be a tower of number fields, with K / k quadratic, L / K p-power cyclic, and L / k Galois with a dihedral Galois group, i.e. a lift of $1 \neq c \in \operatorname{Gal}(K / k)$ acts by conjugation on $g \in \operatorname{Gal}(L / K)$ as $c g c^{-1}=g^{-1}$. In [4] Mazur and Rubin define arithmetic local constants δ_{v}, one for each prime v of K, which describe the growth in \mathbb{Z}-rank $\sqrt{1}$ of over the extension L / K. Specifically (cf. [4, Theorem 6.4]), for $\chi: \operatorname{Gal}(L / K) \hookrightarrow \overline{\mathbb{Q}}^{\times}$an injective character and S a set of primes containing all primes above p, all primes ramified in L / K, and all primes where E has bad reduction,

$$
\begin{equation*}
\operatorname{rank}_{\mathbb{Z}[\chi]} E(L)^{\chi}-\operatorname{rank}_{\mathbb{Z}} E(K) \equiv \sum_{v \in S} \delta_{v}(\bmod 2) \tag{1.1}
\end{equation*}
$$

In [1], the theory of arithmetic local constants is generalized to address the \mathcal{O} rank of varieties with complex multiplication (CM) by an order \mathcal{O}, and we continue in that direction with specific attention to the elliptic curve case. Following [1], we assume that $\mathcal{O} \subset \operatorname{End}_{K}(E)$ is the maximal order in a quadratic imaginary field \mathbb{K}, p is unramified in \mathcal{O}, and $\mathcal{O}^{c}=\mathcal{O}^{\dagger}=\mathcal{O}$ where ${ }^{\dagger}$ indicates the action of the Rosati involution (see [5], §I.14]).

Our present aim is to provide a simple formula for the local constants δ_{v} (see Definition (2.2) for primes $v \nmid p$ of good reduction. We then will use a result ([1, §6]) which generalizes (1.1), with \mathbb{Z} replaced by \mathcal{O}, to determine conditions under which the \mathcal{O}-rank of E will grow. In $\S 3$ we will describe, via class field theory, dihedral extensions F / \mathbb{Q} which satisfy those conditions, in order to give some concrete setting to the results of \$2

[^0]
2. Computing the local constant

Let $p \mathcal{O}=\mathfrak{p}_{1} \mathfrak{p}_{2}$, where $\mathfrak{p}_{1} \neq \mathfrak{p}_{2}$ as p is unramified ${ }^{2}$ in \mathcal{O}. We denote $R=\mathcal{O} / p \mathcal{O}$ and $R_{i}=\mathcal{O} / \mathfrak{p}_{i}$ for $i=1,2$, so that $R \cong R_{1} \oplus R_{2}$.
Definition 2.1. If M is an \mathcal{O}-module of exponent p, define the R-rank of M by

$$
\operatorname{rank}_{R} M:=\left(\operatorname{rank}_{R_{1}} M \otimes_{R} R_{1}, \operatorname{rank}_{R_{2}} M \otimes_{R} R_{2}\right) .
$$

The following definition is as in [1 and [4. Fix a prime v of K and let u and w be primes of k below v and of L above v, respectively. Denote k_{u}, K_{v}, and L_{w} for the completions of k, K, and L at u, v, and w, respectively. If $L_{w} \neq K_{v}$, let L_{w}^{\prime} be the extension of K_{v} inside L_{w} with $\left[L_{w}: L_{w}^{\prime}\right]=p$, and otherwise let $L_{w}^{\prime}=L_{w}=K_{v}$.
Definition 2.2. Define the arithmetic local constant $\delta_{v}:=\delta(v, E, L / K)$ by

$$
\delta_{v} \equiv \operatorname{rank}_{R} E\left(K_{v}\right) /\left(E\left(K_{v}\right) \cap N_{L_{w} / L_{w}^{\prime}} E\left(L_{w}\right)\right)(\bmod 2) .
$$

Now, we will consider primes v of K such that E has good reduction at $v, v \nmid p$, $v^{c}=v$, and v ramifies in L / K (corresponding to Lemma 6.6 of [4). Under these conditions Theorem 5.6 of [4] shows that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{F}_{p}} E\left(K_{v}\right) /\left(E\left(K_{v}\right) \cap N_{L_{w} / L_{w}^{\prime}} E\left(L_{w}\right)\right) \equiv \operatorname{dim}_{\mathbb{F}_{p}} E\left(K_{v}\right)[p](\bmod 2) . \tag{2.1}
\end{equation*}
$$

Proposition 2.4 below shows that we are able to replace $\operatorname{dim}_{\mathbb{F}_{p}}$ by rank_{R} in (2.1). We first need Lemma [2.3, which follows Lemmas 5.4-5.5 of [4, and our proof is meant only to address the change from $\operatorname{dim}_{\mathbb{F}_{p}}$ to rank_{R}.

Let \mathcal{K} and \mathcal{L} be finite extensions of \mathbb{Q}_{ℓ}, with $\ell \neq p$, and suppose $\mathcal{L} / \mathcal{K}$ is a finite extension.

Lemma 2.3. Suppose $\mathcal{L} / \mathcal{K}$ is cyclic of degree p, E is defined over \mathcal{K} and has good reduction.
(i) $\operatorname{rank}_{R} E(\mathcal{K}) / p E(\mathcal{K})=\operatorname{rank}_{R} E(\mathcal{K})[p]$.
(ii) If $\mathcal{L} / \mathcal{K}$ is ramified then $E(\mathcal{K}) / p E(\mathcal{K})=E(\mathcal{L}) / p E(\mathcal{L})$ and

$$
N_{\mathcal{L} / \mathcal{K}} E(\mathcal{L})=p E(\mathcal{K}) .
$$

(iii) If $\mathcal{L} / \mathcal{K}$ is unramified then $N_{\mathcal{L} / \mathcal{K}} E(\mathcal{L})=E(\mathcal{K})$.

Proof. When $\ell \neq p$ we have $E(\mathcal{K}) / p E(\mathcal{K})=E(\mathcal{K})\left[p^{\infty}\right] / p E(\mathcal{K})\left[p^{\infty}\right]$. Since $E(\mathcal{K})\left[p^{\infty}\right]$ is finite, (i) follows from the exact sequence of \mathcal{O}-modules

$$
0 \rightarrow E(\mathcal{K})[p] \rightarrow E(\mathcal{K})\left[p^{\infty}\right] \rightarrow p E(\mathcal{K})\left[p^{\infty}\right] \rightarrow 0 .
$$

The content of (ii) and (iii) is on the level of sets, so the proof is exactly as in Lemma 5.5 of (4.

We return to the notation of Definition [2.2,
Proposition 2.4. If $v \nmid p$ and L_{w} / K_{v} is nontrivial and totally ramified, then

$$
\delta_{v} \equiv \operatorname{rank}_{R} E\left(K_{v}\right)[p](\bmod 2) .
$$

Proof. As in 4, Lemma 2.3(ii) yields $E\left(K_{v}\right) \cap p E\left(L_{w}^{\prime}\right)=p E\left(K_{v}\right)$. So by Definition 2.2 and Lemma 2.3(i)

$$
\delta_{v} \equiv \operatorname{rank}_{R} E\left(K_{v}\right) / p E\left(K_{v}\right) \equiv \operatorname{rank}_{R} E\left(K_{v}\right)[p](\bmod 2) .
$$

[^1]Now, fix a prime v of K. We denote κ_{u} for the residue field of $k_{u}, q=\# \kappa_{u}$ for the size of finite field κ_{u}, and \tilde{E} for the reduction of E to κ_{u}.

Proposition 2.5. Suppose $v \nmid p$, v is ramified in L / K, and $v^{c}=v$. If E has good reduction at v, then $\left(\delta_{v} \equiv 1 \Leftrightarrow p \mid \# \tilde{E}\left(\kappa_{u}\right)\right.$.)

Proof. We follow the notation of Lemma 6.6 of [4]. Since $v^{c}=v$ we know that K_{v} / k_{u} is quadratic, and it is unramified by Lemma $6.5(\mathrm{ii})$ of [4]. Let Φ be the Frobenius generator of $\operatorname{Gal}\left(K_{v}^{u r} / k_{u}\right)$, so Φ^{2} is the Frobenius of $\operatorname{Gal}\left(K_{v}^{u r} / K_{v}\right)$.

The proof of Lemma 6.6 of [4] shows that the product of the eigenvalues α, β of Φ is -1 . Also, they show that (as sets) $E\left(K_{v}\right)[p]=E[p]^{\Phi^{2}=1}$ is equal to $E[p]$ or is trivial depending on whether or not $\{\alpha, \beta\}=\{1,-1\}$, respectively. Since E has CM by $\mathcal{O}, E[p]$ is a rank $1 R$-module (see e.g. [7, §II.1]), so the former case yields

$$
\delta_{v} \equiv \operatorname{rank}_{R} E\left(K_{v}\right)[p]=1
$$

By assumption $v \nmid p$, so p is prime to the characteristic of κ_{u}, and therefore the reduction map restricted to p-torsion is injective ([6, §VII.3]). We also know $E[p]$ is unramified ($[6, \S V I I .4])$, and so the eigenvalues of Φ acting on $E[p]$ coincide $(\bmod p)$ with the eigenvalues of the q-power Frobenius map φ_{q} on $\tilde{E}[p]$. We know ($[\underline{6}, \S \mathrm{~V}]$) that the characteristic polynomial of φ_{q} is $T^{2}-a T+q$, where $a=q+1-\# \tilde{E}\left(\kappa_{u}\right)$, and from the above comments $q \equiv-1(\bmod p)$. Therefore, Φ having eigenvalues ± 1 is equivalent to $a \equiv 0(\bmod p)$ and in turn equivalent to $\# \tilde{E}\left(\kappa_{u}\right) \equiv 0(\bmod p)$.

Define a set \mathfrak{S}_{L} of primes v of K by

$$
\mathfrak{S}_{L}:=\{v \mid p, \text { or } v \text { ramifies in } L / K, \text { or where } E \text { has bad reduction }\}
$$

Theorem 2.6 (Theorem 6.1 of [1]). Let $\chi: \operatorname{Gal}(L / K) \hookrightarrow \overline{\mathbb{Q}}^{\times}$be an injective character, and $\mathcal{O}[\chi]$ the extension of \mathcal{O} by the values of χ. Assuming the ShafarevichTate Conjecture,

$$
\operatorname{rank}_{\mathcal{O}[\chi]} E(L)^{\chi}-\operatorname{rank}_{\mathcal{O}} E(K) \equiv \sum_{v \in \mathfrak{S}_{L}} \delta_{v}(\bmod 2)
$$

We now consider a dihedral tower $k \subset K \subset F$ where F / K is p-power abelian. Following [4, §3], we note that there is a bijection between cyclic extensions L / K in F and irreducible rational representations ρ_{L} of $G=\operatorname{Gal}(F / K)$. The semisimple group ring $\mathbb{K}[G]$ decomposes as

$$
\mathbb{K}[G] \cong \oplus_{L} \mathbb{K}[G]_{L}
$$

where $\mathbb{K}[G]_{L}$ is the ρ_{L}-isotypic component of $\mathbb{K}[G]$. For each L, for us it suffices deal with an injective character $\chi: \operatorname{Gal}(L / K) \hookrightarrow \overline{\mathbb{Q}}^{\times}$appearing in the direct-sum decomposition of $\rho_{L} \otimes \overline{\mathbb{Q}}^{\times}$, and $\operatorname{rank}_{\mathcal{O}[\chi]} E(F)^{\chi}$ is independent ${ }^{3}$ of the choice of χ.

Theorem 2.7. Suppose that for every prime v satisfying $v^{c}=v$ and which ramifies in F / K, we have $v \nmid p$ and E has good reduction at v. For m equal to the number of such v with $p \mid \# \tilde{E}\left(\kappa_{u}\right)$, if $\operatorname{rank}_{\mathcal{O}} E(K)+m$ is odd then

$$
\operatorname{rank}_{\mathcal{O}} E(F) \geq([F: K],[F: K])
$$

[^2]Proof. Fix a cyclic extension L / K inside F. If v is a prime of K and $v^{c} \neq v$ then $\delta_{v}+\delta_{v^{c}} \equiv 0(\bmod 2)$ by Lemma 5.1 of [4]. If $v^{c}=v$ and v is unramified in L / K, then v splits completely in L / K by Lemma 6.5(i) of 44. It follows that $N_{L_{w} / L_{w}^{\prime}}$ is surjective and so $\delta_{v} \equiv 0$ by Definition 2.2, By assumption, Proposition 2.5 applies to the remaining primes v, and so $\sum_{v} \delta_{v} \equiv m(\bmod 2)$. Thus,

$$
\operatorname{rank}_{\mathcal{O}[\chi]} E(L)^{\chi} \equiv \operatorname{rank}_{\mathcal{O}} E(K)+m(\bmod 2)
$$

and we have assumed that the right-hand side is odd.
From Corollary 3.7 of [4] it follows that

$$
\operatorname{rank}_{\mathcal{O}} E(F)=\sum_{L}\left(\operatorname{dim}_{\mathbb{Q}} \rho_{L}\right) \cdot\left(\operatorname{rank}_{\mathcal{O}[\chi]} E(L)^{\chi}\right)
$$

As the previous paragraph applies for every cyclic L / K in F, we see from the decomposition of $\mathbb{K}[G]$ that $E(F) \otimes \mathbb{Q}$ contains a submodule isomorphic to $\mathbb{K}[G]$ and the claim follows.

3. CM elliptic curves defined over \mathbb{Q}

Here, we will consider the CM elliptic curves E defined over \mathbb{Q} (as in [7, A.3]). For each E, our aim is to determind examples of dihedral towers $\mathbb{Q} \subset K \subset F$ over which, according to Theorem 2.7 the \mathcal{O}-rank of E grows. As we have assumed $\mathcal{O} \subset \operatorname{End}_{K}(E)$, we will consider towers in which $K=\mathbb{K}$ (see §11). All of our calculations will be done using Sage [8].

Let E_{D} / \mathbb{Q} be an elliptic curve ${ }^{5}$ defined over \mathbb{Q} with CM by $K_{D}=\mathbb{Q}(\sqrt{-D})$. We determine computationally $\sqrt{6} \operatorname{rank}_{\mathbb{Z}} E_{D}\left(K_{D}\right)$, and for $D=3$ we see that this group is finite. For $D=4,7$, the situation is less certain, as Sage only tells us that $E_{D}(\mathbb{Q})$ is finite and $\operatorname{rank}_{\mathbb{Z}} E_{D}\left(K_{D}\right) \leq 2$. For each of the remaining CM curves E_{D} defined over \mathbb{Q}, one can (provably) calculate that $\operatorname{rank}_{\mathbb{Z}} E_{D}(\mathbb{Q})=1$. We also have that $\operatorname{rank}_{\mathbb{Z}} E_{D}\left(K_{D}\right) \geq \operatorname{rank}_{\mathbb{Z}} E_{D}(\mathbb{Q})=1$ and $\operatorname{rank}_{\mathbb{Z}} E_{D}\left(K_{D}\right)$ cannot be even, so $\operatorname{rank}_{\mathcal{O}} E_{D}\left(K_{D}\right) \geq 1$. For $D=8,11,19,43,67$, and 163, Sage gives an upper bound 7 of 3 for $\operatorname{rank}_{\mathbb{Z}} E_{D}\left(K_{D}\right)$ and so for these D we can conclude that in fact $\operatorname{rank}_{\mathcal{O}} E_{D}\left(K_{D}\right)=1$.
3.1. Dihedral Extensions of \mathbb{Q}. Recall that p is a fixed odd rational prime. Presently, we also fix $D \in\{3,4,7, \ldots, 163\}$ and let $E=E_{D}, K=K_{D}$. We are interested in abelian extensions F / K which are dihedral over \mathbb{Q}, and these are exactly the extensions contained in the ring class fields of K (see [3], Theorem 9.18).

Let \mathcal{O}_{f} be an order in \mathcal{O}_{K} of conductor f. We have a simple formula for the class number $h\left(\mathcal{O}_{f}\right)$ of \mathcal{O}_{f} using, for example, Theorem 7.24 of [3], and noting that we have $h\left(\mathcal{O}_{K}\right)=1$,

$$
h\left(\mathcal{O}_{f}\right)=\frac{f}{\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{f}^{\times}\right]} \cdot \prod_{\text {primes } \ell \mid f}\left(1-\left(\frac{-D}{\ell}\right) \frac{1}{\ell}\right) .
$$

For $D \neq 3,4$ we have $\mathcal{O}_{K}^{\times}=\{ \pm 1\}$ and for $D=4$ we have $\# \mathcal{O}_{K}^{\times}=4$, so in both of these cases $\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{f}^{\times}\right]$is prime to p. For $D=3$, one can show that $\left[\mathcal{O}_{K}^{\times}: \mathcal{O}_{f}^{\times}\right]=3$

[^3]when $f>1$. The following paragraphs require only minor adjustments for the case $p=D=3$.

Taking f to be an odd rational prime such that $(-D / f)= \pm 1$, the class number becomes $h\left(\mathcal{O}_{f}\right)=f \mp 1$ and so the ring class field $H_{\mathcal{O}_{f}}$ associated to \mathcal{O}_{f} is an abelian extension of K of degree $f \mp 1$. Thus, for $f \equiv \pm 1(\bmod p)$ we have a (non-trivial) p-power subextension F / K which is dihedral over \mathbb{Q}.

Next we need to understand the ramification in F / K. As K has class number 1, we know there are no unramified extensions of K, and so we must ensure that F satisfies the hypotheses of Theorem [2.7. A prime v of K ramifies in $H_{\mathcal{O}_{f}} / K$ if and only if $v \mid f \mathcal{O}_{K}$ (see for example exercise 9.20 in [3] and recall f is odd). If we choose f so that $-D$ is not a square $(\bmod f), f$ is inert in K / \mathbb{Q}, and so $f \mathcal{O}_{K}$ is prime and moreover the only prime that ramifies in $H_{\mathcal{O}_{f}} / K$. If $f \mathcal{O}_{K}$ does not ramify in F / K then the p-extension F / K is contained in the Hilbert class field H_{K} of K. As $H_{K}=K$, this is impossible, so $f \mathcal{O}_{K}$ ramifies in F / K and no other primes ramify in F / K. Taking f such that $f \nmid D$ and $-D$ is a square $(\bmod f)$, we have that f is not inert and does not ramify in K / \mathbb{Q}. As in the previous case, the primes of K above f both ramify in the p-extension F / K contained in $H_{\mathcal{O}_{f}}$.

Now, suppose $\operatorname{rank}_{\mathcal{O}} E(K)$ is odd . To apply Theorem [2.7, we must have an even number m of primes v such that $v^{c}=v, v$ ramifies in $F / K, E$ has good reducation at v and for which $p \mid \# \tilde{E}(\mathbb{Z} / f \mathbb{Z})$. First, we can guarantee $m=0$ if the only primes v which ramify in F / K do not satisfy $v^{c}=v$, e.g. taking $f \nmid D$ with $(-D / f)=1$. Table 3.1 below gives, for each D and for $p=3,5,7$, the smallest prime f which gives an extension of degree p following this recipe. We note that we do not need Proposition 2.5 for this case.

If we wish to allow for primes v satisfying $v^{c}=v$, we choose two p-extensions F_{1}, F_{2} from two distinct rational primes f_{i} as above with $f_{i} \equiv-1(\bmod p)$ and $\left(-D / f_{i}\right)=-1$, for $i=1,2$. The compositum $F=F_{1} F_{2}$ will satisfy our requirements. Indeed, firstly F is an abelian p-extension of K and is contained in the ring class field $H_{\mathcal{O}_{f_{1} f_{2}}}$, hence dihedral over \mathbb{Q} with only $f_{1} \mathcal{O}_{K}$ and $f_{2} \mathcal{O}_{K}$ ramifying in F / K. Secondly, as each f_{i} is inert in K / \mathbb{Q}, it is a supersingular prime for E (see, for example, exercise 2.30 of $[7)$ and hence p divides $\# \tilde{E}\left(\mathbb{Z} / f_{i} \mathbb{Z}\right)=f_{i}+1$. Thus, E and the p-extension F / K satisfy the hypotheses of Theorem 2.7 Table 3.2 below gives, for each D and for $p=3,5,7$, the smallest pair of distinct primes f_{1}, f_{2} which give extensions of degree p^{2} following this recipe.

Next, suppose $\operatorname{rank}_{\mathcal{O}} E(K)$ is even $\mathbb{Z}^{\text {In }}$ Inis case, we need m to be odd in order to apply Theorem [2.7. The same ideas as above still work, and in Table 3.3 we list, for each D and for $p=3,5,7$, the smallest prime f for which Theorem 2.7 guarantees rank $\geq p$.

Remark 3.1. Though there are algorithms in the literature to compute the defining polynomial of a class field (e.g. [2, §6], [3, §§11-3]) and such computational problems are of interest independently, we make no attempt here to explicitly determine the ring class fields $H_{\mathcal{O}_{f}}$. As is apparent from Table 3.2, our method of determining a field to which Theorem 2.7 applies involves ring class fields of large degree in a computationally inefficient way.

[^4]| | $p=3$ | | $p=5$ | | $p=7$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | f | $[F: K]$ | f | $[F: K]$ | f | $[F: K]$ |
| 4 | 13 | 3 | 41 | 5 | 29 | 7 |
| 7 | 43 | 3 | 11 | 5 | 29 | 7 |
| 8 | 43 | 3 | 11 | 5 | 43 | 7 |
| 11 | 31 | 3 | 31 | 5 | 71 | 7 |
| 19 | 7 | 3 | 11 | 5 | 43 | 7 |
| 43 | 13 | 3 | 11 | 5 | 127 | 7 |
| 67 | 103 | 3 | 71 | 5 | 29 | 7 |
| 163 | 43 | 3 | 41 | 5 | 43 | 7 |

TABLE 3.1. Case $m=0$

| | $p=3$ | | | $p=5$ | | | $p=7$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D | f_{1} | f_{2} | $[F: K]$ | f_{1} | f_{2} | $[F: K]$ | f_{1} | f_{2} | $[F: K]$ |
| 4 | 11 | 23 | 9 | 19 | 59 | 25 | 83 | 139 | 49 |
| 7 | 5 | 41 | 9 | 19 | 59 | 25 | 13 | 41 | 49 |
| 8 | 5 | 23 | 9 | 29 | 79 | 25 | 13 | 167 | 49 |
| 11 | 2 | 29 | 9 | 29 | 79 | 25 | 13 | 41 | 49 |
| 19 | 2 | 29 | 9 | 29 | 59 | 25 | 13 | 41 | 49 |
| 43 | 2 | 5 | 9 | 19 | 29 | 25 | 223 | 349 | 49 |
| 67 | 2 | 5 | 9 | 79 | 109 | 25 | 13 | 41 | 49 |
| 163 | 2 | 5 | 9 | 19 | 29 | 25 | 13 | 139 | 49 |
| TABLE 3.2. Case $m=2$ | | | | | | | | | |

	$p=3$		$p=5$		$p=7$	
D	f	$[F: K]$	f	$[F: K]$	f	$[F: K]$
3	17	3	29	5	41	7
4	11	3	19	5	83	7
7	5	3	19	5	13	7

References

[1] S. Chetty. Arithmetic local constants for abelian varieties with complex multiplication. in preparation, preliminary draft: http://personalwebs.coloradocollege.edu/~schetty/.
[2] H. Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics. Springer, 2000.
[3] D. Cox. Primes of the Form $x^{2}+n y^{2}$: Fermat, Class Field Theory, and Complex Multiplication. Wiley Interscience, 1989.
[4] B. Mazur and K. Rubin. Finding large Selmer rank via an arithmetic theory of local constants. Annals of Mathematics, 166(2):581-614, 2007.
[5] J.S. Milne. Abelian Varieties. In G. Cornell and J. Silverman, editors, Arithmetic Geometry. Springer-Verlag, 1986. available at http://www.jmilne.org/math/
[6] J. Silverman. Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Mathematics. Springer, 1986.
[7] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of Graduate Texts in Mathematics. Springer, 1994.
[8] W. A. Stein et al. Sage Mathematics Software (Version 4.2.1). The Sage Development Team, 2009. http://www.sagemath.org.

Sunil Chetty
sunil.chetty@coloradocollege.edu

Lung Li
leonli319@yahoo.com

[^0]: Date: November 3, 2010.
 A portion of this work was completed as part of the second author's undergraduate capstone research project at Colorado College.
 ${ }^{1}$ To phrase their result this way, we must assume the Shafarevich-Tate Conjecture, and we will keep this assumption in the background throughout. Without this assumption all statements regarding \mathcal{O}-rank of E would be replaced by analogous statements regarding $\mathcal{O} \otimes \mathbb{Z}_{p}$-corank of the p^{∞}-Selmer group $\operatorname{Sel}_{p} \infty(E / K)$ of E.

[^1]: ${ }^{2}$ The simpler case of p being inert in \mathbb{K} / \mathbb{Q}, i.e. $\mathcal{O} / p \mathcal{O}$ is a field, is treated similarly.

[^2]: ${ }^{3}$ We could instead write that $\operatorname{dim}_{\overline{\mathbb{Q}}}(E(F) \otimes \overline{\mathbb{Q}})^{\chi}$ is independent of the choice of χ.

[^3]: ${ }^{4}$ Determined up to the correspondence of class field theory.
 ${ }^{5}$ See p. 483 of [7], with $f=1$ (in Silverman's notation), for a Weierstrauss equation.
 ${ }^{6}$ Specifically with Sage's interface to John Cremona's 'mwrank' and Denis Simon's 'simon_two_descent.'

[^4]: ${ }^{7}$ The cases $D=8,11, \ldots, 163$ and possibly $D=4,7$.
 ${ }^{8}$ The case $D=3$ and possibly $D=4,7$.

