COMPUTING LOCAL CONSTANTS FOR CM ELLIPTIC CURVES

SUNIL CHETTY AND LUNG LI

ABSTRACT. Let E/k be an elliptic curve with CM by \mathcal{O} . We determine a formula for (a generalization of) the arithmetic local constant of [4] at almost all primes of good reduction. We apply this formula to the CM curves defined over \mathbb{Q} and are able to describe extensions F/\mathbb{Q} over which the \mathcal{O} -rank of E grows¹.

1. INTRODUCTION

Let p be an odd rational prime. Let $k \subset K \subset L$ be a tower of number fields, with K/k quadratic, L/K p-power cyclic, and L/k Galois with a dihedral Galois group, i.e. a lift of $1 \neq c \in \text{Gal}(K/k)$ acts by conjugation on $g \in \text{Gal}(L/K)$ as $cgc^{-1} = g^{-1}$. In [4] Mazur and Rubin define arithmetic local constants δ_v , one for each prime v of K, which describe the growth in \mathbb{Z} -rank¹ of E over the extension L/K. Specifically (cf. [4, Theorem 6.4]), for $\chi : \text{Gal}(L/K) \hookrightarrow \mathbb{Q}^{\times}$ an injective character and S a set of primes containing all primes above p, all primes ramified in L/K, and all primes where E has bad reduction,

(1.1)
$$\operatorname{rank}_{\mathbb{Z}[\chi]} E(L)^{\chi} - \operatorname{rank}_{\mathbb{Z}} E(K) \equiv \sum_{v \in S} \delta_v \pmod{2}.$$

In [1], the theory of arithmetic local constants is generalized to address the \mathcal{O} -rank of varieties with complex multiplication (CM) by an order \mathcal{O} , and we continue in that direction with specific attention to the elliptic curve case. Following [1], we assume that $\mathcal{O} \subset \operatorname{End}_K(E)$ is the maximal order in a quadratic imaginary field \mathbb{K} , p is unramified in \mathcal{O} , and $\mathcal{O}^c = \mathcal{O}^{\dagger} = \mathcal{O}$ where † indicates the action of the Rosati involution (see [5, §I.14]).

Our present aim is to provide a simple formula for the local constants δ_v (see Definition 2.2) for primes $v \nmid p$ of good reduction. We then will use a result ([1, §6]) which generalizes (1.1), with \mathbb{Z} replaced by \mathcal{O} , to determine conditions under which the \mathcal{O} -rank of E will grow. In §3 we will describe, via class field theory, dihedral extensions F/\mathbb{Q} which satisfy those conditions, in order to give some concrete setting to the results of §2.

Date: November 3, 2010.

A portion of this work was completed as part of the second author's undergraduate capstone research project at Colorado College.

¹To phrase their result this way, we must assume the Shafarevich-Tate Conjecture, and we will keep this assumption in the background throughout. Without this assumption all statements regarding \mathcal{O} -rank of E would be replaced by analogous statements regarding $\mathcal{O} \otimes \mathbb{Z}_p$ -corank of the p^{∞} -Selmer group $\operatorname{Sel}_{p^{\infty}}(E/K)$ of E.

2. Computing the local constant

Let $p\mathcal{O} = \mathfrak{p}_1\mathfrak{p}_2$, where $\mathfrak{p}_1 \neq \mathfrak{p}_2$ as p is unramified² in \mathcal{O} . We denote $R = \mathcal{O}/p\mathcal{O}$ and $R_i = \mathcal{O}/\mathfrak{p}_i$ for i = 1, 2, so that $R \cong R_1 \oplus R_2$.

Definition 2.1. If M is an \mathcal{O} -module of exponent p, define the R-rank of M by

 $\operatorname{rank}_{R} M := (\operatorname{rank}_{R_1} M \otimes_R R_1, \operatorname{rank}_{R_2} M \otimes_R R_2).$

The following definition is as in [1] and [4]. Fix a prime v of K and let u and w be primes of k below v and of L above v, respectively. Denote k_u , K_v , and L_w for the completions of k, K, and L at u, v, and w, respectively. If $L_w \neq K_v$, let L'_w be the extension of K_v inside L_w with $[L_w : L'_w] = p$, and otherwise let $L'_w = L_w = K_v$.

Definition 2.2. Define the arithmetic local constant $\delta_v := \delta(v, E, L/K)$ by

 $\delta_v \equiv \operatorname{rank}_R E(K_v) / (E(K_v) \cap N_{L_w/L'_w} E(L_w)) \pmod{2}.$

Now, we will consider primes v of K such that E has good reduction at $v, v \nmid p$, $v^c = v$, and v ramifies in L/K (corresponding to Lemma 6.6 of [4]). Under these conditions Theorem 5.6 of [4] shows that

(2.1)
$$\dim_{\mathbb{F}_p} E(K_v) / (E(K_v) \cap N_{L_w/L'_w} E(L_w)) \equiv \dim_{\mathbb{F}_p} E(K_v)[p] \pmod{2}.$$

Proposition 2.4 below shows that we are able to replace $\dim_{\mathbb{F}_p}$ by rank_R in (2.1). We first need Lemma 2.3, which follows Lemmas 5.4-5.5 of [4], and our proof is meant only to address the change from $\dim_{\mathbb{F}_p}$ to rank_R.

Let \mathcal{K} and \mathcal{L} be finite extensions of \mathbb{Q}_{ℓ} , with $\ell \neq p$, and suppose \mathcal{L}/\mathcal{K} is a finite extension.

Lemma 2.3. Suppose \mathcal{L}/\mathcal{K} is cyclic of degree p, E is defined over \mathcal{K} and has good reduction.

- (i) $rank_R E(\mathcal{K})/pE(\mathcal{K}) = rank_R E(\mathcal{K})[p].$
- (ii) If \mathcal{L}/\mathcal{K} is ramified then $E(\mathcal{K})/pE(\mathcal{K}) = E(\mathcal{L})/pE(\mathcal{L})$ and

 $N_{\mathcal{L}/\mathcal{K}}E(\mathcal{L}) = pE(\mathcal{K}).$

(iii) If \mathcal{L}/\mathcal{K} is unramified then $N_{\mathcal{L}/\mathcal{K}}E(\mathcal{L}) = E(\mathcal{K})$.

Proof. When $\ell \neq p$ we have $E(\mathcal{K})/pE(\mathcal{K}) = E(\mathcal{K})[p^{\infty}]/pE(\mathcal{K})[p^{\infty}]$. Since $E(\mathcal{K})[p^{\infty}]$ is finite, (i) follows from the exact sequence of \mathcal{O} -modules

$$0 \to E(\mathcal{K})[p] \to E(\mathcal{K})[p^{\infty}] \to pE(\mathcal{K})[p^{\infty}] \to 0.$$

The content of (ii) and (iii) is on the level of sets, so the proof is exactly as in Lemma 5.5 of [4]. $\hfill \Box$

We return to the notation of Definition 2.2.

Proposition 2.4. If $v \nmid p$ and L_w/K_v is nontrivial and totally ramified, then

$$\delta_v \equiv rank_R E(K_v)[p] \pmod{2}$$
.

Proof. As in [4], Lemma 2.3(ii) yields $E(K_v) \cap pE(L'_w) = pE(K_v)$. So by Definition 2.2 and Lemma 2.3(i)

$$\delta_v \equiv \operatorname{rank}_R E(K_v) / pE(K_v) \equiv \operatorname{rank}_R E(K_v)[p] \pmod{2}.$$

²The simpler case of p being inert in \mathbb{K}/\mathbb{Q} , i.e. $\mathcal{O}/p\mathcal{O}$ is a field, is treated similarly.

Now, fix a prime v of K. We denote κ_u for the residue field of k_u , $q = \#\kappa_u$ for the size of finite field κ_u , and \tilde{E} for the reduction of E to κ_u .

Proposition 2.5. Suppose $v \nmid p$, v is ramified in L/K, and $v^c = v$. If E has good reduction at v, then $\left(\delta_v \equiv 1 \iff p \mid \#\tilde{E}(\kappa_u).\right)$

Proof. We follow the notation of Lemma 6.6 of [4]. Since $v^c = v$ we know that K_v/k_u is quadratic, and it is unramified by Lemma 6.5(ii) of [4]. Let Φ be the Frobenius generator of $\operatorname{Gal}(K_v^{ur}/k_u)$, so Φ^2 is the Frobenius of $\operatorname{Gal}(K_v^{ur}/K_v)$.

The proof of Lemma 6.6 of [4] shows that the product of the eigenvalues α, β of Φ is -1. Also, they show that (as sets) $E(K_v)[p] = E[p]^{\Phi^2=1}$ is equal to E[p] or is trivial depending on whether or not $\{\alpha, \beta\} = \{1, -1\}$, respectively. Since E has CM by $\mathcal{O}, E[p]$ is a rank 1 *R*-module (see e.g. [7, §II.1]), so the former case yields

$$\delta_v \equiv \operatorname{rank}_R E(K_v)[p] = 1.$$

By assumption $v \nmid p$, so p is prime to the characteristic of κ_u , and therefore the reduction map restricted to p-torsion is injective ([6, §VII.3]). We also know E[p] is unramified ([6, §VII.4]), and so the eigenvalues of Φ acting on E[p] coincide (mod p) with the eigenvalues of the q-power Frobenius map φ_q on $\tilde{E}[p]$. We know ([6, §V]) that the characteristic polynomial of φ_q is $T^2 - aT + q$, where $a = q + 1 - \#\tilde{E}(\kappa_u)$, and from the above comments $q \equiv -1 \pmod{p}$. Therefore, Φ having eigenvalues ± 1 is equivalent to $a \equiv 0 \pmod{p}$ and in turn equivalent to $\#\tilde{E}(\kappa_u) \equiv 0 \pmod{p}$.

Define a set \mathfrak{S}_L of primes v of K by

 $\mathfrak{S}_L := \{v \mid p, \text{ or } v \text{ ramifies in } L/K, \text{ or where } E \text{ has bad reduction} \}.$

Theorem 2.6 (Theorem 6.1 of [1]). Let χ : $Gal(L/K) \hookrightarrow \overline{\mathbb{Q}}^{\times}$ be an injective character, and $\mathcal{O}[\chi]$ the extension of \mathcal{O} by the values of χ . Assuming the Shafarevich-Tate Conjecture,

$$\operatorname{rank}_{\mathcal{O}[\chi]} E(L)^{\chi} - \operatorname{rank}_{\mathcal{O}} E(K) \equiv \sum_{v \in \mathfrak{S}_L} \delta_v \pmod{2}.$$

We now consider a dihedral tower $k \subset K \subset F$ where F/K is *p*-power abelian. Following [4, §3], we note that there is a bijection between cyclic extensions L/K in F and irreducible rational representations ρ_L of G = Gal(F/K). The semisimple group ring $\mathbb{K}[G]$ decomposes as

$$\mathbb{K}[G] \cong \bigoplus_L \mathbb{K}[G]_L$$

where $\mathbb{K}[G]_L$ is the ρ_L -isotypic component of $\mathbb{K}[G]$. For each L, for us it suffices deal with an injective character $\chi : \operatorname{Gal}(L/K) \hookrightarrow \overline{\mathbb{Q}}^{\times}$ appearing in the direct-sum decomposition of $\rho_L \otimes \overline{\mathbb{Q}}^{\times}$, and $\operatorname{rank}_{\mathcal{O}[\chi]} E(F)^{\chi}$ is independent³ of the choice of χ .

Theorem 2.7. Suppose that for every prime v satisfying $v^c = v$ and which ramifies in F/K, we have $v \nmid p$ and E has good reduction at v. For m equal to the number of such v with $p \mid \#\tilde{E}(\kappa_u)$, if $\operatorname{rank}_{\mathcal{O}}E(K) + m$ is odd then

$$\operatorname{rank}_{\mathcal{O}} E(F) \ge ([F:K], [F:K]).$$

³We could instead write that $\dim_{\bar{\mathbb{O}}}(E(F)\otimes \bar{\mathbb{Q}})^{\chi}$ is independent of the choice of χ .

Proof. Fix a cyclic extension L/K inside F. If v is a prime of K and $v^c \neq v$ then $\delta_v + \delta_{v^c} \equiv 0 \pmod{2}$ by Lemma 5.1 of [4]. If $v^c = v$ and v is unramified in L/K, then v splits completely in L/K by Lemma 6.5(i) of [4]. It follows that N_{L_w/L'_w} is surjective and so $\delta_v \equiv 0$ by Definition 2.2. By assumption, Proposition 2.5 applies to the remaining primes v, and so $\sum_v \delta_v \equiv m \pmod{2}$. Thus,

$$\operatorname{rank}_{\mathcal{O}[\chi]} E(L)^{\chi} \equiv \operatorname{rank}_{\mathcal{O}} E(K) + m \pmod{2}$$

and we have assumed that the right-hand side is odd.

From Corollary 3.7 of [4] it follows that

$$\operatorname{rank}_{\mathcal{O}} E(F) = \sum_{L} (\dim_{\mathbb{Q}} \rho_{L}) \cdot (\operatorname{rank}_{\mathcal{O}[\chi]} E(L)^{\chi}).$$

As the previous paragraph applies for every cyclic L/K in F, we see from the decomposition of $\mathbb{K}[G]$ that $E(F) \otimes \mathbb{Q}$ contains a submodule isomorphic to $\mathbb{K}[G]$ and the claim follows.

3. CM elliptic curves defined over \mathbb{Q}

Here, we will consider the CM elliptic curves E defined over \mathbb{Q} (as in [7, A.3]). For each E, our aim is to determine⁴ examples of dihedral towers $\mathbb{Q} \subset K \subset F$ over which, according to Theorem 2.7, the \mathcal{O} -rank of E grows. As we have assumed $\mathcal{O} \subset \operatorname{End}_{K}(E)$, we will consider towers in which $K = \mathbb{K}$ (see §1). All of our calculations will be done using Sage [8].

Let E_D/\mathbb{Q} be an elliptic curve⁵ defined over \mathbb{Q} with CM by $K_D = \mathbb{Q}(\sqrt{-D})$. We determine computationally⁶ rank_Z $E_D(K_D)$, and for D = 3 we see that this group is finite. For D = 4, 7, the situation is less certain, as Sage only tells us that $E_D(\mathbb{Q})$ is finite and rank_Z $E_D(K_D) \leq 2$. For each of the remaining CM curves E_D defined over \mathbb{Q} , one can (provably) calculate that rank_Z $E_D(\mathbb{Q}) = 1$. We also have that rank_Z $E_D(K_D) \geq \text{rank}_Z E_D(\mathbb{Q}) = 1$ and rank_Z $E_D(K_D)$ cannot be even, so rank_O $E_D(K_D) \geq 1$. For D = 8, 11, 19, 43, 67, and 163, Sage gives an upper bound⁷ of 3 for rank_Z $E_D(K_D)$ and so for these D we can conclude that in fact rank_O $E_D(K_D) = 1$.

3.1. Dihedral Extensions of \mathbb{Q} . Recall that p is a fixed odd rational prime. Presently, we also fix $D \in \{3, 4, 7, \ldots, 163\}$ and let $E = E_D$, $K = K_D$. We are interested in abelian extensions F/K which are dihedral over \mathbb{Q} , and these are exactly the extensions contained in the ring class fields of K (see [3], Theorem 9.18).

Let \mathcal{O}_f be an order in \mathcal{O}_K of conductor f. We have a simple formula for the class number $h(\mathcal{O}_f)$ of \mathcal{O}_f using, for example, Theorem 7.24 of [3], and noting that we have $h(\mathcal{O}_K) = 1$,

$$h(\mathcal{O}_f) = \frac{f}{[\mathcal{O}_K^{\times} : \mathcal{O}_f^{\times}]} \cdot \prod_{\text{primes } \ell \mid f} \left(1 - \left(\frac{-D}{\ell}\right) \frac{1}{\ell} \right).$$

For $D \neq 3, 4$ we have $\mathcal{O}_K^{\times} = \{\pm 1\}$ and for D = 4 we have $\#\mathcal{O}_K^{\times} = 4$, so in both of these cases $[\mathcal{O}_K^{\times} : \mathcal{O}_f^{\times}]$ is prime to p. For D = 3, one can show that $[\mathcal{O}_K^{\times} : \mathcal{O}_f^{\times}] = 3$

⁴Determined up to the correspondence of class field theory.

⁵See p.483 of [7], with f = 1 (in Silverman's notation), for a Weierstrauss equation.

 $^{^{6}\}mathrm{Specifically}$ with Sage's interface to John Cremona's 'mwrank' and Denis Simon's 'simon two descent.'

when f > 1. The following paragraphs require only minor adjustments for the case p = D = 3.

Taking f to be an odd rational prime such that $(-D/f) = \pm 1$, the class number becomes $h(\mathcal{O}_f) = f \mp 1$ and so the ring class field $H_{\mathcal{O}_f}$ associated to \mathcal{O}_f is an abelian extension of K of degree $f \mp 1$. Thus, for $f \equiv \pm 1 \pmod{p}$ we have a (non-trivial) p-power subextension F/K which is dihedral over \mathbb{Q} .

Next we need to understand the ramification in F/K. As K has class number 1, we know there are no unramified extensions of K, and so we must ensure that F satisfies the hypotheses of Theorem 2.7. A prime v of K ramifies in $H_{\mathcal{O}_f}/K$ if and only if $v \mid f\mathcal{O}_K$ (see for example exercise 9.20 in [3] and recall f is odd). If we choose f so that -D is not a square (mod f), f is inert in K/\mathbb{Q} , and so $f\mathcal{O}_K$ is prime and moreover the only prime that ramifies in $H_{\mathcal{O}_f}/K$. If $f\mathcal{O}_K$ does not ramify in F/K then the p-extension F/K is contained in the Hilbert class field H_K of K. As $H_K = K$, this is impossible, so $f\mathcal{O}_K$ ramifies in F/K and no other primes ramify in F/K. Taking f such that $f \nmid D$ and -D is a square (mod f), we have that f is not inert and does not ramify in K/\mathbb{Q} . As in the previous case, the primes of K above f both ramify in the p-extension F/K contained in $H_{\mathcal{O}_f}$.

Now, suppose rank $\mathcal{O}E(K)$ is odd⁷. To apply Theorem 2.7, we must have an even number m of primes v such that $v^c = v$, v ramifies in F/K, E has good reducation at v and for which $p \mid \#\tilde{E}(\mathbb{Z}/f\mathbb{Z})$. First, we can guarantee m = 0 if the only primes v which ramify in F/K do not satisfy $v^c = v$, e.g. taking $f \nmid D$ with (-D/f) = 1. Table 3.1 below gives, for each D and for p = 3, 5, 7, the smallest prime f which gives an extension of degree p following this recipe. We note that we do not need Proposition 2.5 for this case.

If we wish to allow for primes v satisfying $v^c = v$, we choose two p-extensions F_1 , F_2 from two distinct rational primes f_i as above with $f_i \equiv -1 \pmod{p}$ and $(-D/f_i) = -1$, for i = 1, 2. The compositum $F = F_1F_2$ will satisfy our requirements. Indeed, firstly F is an abelian p-extension of K and is contained in the ring class field $H_{\mathcal{O}_{f_1f_2}}$, hence dihedral over \mathbb{Q} with only $f_1\mathcal{O}_K$ and $f_2\mathcal{O}_K$ ramifying in F/K. Secondly, as each f_i is inert in K/\mathbb{Q} , it is a supersingular prime for E (see, for example, exercise 2.30 of [7]) and hence p divides $\#\tilde{E}(\mathbb{Z}/f_i\mathbb{Z}) = f_i + 1$. Thus, E and the p-extension F/K satisfy the hypotheses of Theorem 2.7. Table 3.2 below gives, for each D and for p = 3, 5, 7, the smallest pair of distinct primes f_1, f_2 which give extensions of degree p^2 following this recipe.

Next, suppose rank_{\mathcal{O}} E(K) is even.⁸ In this case, we need m to be odd in order to apply Theorem 2.7. The same ideas as above still work, and in Table 3.3 we list, for each D and for p = 3, 5, 7, the smallest prime f for which Theorem 2.7 guarantees rank $\geq p$.

Remark 3.1. Though there are algorithms in the literature to compute the defining polynomial of a class field (e.g. [2, §6], [3, §§11-3]) and such computational problems are of interest independently, we make no attempt here to explicitly determine the ring class fields $H_{\mathcal{O}_f}$. As is apparent from Table 3.2, our method of determining a field to which Theorem 2.7 applies involves ring class fields of large degree in a computationally inefficient way.

⁷The cases D = 8, 11, ..., 163 and possibly D = 4, 7.

⁸The case D = 3 and possibly D = 4, 7.

	p = 3		p = 5		p = 7	
D	f	[F:K]	f	[F:K]	f	[F:K]
4	13	3	41	5	29	7
7	43	3	11	5	29	7
8	43	3	11	5	43	7
11	31	3	31	5	71	7
19	7	3	11	5	43	7
43	13	3	11	5	127	7
67	103	3	71	5	29	7
163	43	3 Tadie 1	41	5	43	7

TABLE 3.1. Case m = 0

	p = 3			p = 5			p = 7		
D	f_1	f_2	[F:K]	f_1	f_2	[F:K]	f_1	f_2	[F:K]
4	11	23	9	19	59	25	83	139	49
7	5	41	9	19	59	25	13	41	49
8	5	23	9	29	79	25	13	167	49
11	2	29	9	29	79	25	13	41	49
19	2	29	9	29	59	25	13	41	49
43	2	5	9	19	29	25	223	349	49
67	2	5	9	79	109	25	13	41	49
163	2	5	9	19	29	25	13	139	49

TABLE 3.2. Case m = 2

	p = 3		í	p = 5	p = 7		
D	f	[F:K]	f	[F:K]	f	[F:K]	
3	17	3	29	5	41	7	
4	11	3	19	5	83	7	
7	5	3	19	5	13	7	
TABLE 3.3. Case $m = 1$							

References

- S. Chetty. Arithmetic local constants for abelian varieties with complex multiplication. in preparation, preliminary draft: http://personalwebs.coloradocollege.edu/~schetty/.
- [2] H. Cohen. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathematics. Springer, 2000.
- [3] D. Cox. Primes of the Form x² + ny²: Fermat, Class Field Theory, and Complex Multiplication. Wiley Interscience, 1989.
- [4] B. Mazur and K. Rubin. Finding large Selmer rank via an arithmetic theory of local constants. Annals of Mathematics, 166(2):581–614, 2007.
- [5] J.S. Milne. Abelian Varieties. In G. Cornell and J. Silverman, editors, Arithmetic Geometry. Springer-Verlag, 1986. available at http://www.jmilne.org/math/.
- [6] J. Silverman. Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Mathematics. Springer, 1986.
- [7] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of Graduate Texts in Mathematics. Springer, 1994.
- [8] W. A. Stein et al. Sage Mathematics Software (Version 4.2.1). The Sage Development Team, 2009. http://www.sagemath.org.

Sunil Chetty sunil.chetty@coloradocollege.edu Lung Li leonli319@yahoo.com