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0 ON THE WEIGHTED FORWARD REDUCED ENTROPY OF

RICCI FLOW

LIANG CHENG, ANQIANG ZHU

Abstract. In this paper, we first introduce the weighted forward re-
duced volume of Ricci flow. The weighted forward reduced volume,
which related to expanders of Ricci flow, is well-defined on noncom-
pact manifolds and monotone non-increasing under Ricci flow. For an
application to weighted forward reduced volume, we show that if there
exists sequenceλ j → 0, λ j > 0 andx j ∈ Mn such that the sequence
(Mn, g j(0), x j) defined asg j(0) = λ jg(0), where (Mn, g(t)) is the Type
III Ricci flow on a noncompact complete n-dimensional manifold, sub-
converges to (Mn

∞, g∞(0), x∞) in C2 sense, then (Mn, g(0)) is isometric to
R

n.

1. Introduction

In [13], G.Perelman introduced the reduced entropy (i.e. reduced dis-
tance and reduced volume), which becomes one of powerful tools for study-
ing Ricci flow. The reduced entropy enjoys very nice analyticand geometric
properties, including in particular the monotonicity of the reduced volume.
These properties can be used, as demonstrated by Perelman, to show the
limit of the suitable rescaled Ricci flows is a gradient shrinking soliton.

Then M.Feldman, T.Ilmanen, L.Ni [4] observed that there is adual ver-
sion of G.Perelman’s reduced entropy, which related to the expanders of
Ricci flow. Letg(t) solves the Ricci flow

∂g
∂t
= −2Rc. (1.1)

on M × [0,T]. Fix x ∈ Mn and letγ be a path (x(η), η) joining (x, 0) and
(y, t). They define the forwardL+-length as

L+(γ) =
∫ t

0

√
η(R(γ(η)) + |γ′(η)|2)dη. (1.2)
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DenoteL+(y, t) be the length of a shortest forwardL+-length joining (x, 0)
and (y, t). Let

l+(y, t) =
L+(y, t)

2
√

t
(1.3)

be the forwardl+-length. Note that the forward reduced distance (1.3) is
defined under the forward Ricci flow (1.1), which is the only difference
from Perelman’s reduced distance defined under the backwardRicci flow.
The forward reduced volume is defined in [4] as

θ+(t) =
∫

M
(t)−

n
2 el+(y,t)dvol(y). (1.4)

They also proved forward reduced volume defined in (1.4) is monotone
non-increasing along the Ricci flow (1.1).

Unfortunately, the forward reduced volume defined in (1.4) may not well-
defined on noncompact manifolds. In the first part of this paper, we intro-
duce the weighted forward reduced volume in this paper basedon the work
in [4] and [13]. The weighted forward reduced volume is well-defined on
noncompact manifolds and monotone non-increasing under the Ricci flow
(1.1). Moreover, we show that, just the same as the Perelman’s reduced vol-
ume, the weighted reduced volume entropy has the value (4π)

n
2 if and only

if the Ricci flow is the trivial flow on flat Euclidean space.
We define the weighted forward reduced volume as follows. First, we

define the forwardL+-exponential mapL+exp(V, t) : TxM → M at time
t ∈ [0,T). ForV ∈ TxM, letγV denote theL+-geodesic such thatγV(0) = p,
lim
t→0

√
tγ′V(t) = V. If γV exists on [0, t], we set

L+exp(V, t) = γV(t). (1.5)

DenoteτV be the first time theL+-geodesicγV stop minimizing. Define

Ω(t) = {V ∈ TxMn : τV > t}.

Obviously,Ω(t1) ⊂ Ω(t2) if t1 < t2. Let JV
i (t), i = 1, · · · , n, beL+-Jacobi

fields alongγV(t) with JV
i (0) = 0, (∇VJV

i )(0) = E0
i , where {E0

i }ni=1 is an
orthonormal basis forTxM with respect tog(0). ThenD(L+exp(V, t))(E0

i ) =
JV

i (t). We define

L+JV(t) =
√

det(< JV
i (t), JV

j (t) >)

and the weighted forward reduced volume as

Ṽ+(t) =
∫

Ω(t)
t−

n
2 el+(γV(t),t)e−2|V|2g(0)L+JV(t)dxg(0)(V), (1.6)
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wheredxg(0) is the standard Euclidean volume form on (TxM, g(x, 0)), i.e.
we define the weighted forward reduced volume as

Ṽ+(t) =
∫

Ω(t)
t−

n
2 el+(y,t)e−2|L+exp−1(y,t)|2g(0)dvol(y), (1.7)

We use the convention

L+JV(t) � 0 for t ≥ τV.
Then we can write the weighted forward reduced volume as

Ṽ+(t) =
∫

TxMn
t−

n
2 el+(γV(t),t)L+JV(t)e−2|V|2g(0)dxg(0)(V). (1.8)

We have the following properties for the weighted forward reduced volume.

Theorem 1.1. The weighted forward reduced volume defined in (1.6) is
monotone non-increasing under the Ricci flow (1.1) andṼ+(t) ≤ lim

t→0+
Ṽ+(t) ≤

(4π)
n
2 . If Ṽ+(t1) = Ṽ+(t2) for some0 < t1 < t2, then this flow is a gradient

expanding soliton on0 ≤ t < ∞ and hence is the trivial flow on flat Eu-
clidean space. In particular, if̃V+(t̄) = (4π)

n
2 for some timēt > 0, then this

flow is the trivial flow on flat Euclidean space.

We also have the following rescaling property for the weighted forward
reduced volume.

Theorem 1.2. We haveṼ j
+(t) = Ṽ+(λ−1

j t) under the rescaling gj(t) =

λ jg(λ−1
j t), whereṼ j

+ andṼ+ denote the weighted forward reduced volume
with respect to metric gj and g respectively.

Finally, we give an application to the weighted forward reduced volume
(1.6). Note that the flat Euclidean spaceRn, on which Ricci flow is of Type
III, has the sequenceλ j → 0, λ j > 0 andxj ∈ Rn such that the sequence
(Rn, g j(0), xj) defined asg j(0) = λ jg(0) subconverges to (Rn, g∞(0), x∞) in
C∞ sense. The following theorem shows thatRn is the only case which has
such property.

Theorem 1.3. Let (Mn, g(t)) be the Type III Ricci flow on a noncompact
complete n-dimensional manifold. If there exists sequenceλ j → 0, λ j > 0
and xj ∈ Mn such that the sequence(Mn, g j(0), xj) defined as gj(0) = λ jg(0)
subconverges to(Mn

∞, g∞(0), x∞) in C2 sense, then(Mn, g(0)) is isometric to
R

n.

The organization of the paper is as follows. In section 2, we first recall
some basic formulas and properties about forward reduced entropy in [4].
Then we study the properties of forward reduced volume density which
defined by forwardL+-exponential map. Finally, we give the proofs of
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Theorem 1.1 and Theorem 1.2. In section 3, we study the singularities of
Type III Ricci flow. Then we give the proof of Theorem 1.3.

2. Weighted Forward Reduced volume and Expanders

Before we present the proofs of Theorem 1.1 and Theorem 1.2, we recall
some basic formulas and properties about forward reduced entropy in [4].
Clearly, one can show thatl+(y, t) is locally lipschitz function and the cut-
Locus ofL+exp(V, t) is a closed set of measure zero by using the similar
methods in [16].

We need the following two theorems due to M.Feldman, T.Ilmanen, L.Ni
[4], which state the following adapted form.

Theorem 2.1. [4] let γ be a path(x(η), η) joining (x, 0) and (y, t). Set X=
γ′(t) and Y be a variational vector alongγ such that Y(0) = 0. The first
variation ofL+ is that

δL+ = 2
√

t < X,Y > (t) +
∫ t

0

√
η < Y,∇R− 2∇XX + 4Rc(X, ·) − 1

η
X > dη.

(2.1)

If γ(t) is the mimimalL+-geodesic, then

∇L+ = 2
√

tX, (2.2)

t
3
2 (R+ |X|2) = K +

1
2

L+, (2.3)

where K=
∫ t

0
η

3
2 H(X)dη, H(X) = ∂R

∂t + 2 < ∇R,X > +2Rc(X,X) + R
t . The

second variation ofL+ is that

δ2YL+ =2
√

t < X,Y > (t) +
∫ t

0

√
η(HessR(Y,Y) − 2R(X,Y,X,Y)

+ 2|∇XY|2 + 4∇YRc(Y,X) − 2∇XRc(Y,Y))dη. (2.4)

Let Ỹ be a vector field alongγ satisfies the ODE

∇XỸ(η) = Rc(Ỹ(η), ·) + 1

2η Ỹ(η), η ∈ [0, t]

Ỹ(0) = Y(0) = 0.
(2.5)

Then

HessL+(Ỹ, Ỹ) ≤ |Ỹ|
2

√
t
+ 2
√

tRc(Ỹ, Ỹ) −
∫ t

0

√
ηH(X, Ỹ)dη, (2.6)

where H(X, Ỹ) = −HessR(X, Ỹ) + 2R(X, Ỹ,X, Ỹ) + 2|Rc(X, ·)|2 + Rc(Ỹ,Ỹ)
t +

2∂Rc
∂t (Ỹ, Ỹ) − 4∇ỸRc(Ỹ,X) + 4∇XRc(Ỹ, Ỹ). The equality holds in (2.6) if and

only if the vector filed̃Y satisfying (2.16) is anL+-Jacobi field.
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Theorem 2.2. [4] Let l+ � l+(y, t) be the minimalL+-geodesic from(x, 0)
to (y, t). If (y, t) is not in the cut-Locus ofL+exp, then at(y, t)

∂l+
∂t
= R− l+

t
− K

2t
3
2

, (2.7)

|∇l+|2 =
l+
t
− R+

K

t
3
2

, (2.8)

∆l+ ≤ R+
n
2t
− K

2t
3
2

, (2.9)

∂l+
∂t
+ ∆l+ + |∇l+|2 − R− n

2t
≤ 0, (2.10)

2∆l+ + |∇l+|2 − R− l+ + n
t
≤ 0, (2.11)

We first study properties of the forward reduced volume density defined
as

dV+ = t−
n
2 el+(γV(t),t)L+JV(t)dxg(0)(V), (2.12)

Note that the weighted forward reduced volume

Ṽ+(t) =
∫

TxMn

e−2|V|2g(0)dV+.

Analogous to [13], we have the following theorem.

Theorem 2.3. The forward reduced volume density dV+ defined in (2.12) is
monotone non-increasing along the Ricci flow (1.1). Moreover, if dV+(t1) =
dV+(t2) for some0 < t1 < t2, then this flow is a gradient expanding soliton.

Proof. Let γV(t) be the minimalL+-geodesic defined in (1.5) andy = γV(t).
We consider (y, t) in the cut-Locus ofL+exp(V, t). Recall that∇l+(y, t) =
γ′V(t) = X(t). Then by (2.3) and (2.7), we get

∂l+(γV(t), t)
∂t

=
∂l+(y, t)
∂t

+ ∇l · X

= R− l+(y, t)
t
− K

2t
3
2

+ |X|2

=
1
2

t−
3
2 K. (2.13)

For any fixedt, we choose an orthonormal basis{Ei(t)} of TγV (t)M. We
extendEi(η), η ∈ [0, t] to anL+-Jacobi field alongγV with Ei(0) = 0. We

write JV
i (t) =

n∑
i

A j
i E j(t) for same matrix (A j

i ) ∈ GL(n,R). ThenJV
i (η) =

n∑
i

A j
i E j(η) for all η ∈ [0, t].
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Hence, by (2.6), we calculate at timet

d
dη
|η=t lnL+JV =

d
dη
|η=t ln

√√
det(<

n∑

k=1

Ak
i Ek,

n∑

l=1

Al
iEl >)

=
1
2

d
dη
|η=t

∑

i

|Ei |2

=
∑

i

(−Rc(Ei ,Ei)+ < ∇Ei X,Ei >)

=
∑

i

(−Rc(Ei ,Ei) +
1

2
√

t
HessL+(Ei ,Ei)) (2.14)

≤
∑

i

(
1
2t
− 1

2
√

t

∫ t

0

√
ηH(X, Ẽi)dη) (2.15)

whereẼi(η) are the vector fields alongγV satisfying

∇XẼi(η) = Rc(Ẽi(η), ·) + 1

2η Ẽi(η), η ∈ [0, t]

Ẽi(t) = Ei(t),
(2.16)

which in particular implies that

< Ẽi , Ẽ j > (η) =
η

t
< Ei,E j > (t) =

η

t
δi j . (2.17)

It follows that
n∑

i=1

H(X, Ẽi)(η) =
η

t
H(X).

Hence
d
dη
|η=t lnL+JV ≤

n
2t
− 1

2
t−

3
2 K,

and
d
dt

ln dV+ = −
n
2t
+
∂l+
∂t
+

dlnL+JV

dt
≤ 0. (2.18)

If equality in (2.18) holds, then we have equality in (2.15) holds. By Theo-
rem 2.1, we conclude that each̃Ei(η) is anL+-Jacobi field. Hence

d
dη
|η=t|Ei |2 =

d
dη
|η=t|Ẽi |2 =

|Ei(t)|2

t
. (2.19)

Combining with (2.14) and (2.19), we get

Rc(Ei ,Ei) −
1

2
√

t
HessL+(Ei ,Ei) = −

|Ei |2

2t
.

�
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Now we can give the proof of Theorem 1.1.
Proof of Theorem 1.1. By Theorem 2.3, we know that

d
dt

(t−
n
2 el+(γV(t),t)L+JV(t)) ≤ 0.

It follows that
d
dt

(t−
n
2 el+(γV(t),t)L+JV(t)e−2|V|2g(0)) ≤ 0.

HenceṼ+(t1) ≤ Ṽ+(t1) for t1 < t2 since we haveΩ(t1) ⊂ Ω(t2). Since

lim
t→0+

l+(γV(t), t) = lim
t→0+

1

2
√

t

∫ t

0

√
η(R(γV(η), η) + |dγV

dη
|2)dη

= |V|2g(0),

and

lim
t→0+

L+JV(t)

t
n
2
= lim

t→o+

√
det(< 2

√
tEi(t), 2

√
tE j(t) >g(0))

t
n
2

= 2n,

we conclude that

lim
t→0+

t−
n
2 el+(γV(t),t)L+JV(t) = 2ne|V|

2
g(0).

Hence

lim
t→0+
Ṽ+(t) ≤

∫

TpM
2ne−|V|

2
g(0)dx(V) = (4π)

n
2 .

If Ṽ+(t1) = Ṽ+(t2) for any 0 < t1 < t2, thendV+(t1) = dV+(t2) for any
0 < t1 < t2. So (Mn, g(t)) must be a gradient expanding soliton by Theorem
2.3, i.e. we have

Rc+ Hess(−l+) = −
g
2t

for some smooth functionl+ on Mn. Let φt : M → M, 0 < t ≤ t̄ be the
one-parameter family of diffeomorphisms obtained by

dφt

dt
= ∇l+ and φt̄ = Id.

We considerh(t) = t̄
tφ
∗
t g(t) and calculate

dh
dt
= − t̄

t2
φ∗t g(t) +

t̄
t
φ∗tL dφt

dt
(g(t)) − 2

t̄
t
φ∗t Rc(g(t))

= − t̄
t2
φ∗t g(t) +

t̄
t
2Hess(l+) +

t̄
t
φ∗t (

g
t
− 2Hess(l+)) = 0.

It follows that

g(t) =
t
t̄
(φ−1

t )∗g(t̄).
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Suppose that there is some (y, t̄) with |Rm|(y, t̄) = K > 0, we have|Rm|(φ−1
t (y), t) =

Kt̄
t , and these curvatures are not bounded ast → 0, which is a contradiction.

Then we have

Hess(l+) =
1
2t

g.

Thusl+ is strictly convex function. The similar arguments to Lemma2.3 in
[16] can show that

l+(y, t) ≥ e−2ct dg(0)(x, y)

4t
− nc

3
t,

if Rc ≥ −cg on [0, t], so thatl+(y, t) have the only minimum point inMn.
HenceMn is diffeomorphic toRn.

SinceṼ+(t) is monotone non-increasing,̃V+(t) is independent oft if
Ṽ+(t̄) = (4π)

n
2 for some timēt > 0. Then we derive thatMn is isometric to

R
n. �
Finally, we give the proof of Theorem 1.2.
Proof of Theorem 1.2.We denoteγ j

v(t) (resp.γ∞v (t)) be the minimalL+-
geodesic with respect tog j(t) (resp.g∞(t)) which starting from (xj , 0) (resp.

(x∞, 0)) and satisfying lim
t→0

√
t

dγ j
V(t)

dt = V (resp. lim
t→0

√
t

dγ∞V (t)
dt = V).

We have thatγ j√
λ−1

j V
(t) = γV(λ−1

j t), l j
+(y, t) = l+(y, λ−1

j t) andL+J j
V(t)dxgj (0)(V) =

(λ−1
j )−

n
2L+J√λ jV

(λ−1
j t)dxg(0)(

√
λ jV). Hence

Ṽ j
+(t) =

∫

TxMn
(t)−

n
2 el j

+(γV(t),t)L+J j
V(t)e

−2|V|2gj (0)dxgj (0)(V)

=

∫

TxMn
(λ−1

j t)−
n
2 e

l+(γ√λ j V
(λ−1

j t),λ−1
j t)

× L+J√λ jV
(λ−1

j t)e−2|
√
λ jV|2g(0)dxg(0)(

√
λ jV)

= Ṽ+(λ−1
j t).

�

3. The proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3.
Proof of Theorem 1.3. We argue by contradiction. If (Mn, g(0)) is not

isometric toRn, we define the rescaled Ricci flows (Mn, g j(t), xj) by g j(t) =
λ jg(λ−1

j t). First, we have at anyy ∈ M that

|Rmgj (t)|gj (t)(y) =
|Rmg( t

λ j
)|g( t

λ j
)(y)

λ j
≤ C

λ j · t
λ j

=
C
t
, (3.1)
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which gives an uniformly curvature bound on any compact subsets of (0,∞).
Since (Mn, g j(0), xj) subconverges to (Mn

∞, g∞(0), x∞) in C2 sense, we
conclude that (Mn, g j(t), xj) subconverges to (Mn

∞, g∞(t), x∞) in C∞ sense
for any t ∈ (0,∞) by R.Hamilton’s precompactness theorem. We consider
the forward reduced distance based on (xj , 0) with respect to the metricg j(t),
which defined asl j

+(xj ,0). We denoteγ j
v(t) (resp.γ∞v (t)) be the minimalL+-

geodesic with respect tog j(t) (resp.g∞(t)) which starting from (xj , 0) (resp.

(x∞, 0)) and satisfying lim
t→0

√
t

dγ j
V(t)

dt = V (resp. lim
t→0

√
t

dγ∞V (t)

dt = V). It follows

thatγ j
V(t)→ γ∞V (t), l j

+(γ
j
V(t), t)→ l∞+ (γ∞V (t), t) andL+J j

V(t)→ L+J∞V (t).
Hence

Ṽ∞+ (t) =
∫

Tx∞Mn

(t)−
n
2 el∞+ (γ∞V (t),t)L+J∞V (t)e−2|V|2g∞(0)dxg∞(0)(V)

= lim
j→∞

∫

Txj M
n

(t)−
n
2 el j

+(γ j
V(t),t)L+J j

V(t)e
−2|V|2gj (0)dxgj (0)(V)

= lim
j→∞
Ṽ j
+(t),

= lim
j→∞
Ṽ+(λ−1

j t),

whereλ j → 0. SinceṼ+ is a monotone decreasing function and (Mn, g(0))
is not isometric toRn, we have

Ṽ∞+ = lim
t→∞
Ṽ+(t) ≡ c < (4π)

n
2 . (3.2)

In particular,Ṽ∞+ is independent oft. Hence (Mn
∞, g∞(0)) is isometric toRn

by Theorem 1.1. TheñV∞+ = (4π)
n
2 by Theorem 1.1 which contradicts to

(3.2).�
Acknowledgement: We would like to express our gratefulness to our

thesis advisor professor Li Ma for his constant support and encouragement.

References

[1] S. Brendle,A generalization of Hamiltons differential Harnack inequality for the
Ricci flow, J. Diff. Geom. 82, 207-227 (2009)

[2] B.Chow, S.C.Chu, D.Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D.Knopf, P.Lu,
F.Luo, and L.Ni,The Ricci flow: techniques and applications.Part I, Mathematical
Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI,
2007, Geometric aspects.

[3] J.Enders, R.Müller, P.M.Topping,On Type I Singularities in Ricci flow,
http://arxiv.org/abs/1005.1624v1.

[4] M.Feldman, T.Ilmanen, L.Ni,Entropy and reduced distance for Ricci expanders, J.
Geom. Anal. 15 (2005), 49-62.

[5] J.Lott, On the long time behavior of type III Ricci flow solutions, Math. Ann.
339(2007), 627-666.

http://arxiv.org/abs/1005.1624v1


10 LIANG CHENG, ANQIANG ZHU

[6] L.Ma, Ricci expanders and Type III Ricci flow, http://arxiv.org/abs/1008.0711v1.
[7] L.Ma, A complete proof of Hamilton’s conjecture, http://arxiv.org/abs/1008.1576v1
[8] J. Morgan, G.Tian,Ricci flow and the Poincaré conjecture, Clay Mathematics Mono-
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