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ON THE WEIGHTED FORWARD REDUCED ENTROPY OF
RICCI FLOW

LIANG CHENG, ANQIANG ZHU

AsstracT. In this paper, we first introduce the weighted forward re-
duced volume of Ricci flow. The weighted forward reduced wudy
which related to expanders of Ricci flow, is well-defined omecmm-
pact manifolds and monotone non-increasing under Ricci. flear an
application to weighted forward reduced volume, we show ifithere
exists sequencg; — 0, 1; > 0 andx; € M" such that the sequence
(M", gj(0), x;) defined agy;(0) = 2;9(0), where 1", g(t)) is the Type

[l Ricci flow on a noncompact complete n-dimensional maldifsub-
converges tolI7, g..(0), X..) in C? sense, then\", g(0)) is isometric to
R

1. INTRODUCTION

In [13], G.Perelman introduced the reduced entropy (i.eluced dis-
tance and reduced volume), which becomes one of powerfigl fimostudy-
ing Ricci flow. The reduced entropy enjoys very nice analgtid geometric
properties, including in particular the monotonicity oétreduced volume.
These properties can be used, as demonstrated by Perebretmw the
limit of the suitable rescaled Ricci flows is a gradient skirig soliton.

Then M.Feldman, T.llmanen, L.Ni[4] observed that there dual ver-
sion of G.Perelman’s reduced entropy, which related to #pamders of
Ricci flow. Letg(t) solves the Ricci flow

99

i 2Rc (1.1
on M x [0, T]. Fix x € M" and lety be a path X(n), ) joining (x,0) and
(y,t). They define the forward , -length as

L) = fo VIR() + Iy ()P)dy. (1.2)
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DenoteL, (y, t) be the length of a shortest forwag -length joining &, 0)
and {,t). Let

L.(y.1)
2+t
be the forward,-length. Note that the forward reduced distarice](1.3) is

defined under the forward Ricci flow (1.1), which is the onlyfetience

from Perelman’s reduced distance defined under the backiRriaod flow.
The forward reduced volume is definedlin [4] as

0, (t) = fM (t)~2€-%Ydvol(y). (1.4)

They also proved forward reduced volume definedlin] (1.4) iseotane
non-increasing along the Ricci flow (1.1).

Unfortunately, the forward reduced volume defined inl(1.4ymot well-
defined on noncompact manifolds. In the first part of this pape intro-
duce the weighted forward reduced volume in this paper basehke work
in [4] and [13]. The weighted forward reduced volume is wagfined on
noncompact manifolds and monotone non-increasing uneéeRitci flow
(@.1). Moreover, we show that, just the same as the Peretmaaiticed vol-
ume, the weighted reduced volume entropy has the valdé (#and only
if the Ricci flow is the trivial flow on flat Euclidean space.

We define the weighted forward reduced volume as followsstFwe
define the forwardL,-exponential map_,exqV,t) : TyM — M at time
te [0, T). ForV e T4M, letyy denote thel,-geodesic such that,(0) = p,
Itl_rg Vty|,(t) = V. If yy exists on [0t], we set

L (y. 1) = (1.3)

LiexgVit) = y(b). (1.5)
Denotery be the first time the, -geodesicy, stop minimizing. Define
Q) ={VeTM":7, >t}
Obviously,Q(t;) c Q(t,) if t1 < to. Let JY(t),i = 1,---,n, be £L,-Jacobi
fields alongyy(t) with J¥Y(0) = 0,(VyJ')(0) = E?, where{EP}, is an

orthonormal basis fof M with respect t@(0). ThenD(L.exp(V, t))(E?) =
JY(t). We define

L3 = \/det(< (1), V(1) >)

and the weighted forward reduced volume as

(T/+(t) — f t—%édw(t),t)e—zlvlé(m L, 3y(t)dxg0)(V), (1.6)
Q)
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wheredxy) is the standard Euclidean volume form di i, g(x, 0)), i.e.
we define the weighted forward reduced volume as

(T/+ (t) = f t2 é+(y,t)e—2|£+exr71(y,t)lé(o)dvo|(y), (1.7)
Q)

We use the convention
.£+Jv(t) =0fort> Ty.
Then we can write the weighted forward reduced volume as

V.(t) = f t2e-0v0 £ 3 (e 2o d o) (V). (1.8)
TxM"

We have the following properties for the weighted forwardiueed volume.

Theorem 1.1. The weighted forward reduced volume definedinl(1.6) is
monotone non-increasing under the Ricci flow](1.1) @ndt) < tIirgl V.(t) <
—0+

(4n)z. If V.(t) = V.(t) for some0 < t; < t,, then this flow is a gradient
expanding soliton 0 < t < o and hence is the trivial flow on flat Eu-
clidean space. In particular, . (t) = (47)2 for some tima > 0, then this
flow is the trivial flow on flat Euclidean space.

We also have the following rescaling property for the wegghtorward
reduced volume.

Theorem 1.2. We have"T/i(t) = (T/+(/1j‘1t) under the rescaling t) =

/l,-g(/lj‘lt), where(T/j+ andV, denote the weighted forward reduced volume
with respect to metric gand g respectively.

Finally, we give an application to the weighted forward reeldi volume
(1.8). Note that the flat Euclidean spa&’® on which Ricci flow is of Type
Ill, has the sequencg; — 0, 4; > 0 andx; € R" such that the sequence
(R", gj(0), x;) defined agy;(0) = 1;9(0) subconverges tR(, g.,(0), X») in
C> sense. The following theorem shows tlR4tis the only case which has
such property.

Theorem 1.3. Let (M", g(t)) be the Type Il Ricci flow on a noncompact
complete n-dimensional manifold. If there exists sequanee 0, 1; > 0
and x € M" such that the sequen¢®l", g;(0), x;) defined as 0) = 1;9(0)
subconverges ttM" , g..(0), X..) in C? sense, theM", g(0)) is isometric to
R".

The organization of the paper is as follows. In section 2, wa fecall
some basic formulas and properties about forward reducedpgnin [4].
Then we study the properties of forward reduced volume tengiich
defined by forward/,-exponential map. Finally, we give the proofs of
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Theoreni I and Theordm 1L.2. In section 3, we study the siritjigb of
Type Il Ricci flow. Then we give the proof of Theorém11.3.

2. WEIGHTED FORWARD REDUCED VOLUME AND EXPANDERS

Before we present the proofs of Theorieni 1.1 and Thebrem & 2eeall
some basic formulas and properties about forward reducedpgnin [4].
Clearly, one can show that(y, t) is locally lipschitz function and the cut-
Locus of £,exfV,t) is a closed set of measure zero by using the similar
methods in[[156].

We need the following two theorems due to M.Feldman, T.llemar..Ni
[4], which state the following adapted form.

Theorem 2.1. [4] let y be a path(x(n), ) joining (x, 0) and(y,t). Set X=
v'(t) and Y be a variational vector along such that Y0) = 0. The first
variation of £, is that

t
oL, :2\/E<X,Y>(t)+f \/ﬁ<Y,VR—ZVXX+4RdX,')—:—LX>dn.
0 n

(2.1)
If y(t) is the mimimalL,-geodesic, then
VL, = 2vtX, (2.2)
3 2 1
t2(R+X]“) = K+ =L,, (2.3)

2

where K= [ nfH(X)dn, H(X) = & + 2 < VR X > +2RqX, X) + &. The
second variation of_, is that

t
6oL, =2Vt < X, Y > (1) + f Vi(HessRY,Y) - 2R(X, Y, X, Y)
0
+ 2|VxY[? + 4VyRAY, X) — 2VxRAY, Y))ds. (2.4)

LetY be a vector field along satisfies the ODE

{ VxY¥(n) = RAY(). ) + 5,Y(n).n € [0.1] 2.5)
Y(0) = Y(0) = 0.
Then
HessL(Y,Y) < YP + 2 VIRAY, Y) - f t VIH(X, Y)dn, (2.6)
Vi 0

where HX,Y) = —HessRX, Y) + 2R(X, Y, X, Y) + 2Rq(X, )2 + B 4
2%R(Y, Y) - 4VgRq(Y, X)+ 4V4RqY, Y). The equality holds ifi{2.6) if and
only if the vector filedy' satisfying[(2.16) is af,-Jacobi field.
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Theorem 2.2. [4] Let I, = |,(y,t) be the minimall,-geodesic frongx, 0)
to (y, t). If (y,t) is not in the cut-Locus af . exp, then aty, t)

S =R-ZX-— 2.7
ot t 2 .7)
|V|+| = T - R+ 3> (28)
2
n K
Al, <R+ = - — 2.
F <R+ et (2.9
ol n
a—t++AI++|VI+|2—R—§ <0, (2.10)
|
Al, +|VI,P—R— = : "o, 2.11)

We first study properties of the forward reduced volume dgmigfined
as

dV, = t72d:0vOY £ 3, (t)dxy0)(V), (2.12)
Note that the weighted forward reduced volume

V. (t) = f e 2VhodV, .
TxMn
Analogous to[[13], we have the following theorem.

Theorem 2.3. The forward reduced volume densityd defined in[(Z.12) is
monotone non-increasing along the Ricci flow{1.1). MoreateV . (t;) =
dvV.,(tp) for somed < t; < ty, then this flow is a gradient expanding soliton.

Proof. Let yy(t) be the minimalL,-geodesic defined in(1.5) ayd= y(t).
We considery, t) in the cut-Locus ofL,expV,t). Recall thatvl,(y,t) =

¥, (t) = X(t). Then by[(2.B) and(217), we get
A w(®,9) _ 3.0,

V|-
ot o TVX
| t K
t 2t2
1
- otk (2.13)

For any fixedt, we choose an orthonormal basgis(t)} of T,,xzM. We
extendE;(n), n € [0, t] to an £,-Jacobi field alongy, with E;(0) = 0. We

write JY(t) = Er_]]AijEj(t) for same matrix Aij) € GL(n,R). ThenJd¥(n) =
|

5. AE;() for all € [0,1].
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Hence, by[(2.6), we calculate at time

d£|,7:t In Jdet(< ; AEy, ; AE >)

1d
e |,,tZ|Ei|2

Z(—Ro(Ei, E)+ < VeX.Ei >)

d
d_nln:t In L, Jv

Z(—RC(Ei, E) + %HessL(Ei, E)) (2.14)

|
< Z(— S f ViH(X, E;)dn) (2.15)
i
whereE;(n) are the vector fields along, satisfying
{ VxEi(n) = RAE®).) + E (.0 < 0.4 (2.16)
Ei(t) = Ei(1),
which in particular implies that
< E, EJ >(n) = T E.E; > ()= 6,, (2.17)
It follows that
n
> HOGE) = THX).
i=1
Hence
d n 1 s
d—n|n=t InL£,Jy < > §t 2K,
and
d n ol+ dinf,Jy
dt In d(V+ = —E + E + at <0. (218)

If equality in (2.18) holds, then we have equality[in (2.16)ds. By Theo-
rem[2.1, we conclude that eaBl(r) is an£,-Jacobi field. Hence

d d ~ IEi (1)
d_n|n:t|Ei|2 = d_n|r]:t|Ei|2 = 'T (2.19)
Combining with [(2.14) and (2.19), we get
|Ei?

RAE;, Ei) - %HessL(E,, E) = -



Now we can give the proof of Theordm11.1.
Proof of Theorem[L1 By Theoreni 2.3, we know that

dﬂt (t~2e+0v0Y £ 3,(1) < 0.

It follows that
(t‘ie| SO £ 3, (t)e?Vio) < 0.

Hence(T/+(t1) < (V+(t1) fort, < tz since we haveé&(t;) c Q(t,). Since

lim 160, = fim f VROV (). ) + 52 Py

:|V|g(o),
and
LA NI 2VED 2VED o)
t—0* tz t—o* t% T

we conclude that
lim t-2&-0vOD £, 3(t) = 2"eVko.
t—0*

Hence

t—-0*

lim V. (t) < f 2"e Meodx(V) = (47)2.
TpM

If V.(t) = V.(tp) forany 0< t; < tp, thendV,(t;) = dV.(t,) for any
0<t; <t,. So (M", g(t)) must be a gradient expanding soliton by Theorem
2.3, i.e. we have

g

Rc+ Hesg-1,) = o
for some smooth functioh, on M". Let¢; : M — M,0 < t < t be the

one-parameter family of fieomorphisms obtained by

d
% =VI, and ¢r=
We consideh(t) = t¢t g(t) and calculate
dh
i 2dbtg(t) +c ¢t£d¢t (9(t) - 2t ¢t Rdg(t))

= —t—2¢t g(t) + E2H85$|+) + E(bt (Y - 2H65$|+)) = O
It follows that

9(t) = %(¢;1)*g(t‘).
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Suppose that there is somet] with |Rmi(y, t) = K > 0, we haveRmi(¢;1(y), t) =
%, and these curvatures are not bounded-as0, which is a contradiction.
Then we have

1
Hesgl,) = Eg.

Thusl, is strictly convex function. The similar arguments to Lem2ain
[16] can show that

L) 2 eSO 16
if Rc> —cgon [0,t], so thatl,(y,t) have the only minimum point i".
HenceM" is diffeomorphic tdR".

SinceV, (t) is monotone non-increasingy. () is independent of if
(V+(t) = (4n)? for some tima > 0. Then we derive tha¥1" is isometric to
R". O

Finally, we give the proof of Theoreim 1.2.

Proof of Theorem[LZWe denotey,(t) (resp.y(t)) be the minimall, -
geodesic with respect g)(t) (resp.g.(t)) which starting from ;, 0) (resp.

(X%, 0)) and satlsfqu limvt— dyv(t’ =V (resp. ||m\/_d7’v(t) V).

We have thay/ i (t) = )/V(/l 1), 1(y, t) = +(y, 1) and £, ) (dxg V) =

(4 1)—2L+J\/—V(/l t)dx0)(4/2;V). Hence

—_ n : _oVv2
Vo= [ @500 L 36 ™50 0v)
:f (1) B OVl 194710
TxMn

x L3 (47'0e 2V d x4 V)
= V. ().

3. THE PROOF OF THEOREM [1.3

In this section, we give the proof of Theorém]1.3.

Proof of Theorem [1.3. We argue by contradiction. 1", g(0)) is not
isometric toR", we define the rescaled Ricci floms{, g;(t), ;) by g;(t) =
/l,-g(/lj‘lt). First, we have at any € M that

RMyolanH® ¢

C
IRy 0lg;0(Y) = 1 < I =1 (3.1)
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which gives an uniformly curvature bound on any compactetdas (Q o).
Since (M", g;(0), x;) subconverges toM", g..(0), X.,) in C? sense, we

conclude that M", g;(t), x;) subconverges toM_,, 0 (t), X.) in C* sense

for anyt € (0, ) by R.Hamilton’s precompactness theorem. We consider

the forward reduced distance basedxn(@) with respect to the metrig; (t),

which defined as' (.0 We denotey,(t) (resp.y(t)) be the minimalL, -

+

geodesic with respect g)(t) (resp.g.(t)) which starting from ;, 0) (resp.

] 00
(X», 0)) and satisfyinq Iipx/fdygt(t) =V (resp.tlirgn/f% = V). It follows

thatyd, (t) = ¥ (0), L0y, 0), 1) = 1203 (1), 1) and £, 3, (1) — £, I2().
Hence

i@a)=]ﬁ () 2TVOY £, 32 (H)e V0 d Xy, (V)
Txeo MT

]—00

Siim [ (@ 5eton L, 308 b0 o(v)
TXJ-M”

= lim V(1)

J—)DO

= lim V. (1),
]

whered; — 0. SinceV, is a monotone decreasing function amd'(g(0))
is not isometric tR", we have

Vo = lim V. (t) = ¢ < (4n)2. (3.2)

In particular,(T/‘;o is indgpendent af. Hence M", 9..(0)) is isometric taR"
by TheoreniI11. ThefV® = (4r)2 by Theoreni 1]l which contradicts to
32).o
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