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Abstract

We introduce a technique for recovering a sufficiently smooth function from its ray trans-

form over a wide class of curves in a general region of Euclidean space. The method is

based on a complexification of the underlying vector fields defining the initial transport

and recasting the problem in terms of complex-analytic function theory. Explicit inver-

sion formulae are then given in a unified form. The method is then used to give inversion

formulae for the attenuated ray transform.

Keywords: Explicit inversion, complex analysis, transport equation, quasiconformal, har-
monic calculus, attenuated ray transform, Riemann-Hilbert problem

1 Introduction

In several engineering situations one deals with data consisting of the line integral of a function
and the goal is often to recover that source function from its integral over a class of lines.
In the arena of medical imaging, this arises in positron emission tomography (PET), single
photon emission tomography (SPECT), and (originally) CT-scan tomography [?]. In other
applications (in geophysics [?] and non-destructive electrical imaging techniques [?, ?] such
as electrical impedence tomography, EIT) the line integral is instead taken over a class of
one-dimensional curves in either Euclidean space or more generally, a Riemannian manifold.
This type of data is referred to as a ray transform. In geophysics for instance, the problem
can arise as the linearization of determining geophysical properties of the Earth from travel-
time measurements [?]. Quite often the physics will also dictate that the signal suffers some
absorption along its trajectory and is attenuated, the data then called, not surprisingly, the
attenuated ray transform.

The mathematical applications, properties, and uses of these integral transforms and their
inverses are discussed in great detail in [?, ?, ?, ?] and include harmonic analysis, algebraic
curves, tensor geometry, and partial differential equations to name a few. Generally, explicit
inversion formulae over curves other than lines (geodesics of a Riemannian manifold [?], say)
tend to restrict focus to manifolds with a strong amount of symmetry[?, ?, ?, ?, ?] and do
not include the effects of absorption encountered during propagation. An exception to this
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statement can be found in [?, ?]. We restrict our attention in this paper to curves in a 2-
dimensional region of space.

The method used in this paper generalizes a technique first used in [?] for lines in Euclidean
space and later generalized in [?] for geodesic rays in hyperbolic geometry for giving an explicit
inversion formula for the attenuated ray transform in each case. The technique we present rests
on the complexification of a certain class of differential operators in R

2 which allows us to recast
the problem in terms of complex analysis in the unit disc. Once the problem is cast in this
light, we use the classical Poisson formula [?] to give us a reconstruction formula. Excellent
introductions to complex analysis and conformal mappings are [?, ?, ?] and the classic [?]. Good
introductions to quasiconformal mappings and Beltrami equations (and their generalizations)
can be found in [?, ?]. References on Blaschke products and multivalent mappings can be found
in [?, ?].

An outline of the paper is as follows. In section 2, the general setup, notation, and a quick
review of the essential operators used throughout the paper are presented, together with the
main result we are seeking to establish. In section 3 we begin the complexification procedure
by introducing a new (complex) parameter λ into the transport equation introduced in section
2 and give a classification of the vector fields under consideration as those of type H. Much
of the heavy lifting is done in the more technical section 4 where we find and analyze the
Green’s function of the new parameterized complex partial differential transport equation. We
will establish that condition H is sufficient to guarantee holomorphicity of the solution of this
equation in terms of the new parameter λ. We evaluate the asymptotics of the solution as our
complex parameter λ tends to the unit circle from both inside and outside, i.e. as |λ| → 1∓

and see that in fact its imaginary part depends on the data we are interested in. Once this is
established, we use this fact in section 5 to give our desired reconstruction formula in the non-
attenuated case. The rest of section 5 uses the non-attenuated formula to give an integrating
factor solution for the attenuated case, which requires an additional constraint to condition

H. We offer brief concluding remarks in section 6.

2 Preliminaries

The Stationary Transport Equation

We let γ : R2 ∋ (t, s) 7→ γ(t, s) ∈ Ω ⊂ R2 be a real-analytic diffeomorphism where Ω is
an open, bounded, simply-connected region of the plane (a domain). We consider R

2 ∼= C

by the standard isomorphism so that γ is identified with γ1(t, s) + iγ2(t, s). Then, (w, w̄)
are (independent) coordinates on Ω where w

.
= γ(t, s). Because γ is a diffeomorphism, its

differential is injective and therefore induces a vector field on Ω via its differential under the
rule (φ∗X)(f) = X(φ∗f). Consider γ∗

∂
∂t
. This gives a non-degenerate field of the following

type;

X|w = µ(w)
∂

∂w
+ µ̄(w)

∂

∂w̄
w ∈ Ω, |µ| > 0

which acts on pushforwards in w of functions on Ω and the non-degeneracy is ensured by the
regularity of the curves γ(t, s). The equation of interest is the stationary transport boundary
value problem X|wu(w) = f(w), for w ∈ Ω, f(w) ∈ C∞

0 (Ω) with limtց−∞ u(w(t, s)) = 0, i.e.
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the BVP

µ(w)
∂u

∂w
+ µ̄(w)

∂u

∂w̄
= f(w), w ∈ Ω (1)

u|∂−Ω = 0 (2)

Anticipating our desire to complexify the above equation, we be wanting to exploit the SO(2)
symmetry of the unit disc which is a priori not available to us in this more general domain by
appealing to the Riemann mapping theorem [?]. Denote the unit disc by D+ .

= {z ∈ C : |z| <
1}, the unit circle by T

.
= {z ∈ C : |z| = 1}, and D− .

= C/{D+ ∪ T}. Let K(z, w) be the
Bergman function of the domain Ω, then the function

z(w) =

∫ w

ζ

√

π

K(ζ, ζ)
K(t, ζ)dt ζ ∈ Ω (3)

gives the unique biholomorphism mapping Ω into D+, the unit disc, with z(ζ) = 0, z′(ζ) > 0
as in [?] and (t,s) give coordinates on D+ through composition since γ

∗z maps R
2 into D+.

Because of this equivalence between our initial domain Ω and the unit disc all further results
will be presented in the disc. If Ω was all of R2 (and the Riemann map was consequently
unavailable) the method below will still work since R2 has the needed rotational symmetry.

We therefore use (z, z̄) as coordinates on D+ and have a new vector field on D+ given by
X|z = z∗X|z(w). and µ → {z∗µ}

∂z
∂w

◦ z−1 and likewise for µ̄. By slight abuse of notation we

denote {z∗µ}
∂z
∂w

◦ z−1 by µ(z) and {z∗µ̄}
∂z̄
∂w̄

◦ z−1 by ¯µ(z) so that field of interest is

X|z = µ(z)
∂

∂z
+ µ̄(z)

∂

∂z̄
, z ∈ D+

We define t(z) = z∗w∗t and s(z) = z∗w∗s, smooth functions on D+.
The method of characteristics gives the following solution to the transport equationX|zu(z) =

f(z), u(z(−∞, s)) = 0 as

u(z) = (D1f)(z)
.
=

1

2

∫

R

f(z(t0, s))sign(t(z)− t0)dt0 (4)

and since the integral curves of X|z are just the image of integral curves, i.e. γ∗z∗ = (z ◦ γ)∗.
we define the ray transform of a source function f(z) over the integral curves of X|z indexed
by s to be

(If)(s) =

∫

R

f(z(t, s))dt (5)

We will later be using the following extensions of these operators given below:
Symmetrized beam transform

(Dθψ)(z)
.
=

1

2

∫

R

ψ(eiθz(t0, s(ze
−iθ)))sign(t(ze−iθ)− t0)dt0 ψ ∈ L1(D+)

Ray transform

(Iψ)(s, eiθ) = (Iθψ)(s)
.
=

∫

R

ψ(eiθz(t, s))dt ψ ∈ L1(D+)

We will always use θ and eiθ interchangeably, its meaning clear from context.
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We will have occasion to use the Hilbert transform H of a function defined (see e.g. [?])
as the following Calderón-Zygmund principal value integral operator

(Hψ)(x) =
1

π
p.v.

∫

R

ψ(y)

x− y
dy ψ ∈ Lp(R), p > 1 (6)

Lastly, we will be using the standard Poisson kernel of the unit disc given by P (z, θ) =
1−|z|2

|1−e−iθz|2
. We recall (see, e.g. [?, ?]) that the Poisson kernel generates harmonic solutions v(z)

of the BVP

∆v = 0 z ∈ D+

v|T = g

given by v(z)
.
= 1

2π

∫

T
P (z, θ)g(eiθ)dθ. The Poisson kernel is also deeply connected to the study

of inner functions c.f. [?, ?].

The main purpose of this article will be to show that given suitable conditions on µ(z, z̄)
and s(z, z̄) that

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze

−iθ), eiθ))dθ i = 1, ..., n

where the λi(z) are functions to be introduced later. With this established, the above formula
is used to give an integrating factor method to find a similar reconstruction formula for the
attenuated ray transform along the same lines. The above is a type of inversion formula known
as a filtered backprojection type [?]. The procedure used to derive the above main result can
be best thought of in the following heuristic scheme

1. Model: Writing down the linear stationary transport equation for the dynamics

2. Symmetrizing: Introducing a rotation parameter λ = eiθ into the integral curves of the
transport PDE

3. Symmetry-Breaking: Complexifiying the parameter introduced in step 2 by moving λ
“off-shell”, i.e. |λ| 6= 1

4. Analysis and Asymptotics: Evaluating the dependence of solutions to the complexified
equation on our parameter λ and examining limiting behavior

5. Reconstruction: Using holomorphicity of the solutions to write the inversion formulae
as Poisson integrals of their asymptotic boundary values found in step 4

The reader may find some benefit from keeping the above rough outline in mind throughout
the following. In this section, we have finished step 1. Steps 2 and 3 are handled in the next
section. Step 4 is done in the more technical section 4, and the final step is given in section 5.

3 Complexification of the Transport Equation

Since D+ is acted on transitively by SO(2) we will define the conformal map λ : (z, z̄) →
(λz, 1

λ
z̄), for λ ∈ T the unit circle. Notice that if Φ(·, s) is a set of integral curves of D+,

4



that z−1(λ∗Φ(·, s)) are conformally related curves in Ω. Then, for λ ∈ {D+ ∪D−}/{0,∞} we
consider λ∗X|z

.
= Xλ to be the so-called “complexification” of X|z. We remark that λ∗X|z

takes the form µ( z
λ
, λz̄)λ ∂

∂z
+ µ̄( z

λ
, λz̄) 1

λ
∂
∂z̄

or

Xλ = ξ(z, λ)
∂

∂z
+ ρ(z, λ)

∂

∂z̄
λ ∈ D±/{0,∞} (7)

with 1
λ
ξ(z, λ) = µ(z, λ)

.
= λ∗µ(z) and λρ(z, λ) = µ̄(z, λ) = λ∗µ̄(z). We also define X⊥

λ =
±i(−ξ(z, λ) ∂

∂z
+ ρ(z, λ) ∂

∂z̄
) as a vector field orthogonal to Xλ when λ = eiθ. Namely, Xθ ·X

⊥
θ =

±(ξ(z, eiθ), ρ(z, eiθ)) · (−iξ(z, eiθ), iρ(z, eiθ)) = ±i(|ξ(z, eiθ)|2 − |ρ(z, eiθ)|2) = 0 in the standard
inner product (·, ·) : C2 → C. The factor of i is needed to make X⊥

θ u real-valued and the choice
of ± is determined by whichever satisfies the condition X⊥

1 s > 0. Since X⊥
1 = a(z)z∗

∂
∂s

for
some real-valued a(z), this determines X⊥

1 uniquely. Since we could just as well reparameterize
with −s we will, without any loss of generality, avoid keeping track of signs by just assuming
that X⊥

λ = i(−ξ(z, λ) ∂
∂z

+ ρ(z, λ) ∂
∂z̄
).

We likewise define s(z, λ) and t(z, λ) as λ∗s(z) and λ∗t(z) respectively for λ ∈ D±/{0,∞}.
A word on notation: ∂k

∂z
and kz are equivalent, as are ∂k

∂z̄
and kz̄, and we will use them inter-

changably.
We remark that equation (7) has no direct physical meaning since the complex parameter

λ, when taken to lie away from T = ∂D+, is in some sense artificial and may be best thought
of as a complex parameter indexing a class of complex partial differential equations given in
(7).

Next we reduce the scope of our consideration to the class of vector fields Xλ so constructed
to consist only of those of type H:

Definition A complexified vector field Xλ = a(z, λ) ∂
∂z
+b(z, λ) ∂

∂z̄
, induced in the manner above

as λ∗X|z, λ ∈ D±/{0,∞} from a real field X|z, is said to be of type H if the following holds:

• a(z, ·) is a holomorphic function of λ for λ ∈ D+ and has at least one zero λ = λi(z) ∈ D+

• b(z, ·) is a meromorphic function of λ for λ ∈ D+ and has no zeroes in D+

• a(z,·)
b(z,·)

is a holomorphic function of λ for λ ∈ D+ and has at least one zero λ = λi(z) ∈ D+

• s(z, ·), ∂s(z,·)
∂z

, ∂s(z,·)
∂z̄

are meromorphic functions of λ for λ ∈ D±

where, as in the above, s(z, λ) = λ∗s(z) is the complexified transverse foliation parameter of
the integral curves of Xλ.

We are, in the above, treating z and λ as independent variables, and holomorphicity is to be
thought of in the standard way of functions of several complex variables [?]. We are therefore
not requiring any of the above functions to be holomorphic in the z variable.

Because ξ(z,λ)
ρ(z,λ)

is holomorphic in λ ∈ D+ its zeroes are isolated. Also, since ξ(z,λ)
ρ(z,λ)

is

holomorphic for λ ∈ D+ and since conformal mappings map boundaries of Jordan domains

into boundaries of Jordan domains (see [?]), then µ(z,eiθ)
µ̄(z,eiθ)

= µ(y)
µ̄(y)

for some y ∈ T and thus

| ξ(z,λ)
ρ(z,λ)

|
∣

∣

∣

|λ|=1
= 1. Since we assumed that there is at least one zero λi, the maximum principle

implies that | ξ(z,λ)
ρ(z,λ)

| < 1 for λ ∈ D+. We then get the following simple

Lemma 3.1
ξ(z,λ)
ρ(z,λ)

has a finite number of zeros, λi(z) with multiplicities mi(z)
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Proof This is a simple consequence of the argument principle ([?]). Namely, one has

∑

i

mi =
1

2πi

∫

|λ|=1

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z, λ)
ρ(z, λ)dλ

and ξ(z,λ)
ρ(z,λ)

is holomorphic, hence so is ∂
∂λ

ξ(z,λ)
ρ(z,λ)

, on the region D+. They are also both continuous

on T . Therefore, | ∂
∂λ

ξ(z,λ)
ρ(z,λ)

| < M <∞ for λ ∈ D+. Thus,

∑

i

mi ≤
1

2π
|

∫

|λ|=1

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z, λ)
ρ(z, λ)dλ| <

1

2π

∫ 2π

0

Mdθ =M (8)

Henceforth λi will always be used to indicate a value in the unit disc for which ξ(z,λ)
ρ(z,λ)

(and ξ)
vanishes. The bounded holomorphic functions mapping the unit disc onto itself and having a
finite number of zeroes can be uniquely written as a finite Blashke product (c.f. [?, ?]) so that
ξ(z,λ)
ρ(z,λ)

can be given in the form ζ(z)Πn
i=1(

λ−λi

1−λλ̄i
)mi with |ζ(z)| = 1, and with mi and λi possibly

depending on z.
Furthermore, since | ξ(z,λ)

ρ(z,λ)
| < 1 for λ ∈ D+ we also have that the complexified transport

equation Xλu(z, λ) = f(z) can be rewritten as

uz̄(z, λ) =
ξ(z, λ)

ρ(z, λ)
uz(z, λ) +

f(z)

ρ(z, λ)
(9)

which is a forced Beltrami equation as in [?, ?].

4 Solving the Complexified Equation

In trying to solve the complexified transport equation

Xλu(z, λ) = f(z) (10)

we will again be changing variables. Notice that Xλs(z, λ) = 0 on that region so that s is still
a constant of the dynamics. This is obvious from the fact that integral curves are mapped by
diffeomorphisms to integral curves, however to be precise, when |λ| 6= 0,

Xλs(z, λ) = λ∗X|zλ∗s(z) = λ∗z∗w∗
∂

∂t
λ∗z∗w∗s = (λ ◦ z ◦ w)∗

∂

∂t
(λ ◦ z ◦ w)∗s

= (λ ◦ z ◦ w)∗
∂s

∂t
= 0

since s and t are independent coordinates. Thus

ξ(z, λ)
∂s(z, λ)

∂z
+ ρ(z, λ)

∂s(z, λ)

∂z̄
= 0 (11)

The Riemann removable singularities theorem [?] applies when λ = 0. We will need the
following
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Lemma 4.1 On 0 < |λ| < 1 the Jacobian ∂s(z)
.
= |sz(z, λ)|

2 − |sz̄(z, λ)|
2 is positive

Proof Since (t, s) 7→ (z, z̄) is a diffeomorphism and λ : (z, z̄) 7→ ( z
λ
, z̄λ) is conformal on

0 < |λ| < 1
∣

∣

∣

∣

∣

∂s(z,λ)
∂( z

λ
)

∂t(z,λ)
∂( z

λ
)

∂s(z,λ)
∂(z̄λ)

∂t(z,λ)
∂(z̄λ)

∣

∣

∣

∣

∣

6= 0 (12)

so that

|
∂s(z, λ)

∂z

∂t(z, λ)

∂z̄
−
∂s(z, λ)

∂z̄

∂t(z, λ)

∂z
| ≤ |sz(z, λ)|(|tz̄(z, λ)|+ |

ξ(z, λ)

ρ(z, λ)
||tz(z, λ)|)

implies |sz(z, λ)|
2 6= 0. Then,

∂s(z) = |sz(z, λ)|
2 − |

ξ(z, λ)

ρ(z, λ)
sz(z, λ)|

2 ≥ |sz(z, λ)|
2(1− |

ξ(z, λ)

ρ(z, λ)
|2) > 0

since | ξ(z,λ)
ρ(z,λ)

| < 1 for λ ∈ D+.

Since Xλs(z, λ) = 0, s∗Xλ = s∗Xλs̄(z, λ)
∂
∂s̄
. We are interested in solving XλGλ(z; z0) =

δ(z − z0) and we can achieve this by solving s∗Xλs̄(z, λ)
∂
∂s̄
(s∗Gλ) = |∂s(z)|δ(s(z, λ) − s0). We

therefore need to compute the term s∗Xλs̄(z, λ). To this end,

ξ(z, λ)
∂s(z, λ)

∂z
+ ρ(z, λ)

∂s(z, λ)

∂z̄
= 0

implies

ξ(z, λ) = −ρ(z, λ)
∂s(z,λ)

∂z̄

∂s(z,λ)
∂z

whence

ξ(z, λ)
∂s̄(z, λ)

∂z
+ ρ(z, λ)

∂s̄(z, λ)

∂z̄
= −ρ(z, λ)

∂s(z,λ)
∂z̄

∂s(z,λ)
∂z

∂s̄(z, λ)

∂z
+ ρ(z, λ)

∂s̄(z, λ)

∂z̄

=
ρ(z, λ)
∂s(z,λ)

∂z

(|sz(z, λ)|
2 − |sz̄(z, λ)|

2)

=
1

Q(z, λ)
∂s(z)

with Q(z, λ)
.
=

∂s(z,λ)
∂z

ρ(z,λ)
. By recalling that | ξ

ρ
| > 1 for |λ| > 1 and going through the preceding

lemma mutatis mutandis we see that ∂s(z) is likewise negative on D− and hence the Jacobian
of s(z, λ) switches sign when λ ∈ D± so that our fundamental equation then becomes

s∗
1

Q(z, λ)

∂

∂s̄
s∗Gλ = sign(1− |λ|)δ(s(z, λ)− s(z0, λ))

which gives Gλ(z; z0) =
sign(1−|λ|)Q(z0,λ)

π(s(z)−s(z0))
or rather

Gλ(z; z0) =
sign(1− |λ|) 1

ρ(z0,λ)
∂s(z,λ)

∂z
|z0

π(s(z, λ)− s(z0, λ))
, λ ∈ D±/{0,∞} (13)

so that u(z, λ) =
∫

D+ Gλ(z; z0)f(z0)dµ(z0) solves Xλu(z, λ) = f(z) for λ ∈ D±/{0,∞}. We
have used the fact that ∂

∂z
1
πz̄

= δ(z) as shown in [?].
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Remark We will only make use of results in our formula which follow from condition H

and thus results like (13) are only used when λ ∈ D+. We will however present many results
for λ ∈ D− with the understanding that given an appropriate generalization of condition H

(involving constraint on ξ and ρ for λ ∈ C/D̄+) the results are true. The advantage to this
approach is it makes use of the symmetries and parallels of several of the formulae for λ ∈ D±.
Thus, in the “−” versions of several results, condition H is necessary but not sufficient.

With the above in mind, since

∂(t, s)

∂(z, z̄)

∂z̄
∂t
∂s
∂z

=
∂z̄

∂t

∂s

∂z̄

∂t

∂z

1
∂s
∂z

−
∂z̄

∂t

∂t

∂z̄

= −(
∂z

∂t

∂t

∂z
+
∂z̄

∂t

∂t

∂z̄
)

= −z∗
∂t

∂t
(14)

we can rewrite Gλ(z; z0) as

Gλ(z, z0) = −λ

∂(t,s)
∂(z,z̄)

∣

∣

∣

z0

π(s(z)− s(z0))
(15)

Then for ψ ∈ C∞
0 (D+) and dµ(z) = dzdz̄

2i
= dxdy, the standard Lebesgue measure on R2 ∼= C

we have

∫

λ(D+)

ψ(z0)λ

∂(t,s)
∂(z,z̄)

∣

∣

∣

z0

π(s(z)− s(z0))
dµ(z0) =

∫

D+

(λ∗ψ)

∂(t,s)
∂(z,z̄)

∣

∣

∣

z0

π(s(z)− s(z0))
dµ(z0)

=
1

2πi

∫

R

∫

R

λ∗ψ(z(t0, s0))dt0ds0
s− s0

(16)

so that
∫

D+ ψ(z0)Gλ(z; z0)dµ(z0) stays bounded since λ fixes the unit disc. A similar argument
works for λ ∈ D−/{∞}. Because of the meromorphy assumptions stated in condition H, we
have that when z 6= z0, Gλ(z; z0) is a holomorphic function for λ ∈ D±/{0,∞}. Since s(z, λ)
and sz(z, λ) have the same order of (possible) pole at zero, Gλ(z; z0) stays bounded even at
λ = 0 and we get the following

Proposition 4.2 u(z, λ) is holomorphic for λ ∈ D±

A similar argument applied to ∂
∂z
Gλ(z; z0) and

∂
∂z̄
Gλ(z; z0) shows that uz(z, λ) and uz̄(z, λ)

respectively are also complex-analytic for λ ∈ D±, a fact we will make use of in our final
reconstruction formulae.

Boundary Behavior

We will be using the boundary values u(z, λ)|λ∈T to arrive at a reconstruction formula. There-
fore, ignoring the signum for the moment and letting ψ ∈ C∞

0 (D+) be a test function, then,
using (15), the two-form ψ(z0)Gλ(z; z0)dµ(z0) equals

−λ∗{ψ(λ
∗z(t0, s0))

1

2πi(s− s0)
dt0ds0}

so that we get the following

8



Proposition 4.3 u±(z, e
iθ)

.
= limD±∋λ→eiθ u(z, λ) = ∓ 1

2i
(HIθf)(s(e

−iθz), θ) + (Dθf)(z) where
the Hilbert transform H is taken with respect to the first variable.

Proof First we examine 1
s(z,λ)−s(z0,λ)

when λ = 1−ǫ (ǫ << 1) and use the fact that s(z, 1−ǫ) =

s(z, 1)− ǫs(z, 1) + o(ǫ2) together with Xλs(z, λ) = 0 to get

O(1) : (ξ(z, 1)
∂

∂z
+ ρ(z, 1)

∂

∂z̄
)s(z, 1) = 0

O(ǫ) : (ξ(z, 1)
∂

∂z
+ ρ(z, 1)

∂

∂z̄
)s′(z, 1) = −(ξ′(z, 1)

∂

∂z
+ ρ′(z, 1)

∂

∂z̄
)s(z, 1)

and

−(ξ′(z, 1)
∂

∂z
+ ρ′(z, 1)

∂

∂z̄
)s(z, 1) = −(ξ′(z, 1)− ρ′(z, 1)

ξ(z, 1)

ρ(z, 1)
)sz(z, 1)

= −ξ(z, 1)sz(z, 1){
ξ′(z, 1)

ξ(z, 1)
−
ρ′(z, 1)

ρ(z, 1)
}

= −ξ(z, 1)sz(z, 1)
( ∂
∂λ

ξ

ρ
)
∣

∣

∣

λ=1
ξ(z,1)
ρ(z,1)

(17)

so that

X1is
′(z, 1) = −iξ(z, 1)sz(z, 1)

( ∂
∂λ

ξ

ρ
)
∣

∣

∣

λ=1
ξ(z,1)
ρ(z,1)

By a similar argument one can show

X1is
′(z, 1) = iρ(z, 1)sz̄(z, 1)

( ∂
∂λ

ξ

ρ
)
∣

∣

∣

λ=1
ξ(z,1)
ρ(z,1)

so that

X1is
′(z, 1) =

1

2

( ∂
∂λ

ξ

ρ
)
∣

∣

∣

λ=1
ξ(z,1)
ρ(z,1)

X⊥
1 s(z, 1) (18)

Since ξ

ρ
is given as a finite Blashke product ζ(z)Πn

i=1(
λ−λi(z)

1−λλ̄i
)mi(z), we see that

∂
∂λ

ξ(z,λ)
ρ(z,λ)

ξ(z,λ)
ρ(z,λ)

=

∑

j>0mj
1−|λj |

2

(λ−λj)(1−λ̄jλ)
so that

( ∂
∂λ

ξ
ρ
)|

λ=1
ξ(z,1)
ρ(z,1)

> 0, which, when combined with X⊥
1 s(z, 1) > 0 gives

from (18) that
X1is

′(z, 1) > 0

and therefore
sign(is′(z, 1)− is′(z0, 1)) = sign(t(z, 1)− t(z0, 1)).

Then we look at
∫

D+

G1−ǫ(z; z0)ψ(z0)dµ(z0) → −
1

2πi

∫

R

∫

R

ψ(z(t0, s0))

s(z, 1− ǫ)− s(z0, 1− ǫ)
ds0dt0

9



which as we have shown is

−
1

2πi

∫

R

∫

R

ψ(z(t0, s0))

s(z, 1)− s(z0, 1)− ǫ(s′(z, 1)− s′(z0, 1))
ds0dt0 →

−
1

2πi

∫

R

∫

R

ψ(z(t0, s0))

s(z, 1)− s(z0, 1)
ds0dt0

+
1

2

∫

R

∫

R

δ(s(z, 1)− s(z0, 1))sign(is
′(z, 1)− is′(z0, 1))ψ(z(t0, s0))dt0ds0

=
−1

2i
H(Iθψ)(s(z), 1) +

1

2

∫

R

sign(t(z, 1)− t0)ψ(z(t0, s(z, 1)))dt0 (19)

Thus, we have

u+(z, 1) =
−1

2i
H(Iθψ)(s(z), 1) + (D1ψ)(z) (20)

For the general case, Geiθ(z; z0) = G1(e
−iθz; e−iθz0) shows

u+(z, e
iθ) =

−1

2i
H(Iθψ)(s(ze

−iθ), eiθ) + (Dθψ)(z). (21)

An identical argument for u−(z, e
iθ) shows that

u±(z, e
iθ) = ∓

1

2i
H(Iθψ)(s(ze

−iθ), eiθ) + (Dθψ)(z) (22)

5 Inversion Formulae

5.1 No Attenuation

We can now prove our main result.

Theorem 5.1 If Xλ is a vector field of type H, ξ(zλ)
ρ(zλ)

∣

∣

∣

λi(z)
= 0 for i = 1, ..., n and f(z) ∈

C∞
0 (D+), then

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze

−iθ), eiθ)dθ

gives an exact reconstruction formula for the density f based on the data Iθf of ray transforms
of f over the integral curves of Xθ.

Proof With P (z, θ) = 1−|z|2

|1−e−iθz|2
, the Poisson kernel of the unit disc, and Cauchy’s formula for

holomorphic functions. one has ([?]) that

Xλi
u(z, λi) =

i

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze
−iθ), eiθ)dθ

+
1

2π

∫ 2π

0

P (λi, θ)Xθ(Dθf)(z)dθ (23)

so that

10



Xλi
u(z, λi) = f(z) +

i

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze
−iθ), eiθ)dθ

whereas

X⊥
λi
u(z, λi) =

i

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze

−iθ), eiθ)dθ

+
1

2π

∫ 2π

0

P (λi, θ)X
⊥
θ (Dθf)(z)dθ (24)

Then since Xλ = ξ(z, λ) ∂
∂z

+ ρ(z, λ) ∂
∂z̄
, X⊥

λ = i(−ξ(z, λ) ∂
∂z

+ ρ(z, λ) ∂
∂z̄
) and ξ(z, λi) = 0, we

have that
iXλi

u(z, λi) = X⊥
λi
u(z, λi)

so that, on equating real and imaginary parts of (23) and (24), we get

1

2π

∫ 2π

0

P (λi, θ)X
⊥
θ (Dθf)(z)dθ = −

1

4π

∫ 2π

0

P (λi, θ)XθH(Iθf)(s(ze
−iθ), eiθ)dθ

and

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ H(Iθf)(s(ze

−iθ), eiθ)dθ (25)

It’s clear that formula (25) could just as well be written in terms of the jump function (from
the viewpoint of D±)

φ(z, eiθ)
.
= u+(z, e

iθ)− u−(z, e
iθ) = iH(Iθf)(s(ze

−iθ), eiθ)

as

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (−iφ(z, e

iθ))dθ (26)

an observation which will be useful in the next section. Recalling our previous remark about
using only results from D+ we could just as well use

φ(z, eiθ)
.
= 2iℑ(u+(z, e

iθ))

and remember that invoking D− is only a useful mnemonic.

5.2 Attenuated Ray Transform and Inversion Formulae

We add a real-valued attenuation term a(z) ∈ C∞
0 (D+) to the complexified stationary transport

equation to get

(Xλ + a(z))u(z, λ) = f(z) λ ∈ D± (27)

Using our Green’s function Gλ(z; z0), we define

h(z, λ)
.
=

∫

D+

Gλ(z; z0)a(z0)dµ(z0) (28)

11



and we use an integrating factor approach as follows

eh(z,λ)Xλu(z, λ) + eh(z,λ)a(z)u(z, λ) = eh(z,λ)f(z)

so that
Xλe

h(z,λ)u(z, λ) = eh(z,λ)f(z)

whence

u(z, λ) =

∫

D+

Gλ(z; z0)e
h(z0,λ)−h(z,λ)f(z0)dµ(z0) (29)

Now, since

h±(z, e
iθ) = ∓

1

2i
(HIθa)(s(ze

−iθ), θ)) + (Dθa)(z)

as before, we have the solution of the attenuated transport equation admits the following
boundary values as |λ| → 1∓

u±(z, e
iθ) =

∓e−h±(z,eiθ)

2i
[HIθ{e

h±(·,eiθ)f}(s(ze−iθ), θ)∓ 2i(Dθe
h±(·,eiθ)f)(z)]

=
∓e−h±(z,eiθ)

2i
[HIθ{e

∓1
2i

(HIθ)a(s(e
−iθ ·),θ)f(·)e(Dθa)(·)}(s(ze−iθ), θ)

∓ 2i(Dθe
∓1
2i

(HIθ)a(s(e
−iθ ·),θ)f(·)e(Dθa)(·))(z)]

Defining
(Ia,θf)(s)

.
= Iθ(f(·)e

(Dθa)(·))(s) (30)

and recalling that Iθ involves integration in t, not s (as does Dθ) and therefore

u±(z, e
iθ) =

∓e−h±(z,eiθ)

2i
H(e

∓1
2i

(H(Iθa)(s(e
−iθ ·),θ)Ia,θf)(s(ze

−iθ), θ) + e−(Dθa)(z)(Dθf(·)e
(Dθa)(·))(z)

so that

φ(z, eiθ)
.
= (u+ − u−)(z, e

iθ) = −
e−h−(z,eiθ)

2i
H(e

1
2i
H(Iθa)(s(e

−iθ ·),θ)Ia,θf)(s(ze
−iθ), θ)

−
e−h+(z,eiθ)

2i
H(e−

1
2i
H(Iθa)(s(e

−iθ ·),θ)Ia,θf)(s(ze
−iθ), θ)

= −
e−(Dθa)(z)

2i
{e

1
2i
H(Iθa)(s(ze

−iθ),θ)H(e
1
2i
H(Iθa)(s(e

−iθ ·),θ)Ia,θf)

+ e−
1
2i
H(Iθa)(s(ze

−iθ),θ)H(e−
1
2i
H(Iθa)(s(e

−iθ ·),θ)Ia,θf)}(s(ze
−iθ), θ)

We define C
.
= cos(H(Iθa)(s(ze

−iθ),θ)
2

) and S
.
= sin(H(Iθa)(s(ze

−iθ),θ)
2

). Then

φ(z, eiθ) = −
e−(Dθa)(z)

2i
[(C − iS)H{(C − iS)Ia,θf}+ (C + iS)H{(C + iS)Ia,θf}](s(ze

−iθ), θ)

= ie−(Dθa)(z)ℜ{(C − iS)H [(C − iS)Ia,θf ](s(ze
−iθ), θ)}

= ie−(Dθa)(z)(CH(CIa,θf)(s(ze
−iθ), θ) + SH(SIa,θf)(s(ze

−iθ), θ)) (31)
.
= ie−(Dθa)(z)(HaIa,θf)(s(ze

−iθ), θ) (32)
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where Ha : f 7→ CH(CIa,θf)(s(ze
−iθ), θ) + SH(SIa,θf)(s(ze

−iθ), θ). We then can proceed
in a manner similar to before since we have that eh(z,λ)u(z, λ) (along with its derivatives) is
holomorphic and solves Xλe

h(z,λ)u(z, λ) = eh(z,λ)f(z). We stipulate, in addition to Xλ being
of type H that, furthermore, u(z, λk) = 0 for all λk(z) for which ξ(z, λ) = 0. Under this
additional assumption, we see that in fact

i(Xλi
u(z, λi) + a(z)u(z, λi) = X⊥

λi
u(z, λi) (33)

and we have proven that

Theorem 5.2 If Xλ is a vector field of type H, u(z, λi) = 0 and f ∈ C∞
0 (D+), then

f(z) =
1

4π

∫ 2π

0

P (λi, θ)X
⊥
θ (e

−(Dθa)(z)HaIa,θf)(s(ze
−iθ), θ))dθ

gives an exact reconstruction formula for the density f based on the data Ia,θf of attenuated
ray transforms of f over the integral curves of Xθ.

6 Conclusions

The method of complexification presented in the preceding allows for a compact unification of
the inversion formulae given for ray transforms on both Euclidean space [?] and the Poincaré
hyperbolic disc [?]. Extending the class of vector fields amenable to the aforementioned scheme
beyond those of type H remains an open problem. Since the analyticity properties of the coef-
ficients of the vector fields, ensured by the condition H, were used to justify the holomorphy
of the Green’s function it is unclear how one could alter the method in the absence of such a
condition, although the recent [?] may yield some insight. With that in mind, there remains
the question of finding sufficient (or even necessary) conditions on the initial vector field being
holomorphic after the complexification used above. Real-analyticity is perhaps the simplest
necessary condition, but presumably there are much more stringent ones. There also remains
the question of when u(z, λi) = 0.

Lastly, we remark that the only symmetry of the equations occurs when λ ∈ T , which is
not where the analysis takes place. In fact, we must break the symmetry in order to arrive at
our solution and find our minima λi. Informally, this procedure is analogous to the so-called
Higgs mechanism for gauge-invariant spontaneous symmetry-breaking of a complex scalar field
used in the Standard Model of particle physics [?, ?].
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