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Abstract

Consider an i.i.d. sample X∗
1 ,X

∗
2 , . . . ,X

∗
n from a location-scale family, and as-

sume that the only available observations consist of the partial maxima (or
minima) sequence, X∗

1:1,X
∗
2:2, . . . ,X

∗
n:n, where X∗

j:j = max{X∗
1 , . . . ,X

∗
j }. This

kind of truncation appears in several circumstances, including best perfor-
mances in athletics events. In the case of partial maxima, the form of the
BLUEs (best linear unbiased estimators) is quite similar to the form of the
well-known Lloyd’s (1952, Least-squares estimation of location and scale pa-
rameters using order statistics, Biometrika, vol. 39, pp. 88–95) BLUEs, based
on (the sufficient sample of) order statistics, but, in contrast to the classi-
cal case, their consistency is no longer obvious. The present paper is mainly
concerned with the scale parameter, showing that the variance of the partial
maxima BLUE is at most of order O(1/ log n), for a wide class of distributions.

Key words and phrases: Partial Maxima BLUEs; Location-scale family; Partial Maxima Spacings;

S/BSW-type condition; NCP and NCS class; Log-concave distributions; Consistency for the scale

estimator; Records.

1 Introduction

There are several situations where the ordered random sample,

X∗
1:n 6 X∗

2:n 6 · · · 6 X∗
n:n, (1.1)

corresponding to the i.i.d. random sample, X∗
1 , X

∗
2 , . . . , X

∗
n, is not fully reported,

because the values of interest are the higher (or lower), up-to-the-present, record
values based on the initial sample, i.e., the partial maxima (or minima) sequence

X∗
1:1 6 X∗

2:2 6 · · · 6 X∗
n:n, (1.2)

where X∗
j:j = max{X∗

1 , . . . , X
∗
j }. A situation of this kind commonly appears in

athletics, when only the best performances are recorded.

Through this article we assume that the i.i.d. data arise from a location-scale
family,

{F ((· − θ1)/θ2); θ1 ∈ R, θ2 > 0},
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where the d.f. F (·) is free of parameters and has finite, non-zero variance (so that F
is non-degenerate), and we consider the partial maxima BLUE (best linear unbiased
estimator) for both parameters θ1 and θ2. This consideration is along the lines of the
classical Lloyd’s (1952) BLUEs, the only difference being that the linear estimators
are now based on the “insufficient sample” (1.2), rather than (1.1), and this fact
implies a substantial reduction on the available information. Tryfos and Blackmore
(1985) used this kind of data to predict future records in athletic events, Samaniego
and Whitaker (1986, 1988) estimated the population characteristics, while Hofmann
and Nagaraja (2003) investigated the amount of Fisher Information contained in such
data; see also Arnold, Balakrisnan & Nagaraja (1998, Section 5.9).

A natural question concerns the consistency of the resulting BLUEs, since too
much lack of information presumably would result to inconsistency (see at the end of
Section 6). Thus, our main focus is on conditions guaranteeing consistency, and the
main result shows that this is indeed the case for the scale parameter BLUE from a
wide class of distributions. Specifically, it is shown that the variance of the BLUE is
at most of order O(1/ logn), when F (x) has a log-concave density f(x) and satisfies
the Von Mises-type condition (5.11) or (6.1) (cf. Galambos (1978)) on the right end-
point of its support (Theorem 5.2, Corollary 6.1). The result is applicable to several
commonly used distributions, like the Power distribution (Uniform), the Weibull
(Exponential), the Pareto, the Negative Exponential, the Logistic, the Extreme Value
(Gumbel) and the Normal (see section 6). A consistency result for the partial maxima
BLUE of the location parameter would be desirable to be included here, but it seems
that the proposed technique (based on partial maxima spacings, section 4) does not
suffice for deriving it. Therefore, the consistency for the location parameter remains
an open problem in general, and it is just highlighted by a particular application to
the Uniform location-scale family (section 3).

The proof of the main result depends on the fact that, under mild conditions,
the partial maxima spacings have non-positive correlation. The class of distributions
having this property is called NCP (negative correlation for partial maxima spacings).
It is shown here that any log-concave distribution with finite variance belongs to
NCP (Theorem 4.2). In particular, if a distribution function has a density which
is either log-concave or non-increasing then it is a member of NCP. For ordinary
spacings, similar sufficient conditions were shown by Sarkadi (1985) and Bai, Sarkar
& Wang (1997) – see also David and Nagaraja (2003, pp. 187–188), Burkschat (2009),
Theorem 3.5 – and will be referred as “S/BSW-type conditions”.

In every experiment where the i.i.d. observations arise in a sequential manner,
the partial maxima data describe the best performances in a natural way, as the
experiment goes on, in contrast to the first n record values, R1, R2, . . . , Rn, which
are obtained from an inverse sampling scheme – see, e.g., Berger and Gulati (2001).
Due to the very rare appearance of records, in the latter case it is implicitly assumed
that the sample size is, roughly, en. This has a similar effect in the partial maxima
setup, since the number of different values are about logn, for large sample size n.
Clearly, the total amount of information in the partial maxima sample is the same
as that given by the (few) record values augmented by record times. The essential
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difference of these models (records / partial maxima) in statistical applications is
highlighted, e.g., in Tryfos and Blackmore (1985), Samaniego and Whitaker (1986,
1988), Smith (1988), Berger and Gulati (2001) and Hofmann and Nagaraja (2003) –
see also Arnold,Balakrishnan & Nagaraja (1998, Chapter 5).

2 Linear estimators based on partial maxima

Consider the random sample X∗
1 , X

∗
2 , . . . , X

∗
n from F ((x − θ1)/θ2) and the corre-

sponding partial maxima sample X∗
1:1 6 X∗

2:2 6 · · · 6 X∗
n:n (θ1 ∈ R is the location

parameter and θ2 > 0 is the scale parameter; both parameters are unknown). Let
also X1, X2, . . . , Xn and X1:1 6 X2:2 6 · · · 6 Xn:n be the corresponding samples from
the completely specified d.f. F (x), that generates the location-scale family. Since

(X∗
1:1, X

∗
2:2, . . . , X

∗
n:n)

′ d
= (θ1 + θ2X1:1, θ1 + θ2X2:2, . . . , θ1 + θ2Xn:n)

′,

a linear estimator based on partial maxima has the form

L =

n
∑

i=1

ciX
∗
i:i

d
= θ1

n
∑

i=1

ci + θ2

n
∑

i=1

ciXi:i,

for some constants ci, i = 1, 2, . . . , n.

Let X = (X1:1, X2:2, . . . , Xn:n)
′ be the random vector of partial maxima from the

known d.f. F (x), and use the notation

µ = IE[X], Σ = ID[X ] and E = IE[XX ′], (2.1)

where ID[ξ] denotes the dispersion matrix of any random vector ξ. Clearly,

Σ = E − µµ′, Σ > 0, E > 0.

The linear estimator L is called BLUE for θk (k = 1, 2) if it is unbiased for θk and
its variance is minimal, while it is called BLIE (best linear invariant estimator) for
θk if it is invariant for θk and its mean squared error, MSE[L] = IE[L − θk]

2, is
minimal. Here “invariance” is understood in the sense of location-scale invariance as
it is defined, e.g., in Shao (2005, p. xix).

Using the above notation it is easy to verify the following formulae for the BLUEs
and their variances. They are the partial maxima analogues of Lloyd’s (1952) estima-
tors and, in the case of partial minima, have been obtained by Tryfos and Blackmore
(1985), using least squares. A proof is attached here for easy reference.

Proposition 2.1 The partial maxima BLUEs for θ1 and for θ2 are, respectively,

L1 = − 1

∆
µ′ΓX∗ and L2 =

1

∆
1′ΓX∗, (2.2)

where X∗ = (X∗
1:1, X

∗
2:2, . . . , X

∗
n:n)

′, ∆ = (1′Σ−11)(µ′Σ−1µ) − (1′Σ−1µ)2 > 0, 1 =
(1, 1, . . . , 1)′ ∈ R

n and Γ = Σ−1(1µ′ − µ1′)Σ−1. The corresponding variances are

Var[L1] =
1

∆
(µ′Σ−1µ)θ22 and Var[L2] =

1

∆
(1′Σ−11)θ22. (2.3)
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Proof: Let c = (c1, c2, . . . , cn)
′ ∈ R

n and L = c′X∗. Since IE[L] = (c′1)θ1 + (c′µ)θ2,
L is unbiased for θ1 iff c′1 = 1 and c′µ = 0, while it is unbiased for θ2 iff c′1 = 0 and
c′µ = 1. Since Var[L] = (c′Σc)θ22, a simple minimization argument for c′Σc with
respect to c, using Lagrange multipliers, yields the expressions (2.2) and (2.3). �

Similarly, one can derive the partial maxima version of Mann’s (1969) best linear
invariant estimators (BLIEs), as follows.

Proposition 2.2 The partial maxima BLIEs for θ1 and for θ2 are, respectively,

T1 =
1′E−1X∗

1′E−11
and T2 =

1′GX∗

1′E−11
, (2.4)

where X∗ and 1 are as in Proposition 2.1 and G = E−1(1µ′ − µ1′)E−1. The

corresponding mean squared errors are

MSE[T1] =
θ22

1′E−11
and MSE[T2] =

(

1− D

1′E−11

)

θ22, (2.5)

where D = (1′E−11)(µ′E−1µ)− (1′E−1µ)2 > 0.

Proof: Let L = L(X∗) = c′X∗ be an arbitrary linear statistic. Since L(bX∗+a1) =
a(c′1) + bL(X∗) for arbitrary a ∈ R and b > 0, it follows that L is invariant for θ1
iff c′1 = 1 while it is invariant for θ2 iff c′1 = 0. Both (2.4) and (2.5) now follow
by a simple minimization argument, since in the first case we have to minimize the
mean squared error IE[L − θ1]

2 = (c′Ec)θ22 under c′1 = 1, while in the second one,
we have to minimize the mean squared error IE[L−θ2]

2 = (c′Ec−2µ′c+1)θ22 under
c′1 = 0. �

The above formulae (2.2)-(2.5) are well-known for order statistics and records
– see David (1981, Chapter 6), Arnold, Balakrishnan & Nagaraja (1992, Chapter
7; 1998, Chapter 5), David and Nagaraja (2003, Chapter 8). In the present setup,
however, the meaning of X∗, X, µ, Σ and E is completely different. In the case
of order statistics, for example, the vector µ, which is the mean vector of the order
statistics X = (X1:n, X2:n, . . . , Xn:n)

′ from the known distribution F (x), depends on
the sample size n, in the sense that the components of the vector µ completely change
with n. In the present case of partial maxima, the first n entries of the vector µ, which
is the mean vector of the partial maxima X = (X1:1, X2:2, . . . , Xn:n)

′ from the known
distribution F (x), remain constant for all sample sizes n′ greater than or equal to n.
Similar observations apply for the matrices Σ and E. This fact seems to be quite
helpful for the construction of tables giving the means, variances and covariances
of partial maxima for samples up to a size n. It should be noted, however, that
even when F (x) is absolutely continuous with density f(x) (as is usually the case for
location-scale families), the joint distribution of (Xi:i, Xj:j) has a singular part, since
IP[Xi:i = Xj:j] = i/j > 0, i < j. Nevertheless, there exist simple expectation and
covariance formulae (Lemma 2.2).
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As in the order statistics setup, the actual application of formulae (2.2) and (2.4)
requires closed forms for µ and Σ, and also to invert the n × n matrix Σ. This
can be done only for very particular distributions (see next section, where we apply
the results to the Uniform distribution). Therefore, numerical methods should be
applied in general. This, however, has a theoretical cost: It is not a trivial fact to
verify consistency of the estimators, even in the classical case of order statistics. The
main purpose of this article is in verifying consistency for the partial maxima BLUEs.
Surprisingly, it seems that a solution of this problem is not well-known, at least to
our knowledge, even for the classical BLUEs based on order statistics. However,
even if the result of the following lemma is known, its proof has an independent
interest, because it proposes alternative (to BLUEs) n−1/2–consistent unbiased linear
estimators and provides the intuition for the derivation of the main result of the
present article.

Lemma 2.1 The classical BLUEs of θ1 and θ2, based on order statistics from a

location-scale family, created by a distribution F (x) with finite non-zero variance,

are consistent. Moreover, their variance is at most of order O(1/n).

Proof: Let X∗ = (X∗
1:n, X

∗
2:n, . . . , X

∗
n:n)

′ and X = (X1:n, X2:n, . . . , Xn:n)
′ be the

ordered samples from F ((x−θ1)/θ2) and F (x), respectively, so that X∗ d
= θ11+θ2X.

Also write X∗
1 , X

∗
2 , . . . , X

∗
n and X1, X2, . . . , Xn for the corresponding i.i.d. samples.

We consider the linear estimators

S1 = X
∗
=

1

n

n
∑

i=1

X∗
i

d
= θ1 + θ2X

and

S2 =
1

n(n− 1)

n
∑

i=1

n
∑

j=1

|X∗
j −X∗

i |
d
=

θ2
n(n− 1)

n
∑

i=1

n
∑

j=1

|Xj −Xi|,

i.e., S1 is the sample mean and S2 is a multiple of Gini’s statistic. Observe that
both S1 and S2 are linear estimators in order statistics. [In particular, S2 can be
written as S2 = 4(n(n− 1))−1

∑n
i=1(i− (n+ 1)/2)X∗

i:n.] Clearly, IE(S1) = θ1 + θ2µ0,
IE(S2) = θ2τ0, where µ0 is the mean, IE(X1), of the distribution F (x) and τ0 is the
positive finite parameter IE |X1−X2|. Since F is known, both µ0 ∈ R and τ0 > 0 are
known constants, and we can construct the linear estimators U1 = S1−(µ0/τ0)S2 and
U2 = S2/τ0. Obviously, IE(Uk) = θk, k = 1, 2, and both U1, U2 are linear estimators
of the form Tn = (1/n)

∑n
i=1 δ(i, n)X

∗
i:n, with |δ(i, n)| uniformly bounded for all i and

n. If σ2
0 is the (assumed finite) variance of F (x), it follows that

Var[Tn] 6
1

n2

n
∑

i=1

n
∑

j=1

|δ(i, n)||δ(j, n)|Cov(X∗
i:n, X

∗
j:n)

6
1

n2

(

max
16i6n

|δ(i, n)|
)2

Var(X∗
1:n +X∗

2:n + · · ·+X∗
n:n)

=
1

n

(

max
16i6n

|δ(i, n)|
)2

θ22σ
2
0 = O(n−1) → 0, as n → ∞,
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showing that Var(Uk) → 0, and thus Uk is consistent for θk, k = 1, 2. Since Lk has
minimum variance among all linear unbiased estimators, it follows that Var(Lk) 6
Var(Uk) 6 O(1/n), and the result follows. �

The above lemma implies that the mean squared error of the BLIEs, based on
order statistics, is at most of order O(1/n), since they have smaller mean squared
error than the BLUEs, and thus they are also consistent. More important is the fact
that, with the technique used in Lemma 2.1, one can avoid all computations involving
means, variances and covariances of order statistics, and it does not need to invert
any matrix, in order to prove consistency (and in order to obtain O(n−1)-consistent
estimators). Arguments of similar kind will be applied in section 5, when the problem
of consistency for the partial maxima BLUE of θ2 will be taken under consideration.

We now turn in the partial maxima case. Since actual application of partial
maxima BLUEs and BLIEs requires the computation of the first two moments ofX =
(X1:1, X2:2, . . . , Xn:n)

′ in terms of the completely specified d.f. F (x), the following
formulae are to be mentioned here (cf. Jones and Balakrishnan (2002)).

Lemma 2.2 Let X1:1 6 X2:2 6 · · · 6 Xn:n be the partial maxima sequence based on

an arbitrary d.f. F (x).
(i) For i 6 j, the joint d.f. of (Xi:i, Xj:j) is

FXi:i,Xj:j
(x, y) =

{

F j(y) if x > y,
F i(x)F j−i(y) if x 6 y.

(2.6)

(ii) If F has finite first moment, then

µi = IE[Xi:i] =

∫ ∞

0

(1− F i(x)) dx−
∫ 0

−∞

F i(x)dx (2.7)

is finite for all i.
(iii) If F has finite second moment, then

σij = Cov[Xi:i, Xj:j] =

∫ ∫

−∞<x<y<∞

F i(x)(F j−i(x) + F j−i(y))(1− F i(y)) dy dx

(2.8)
is finite and non-negative for all i 6 j. In particular,

σii = σ2
i = Var[Xi:i] = 2

∫ ∫

−∞<x<y<∞

F i(x)(1− F i(y)) dy dx. (2.9)

Proof: (i) is trivial and (ii) is well-known. (iii) follows from Hoeffding’s identity

Cov[X, Y ] =

∫ ∞

−∞

∫ ∞

−∞

(FX,Y (x, y)− FX(x)FY (y)) dy dx

(see Hoeffding (1940), Lehmann (1966), Jones and Balakrishnan (2002), among oth-
ers), applied to (X, Y ) = (Xi:i, Xj:j) with joint d.f. given by (2.6) and marginals
F i(x) and F j(y). �
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Formulae (2.7)-(2.9) enable the computation of means, variances and covariances
of partial maxima, even in the case where the distribution F does not have a density.
Tryfos and Blackmore (1985) obtained an expression for the covariance of partial
minima involving means and covariances of order statistics from lower sample sizes.

3 A tractable case: the Uniform location-scale fam-

ily

Let X∗
1 , X

∗
2 , . . . , X

∗
n ∼ U(θ1, θ1 + θ2), so that (X∗

1:1, X
∗
2:2, . . . , X

∗
n:n)

′ d
= θ11 + θ2X,

where X = (X1:1, X2:2, . . . , Xn:n)
′ is the partial maxima sample from the standard

Uniform distribution. Simple calculations, using (2.7)-(2.9), show that the mean
vector µ = (µi) and the dispersion matrix Σ = (σij) of X are given by (see also
Tryfos and Blackmore (1985), eq. (3.1))

µi =
i

i+ 1
and σij =

i

(i+ 1)(j + 1)(j + 2)
for 1 6 i 6 j 6 n.

Therefore, Σ is a patterned matrix of the form σij = aibj for i 6 j, and thus,
its inverse is tridiagonal; see Graybill (1969, Chapter 8), Arnold, Balakrishnan &
Nagaraja (1992, Lemma 7.5.1). Specifically,

Σ−1 =



















γ1 −δ1 0 . . . 0 0
−δ1 γ2 −δ2 . . . 0 0
0 −δ2 γ3 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . γn−1 −δn−1

0 0 0 . . . −δn−1 γn



















where

γi =
4(i+ 1)3(i+ 2)2

(2i+ 1)(2i+ 3)
, δi =

(i+ 1)(i+ 2)2(i+ 3)

2i+ 3
, i = 1, 2, . . . , n− 1,

and γn =
(n+ 1)2(n+ 2)2

2n+ 1
.

Setting a(n) = 1′Σ−11, b(n) = (1−µ)′Σ−1(1−µ) and c(n) = (1−µ)′Σ−11, we get

a(n) =
(n + 1)2(n+ 2)2

2n+ 1
− 2

n−1
∑

i=1

(i+ 1)(i+ 2)2(3i+ 1)

(2i+ 1)(2i+ 3)
= n2 + o(n2),

b(n) =
(n + 2)2

2n+ 1
− 2

n−1
∑

i=1

(i− 1)(i+ 2)

(2i+ 1)(2i+ 3)
=

1

2
logn + o(logn),

c(n) =
(n + 1)(n+ 2)2

2n+ 1
−

n−1
∑

i=1

(i+ 2)(4i2 + 7i+ 1)

(2i+ 1)(2i+ 3)
= n+ o(n).
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Applying (2.3) we obtain

Var[L1] =
a(n) + b(n)− 2c(n)

a(n)b(n)− c2(n)
θ22 =

(

2

logn
+ o

(

1

logn

))

θ22, and

Var[L2] =
a(n)

a(n)b(n)− c2(n)
θ22 =

(

2

log n
+ o

(

1

log n

))

θ22.

The preceding computation shows that, for the Uniform location-scale family, the
partial maxima BLUEs are consistent for both the location and the scale parameters,
since their variance goes to zero with the speed of 2/ logn. This fact, as expected,
contradicts the behavior of the ordinary order statistics BLUEs, where the speed of
convergence is of order n−2 for the variance of both Lloyd’s estimators. However, the
comparison is quite unfair here, since Lloyd’s estimators are based on the complete
sufficient statistic (X∗

1:n, X
∗
n:n), and thus the variance of order statistics BLUE is

minimal among all unbiased estimators.

On the other hand we should emphasize that, under the same model, the BLUEs
(and the BLIEs) based solely on the first n upper records are not even consistent.
In fact, the variance of both BLUEs converges to θ22/3, and the MSE of both BLIEs
approaches θ22/4, as n → ∞; see Arnold, Balakrishnan & Nagaraja (1998, Examples
5.3.7 and 5.4.3).

4 Scale estimation and partial maxima spacings

In the classical order statistics setup, Balakrishnan and Papadatos (2002) observed
that the computation of BLUE (and BLIE) of the scale parameter is simplified con-
siderably if one uses spacings instead of order statistics – cf. Sarkadi (1985). Their
observation applies here too, and simplifies the form of the partial maxima BLUE
(and BLIE).

Specifically, define the partial maxima spacings as Z∗
i = X∗

i+1:i+1 −X∗
i:i > 0 and

Zi = Xi+1:i+1 − Xi:i > 0, for i = 1, 2, . . . , n − 1, and let Z∗ = (Z∗
1 , Z

∗
2 , . . . , Z

∗
n−1)

′

and Z = (Z1, Z2, . . . , Zn−1)
′. Clearly, Z∗ d

= θ2Z, and any unbiased (or even in-
variant) linear estimator of θ2 based on the partial maxima sample, L = c′X∗,
should necessarily satisfy

∑n
i=1 ci = 0 (see the proofs of Propositions 2.1 and 2.2).

Therefore, L can be expressed as a linear function on Z∗
i ’s, L = b′Z∗, where now

b = (b1, b2, . . . , bn−1)
′ ∈ R

n−1. Consider the mean vector m = IE[Z], the dispersion
matrix S = ID[Z], and the second moment matrix D = IE[ZZ ′] of Z. Clearly,
S = D −mm′, S > 0, D > 0, and the vector m and the matrices S and D are of
order n − 1. Using exactly the same arguments as in Balakrishnan and Papadatos
(2002), it is easy to verify the following.

Proposition 4.1 The partial maxima BLUE of θ2, given in Proposition 2.1, has the

alternative form

L2 =
m′S−1Z∗

m′S−1m
, with Var[L2] =

θ22
m′S−1m

, (4.1)
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while the corresponding BLIE, given in Proposition 2.2, has the alternative form

T2 = m′D−1Z∗, with MSE[T2] = (1−m′D−1m)θ22. (4.2)

It should be noted that, in general, the non-negativity of the BLUE of θ2 does
not follow automatically, even for order statistics. In the order statistics setup, this
problem was posed by Arnold, Balakrishnan & Nagaraja (1992), and the best known
result, till now, is the one given by Bai, Sarkar & Wang (1997) and Sarkadi (1985).
Even after the slight improvement, given by Balakrishnan and Papadatos (2002) and
by Burkschat (2009), the general case remains unsolved. The same question (of non-
negativity of the BLUE) arises in the partial maxima setup, and the following theorem
provides a partial positive answer. We omit the proof, since it again follows by a
straightforward application of the arguments given in Balakrishnan and Papadatos
(2002).

Theorem 4.1 (i) There exists a constant a = an(F ), 0 < a < 1, depending only on

the sample size n and the d.f. F (x) (i.e., a is free of the parameters θ1 and θ2), such
that T2 = aL2. This constant is given by a = m′D−1m = m′S−1m/(1+m′S−1m).
(ii) If either n = 2 or the (free of parameters) d.f. F (x) is such that

Cov[Zi, Zj] 6 0 for all i 6= j, i, j = 1, . . . , n− 1, (4.3)

then the partial maxima BLUE (and BLIE) of θ2 is non-negative.

Note that, as in order statistics, the non-negativity of L2 is equivalent to the fact
that the vector S−1m (or, equivalently, the vector D−1m) has non-negative entries;
see Balakrishnan and Papadatos (2002) and Sarkadi (1985).

Since it is important to know whether (4.3) holds, in the sequel we shall make
use of the following definition.

Definition 4.1 A d.f. F (x) with finite second moment (or the corresponding density
f(x), if exists)
(i) belongs to the class NCS (negatively correlated spacings) if its order statistics
have negatively correlated spacings for all sample sizes n > 2.
(ii) belongs to the class NCP if it has negatively correlated partial maxima spacings,
i.e., if (4.3) holds for all n > 2.

An important result by Bai, Sarkar & Wang (1997) states that a log-concave den-
sity f(x) with finite variance belongs to NCS – cf. Sarkadi (1985). We call this suf-
ficient condition as the S/BSW-condition (for ordinary spacings). Burkschat (2009,
Theorem 3.5) showed an extended S/BSW-condition, under which the log-concavity
of both F and 1−F suffice for the NCS class. Due to the existence of simple formu-
lae like (4.1) and (4.2), the NCS and NCP classes provide useful tools in verifying
consistency for the scale estimator, as well as, non-negativity. Our purpose is to
prove an S/BSW-type condition for partial maxima (see Theorem 4.2, Corollary 4.1,
below). To this end, we first state Lemma 4.1, that will be used in the sequel.

Only through the rest of the present section, we shall use the notation Yk =
max{X1, . . . , Xk}, for any integer k > 1.
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Lemma 4.1 Fix two integers i, j, with 1 6 i < j, and suppose that the i.i.d. r.v.’s

X1, X2, . . . have a common d.f. F (x). Let I(expression) denoting the indicator func-

tion taking the value 1, if the expression holds true, and 0 otherwise.

(i) The conditional d.f. of Yj+1 given Yj is

IP[Yj+1 6 y| Yj ] =

{

0, if y < Yj

F (y), if y > Yj
= F (y)I(y > Yj), y ∈ R.

If, in addition, i+ 1 < j, then the following property (which is an immediate conse-
quence of the Markovian character of the extremal process) holds:

IP[Yj+1 6 y| Yi+1, Yj] = IP[Yj+1 6 y| Yj], y ∈ R.

(ii) The conditional d.f. of Yi given Yi+1 is

IP[Yi 6 x| Yi+1] =







F i(x)
∑i

j=0 F
j(Yi+1)F i−j(Yi+1−)

, if x < Yi+1

1, if x > Yi+1

= I(x > Yi+1) + I(x < Yi+1)
F i(x)

∑i
j=0 F

j(Yi+1)F i−j(Yi+1−)
, x ∈ R.

If, in addition, i + 1 < j, then the following property (which is again an immediate
consequence of the Markovian character of the extremal process) holds:

IP[Yi 6 x| Yi+1, Yj] = IP[Yi 6 x| Yi+1], x ∈ R.

(iii) Given (Yi+1, Yj), the random variables Yi and Yj+1 are independent.

We omit the proof since the assertions are simple by-products of the Markovian
character of the process {Yk, k > 1}, which can be embedded in a continuous time
extremal process {Y (t), t > 0}; see Resnick (1987, Chapter 4). We merely note that
a version of the Radon-Nikodym derivative of F i+1 w.r.t. F is given by

hi+1(x) =
dF i+1(x)

dF (x)
=

i
∑

j=0

F j(x)F i−j(x−), x ∈ R, (4.4)

which is equal to (i + 1)F i(x) only if x is a continuity point of F . To see this, it
suffices to verify the identity

∫

B

dF i+1(x) =

∫

B

hi+1(x) dF (x) for all Borel sets B ⊆ R. (4.5)

Now (4.5) is proved as follows:

∫

B

dF i+1 = IP(Yi+1 ∈ B)

10



=

i+1
∑

j=1

IP

[

Yi+1 ∈ B,

i+1
∑

k=1

I(Xk = Yi+1) = j

]

=
i+1
∑

j=1

∑

16k1<···<kj6i+1

IP[Xk1 = · · · = Xkj ∈ B,

Xs < Xk1 for s /∈ {k1, . . . , kj}]

=
i+1
∑

j=1

(

i+ 1

j

)

IP[X1 = · · · = Xj ∈ B,Xj+1 < X1, . . . , Xi+1 < X1]

=
i+1
∑

j=1

(

i+ 1

j

)∫

B

IE

[(

j
∏

k=2

I(Xk = x)

)(

i+1
∏

k=j+1

I(Xk < x)

)]

dF (x)

=

∫

B

(

i+1
∑

j=1

(

i+ 1

j

)

(F (x)− F (x−))j−1F i+1−j(x−)

)

dF (x)

=

∫

B

hi+1(x)dF (x),

where we used the identity
∑i+1

j=1

(

i+1
j

)

(b− a)j−1ai+1−j =
∑i

j=0 b
jai−j, a 6 b.

We can now show the main result of this section, which presents an S/BSW-type
condition for the partial maxima spacings.

Theorem 4.2 Assume that the d.f. F (x), with finite second moment, is a log-concave

distribution (in the sense that logF (x) is a concave function in J , where J = {x ∈
R : 0 < F (x) < 1}), and has not an atom at its right end-point, ω(F ) = inf{x ∈ R :
F (x) = 1}. Then, F (x) belongs to the class NCP, i.e., (4.3) holds for all n > 2.

Proof: For arbitrary r.v.’s X > x0 > −∞ and Y 6 y0 < +∞, with respective d.f.’s
FX , FY , we have

IE[X ] = x0 +

∫ ∞

x0

(1− FX(t)) dt and IE[Y ] = y0 −
∫ y0

−∞

FY (t) dt (4.6)

(cf. Papadatos (2001), Jones and Balakrishnan (2002)). Assume that i < j. By
Lemma 4.1(i) and (4.6) applied to FX = FYj+1|Yj

, it follows that

IE[Yj+1| Yi+1, Yj] = IE[Yj+1| Yj] = Yj +

∫ ∞

Yj

(1− F (t)) dt, w.p. 1.

Similarly, by Lemma 4.1(ii) and (4.6) applied to FY = FYi|Yi+1
, we conclude that

IE[Yi| Yi+1, Yj] = IE[Yi| Yi+1] = Yi+1 −
1

hi+1(Yi+1)

∫ Yi+1

−∞

F i(t) dt, w.p. 1,

where hi+1 is given by (4.4). Note that F is continuous on J , since it is log-concave
there, and thus, hi+1(x) = (i + 1)F i(x) for x ∈ J . If ω(F ) is finite, F (x) is also
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continuous at x = ω(F ), by assumption. On the other hand, if α(F ) = inf{x : F (x) >
0} is finite, F can be discontinuous at x = α(F ), but in this case, hi+1(α(F )) =
F i(α(F )) > 0; see (4.4). Thus, in all cases, hi+1(Yi+1) > 0 w.p. 1.

By conditional independence of Yi and Yj+1 (Lemma 4.1(iii)), we have

Cov(Zi, Zj| Yi+1, Yj) = Cov(Yi+1 − Yi, Yj+1 − Yj | Yi+1, Yj)

= −Cov(Yi, Yj+1|Yi+1, Yj) = 0, w.p. 1,

so that IE[Cov(Zi, Zj| Yi+1, Yj)] = 0, and thus,

Cov[Zi, Zj] = Cov[IE(Zi| Yi+1, Yj), IE(Zj| Yi+1, Yj)] + IE[Cov(Zi, Zj| Yi+1, Yj)]

= Cov[IE(Yi+1 − Yi| Yi+1, Yj), IE(Yj+1 − Yj| Yi+1, Yj)]

= Cov[Yi+1 − IE(Yi| Yi+1, Yj), IE(Yj+1| Yi+1, Yj)− Yj]

= Cov[g(Yi+1), h(Yj)], (4.7)

where

g(x) =







1

(i+ 1)F i(x)

∫ x

−∞

F i(t) dt, x > α(F ),

0, otherwise,

h(x) =

∫ ∞

x

(1− F (t)) dt.

Obviously, h(x) is non-increasing. On the other hand, g(x) is non-decreasing in R.
This can be shown as follows. First observe that g(α(F )) = 0 if α(F ) is finite,
while g(x) > 0 for x > α(F ). Next observe that g is finite and continuous at
x = ω(F ) if ω(F ) is finite, as follows by the assumed continuity of F at x = ω(F )
and the fact that F has finite variance. Finally, observe that F i(x), a product of
log-concave functions, is also log-concave in J . Therefore, for arbitrary y ∈ J , the
function d(x) = F i(x)/

∫ y

−∞
F i(t)dt, x ∈ (−∞, y) ∩ J , is a probability density, and

thus, it is a log-concave density with support (−∞, y) ∩ J . By Prèkopa (1973) or
Dasgupta and Sarkar (1982) it follows that the corresponding distribution function,
D(x) =

∫ x

−∞
d(t)dt =

∫ x

−∞
F i(t)dt/

∫ y

−∞
F i(t)dt, x ∈ (−∞, y) ∩ J , is a log-concave

distribution, and since y is arbitrary, H(x) =
∫ x

−∞
F i(t)dt is a log-concave function,

for x ∈ J . Since F is continuous in J , this is equivalent to the fact that the function

H ′(x)

H(x)
=

F i(x)
∫ x

−∞
F i(t) dt

, x ∈ J,

is non-increasing, so that g(x) = H(x)/((i+ 1)H ′(x)) is non-decreasing in J .

The desired result follows from (4.7), because the r.v.’s Yi+1 and Yj are posi-
tively quadrant dependent (PQD – Lehmann (1966)), since it is readily verified that
FYi+1,Yj

(x, y) > FYi+1
(x)FYj

(y) for all x and y (Lemma 2.2(i)). This completes the
proof. �

The restriction F (x) → 1 as x → ω(F ) cannot be removed from the theorem.
Indeed, the function

F (x) =







0 x 6 0,
x/4, 0 6 x < 1,
1, x > 1,
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is a log-concave distribution in J = (α(F ), ω(F )) = (0, 1), for which Cov[Z1, Z2] =
59

184320
> 0. The function g, used in the proof, is given by

g(x) =















max

{

0,
x

(i+ 1)2

}

, x < 1,

x− 1

i+ 1
+

1

(i+ 1)24i
, x > 1,

and it is not monotonic.

Since the family of densities with log-concave distributions contains both families
of log-concave and non-increasing densities (see, e.g., Prèkopa (1973), Dasgupta and
Sarkar (1982), Sengupta and Nanda (1999), Bagnoli and Bergstrom (2005)), the
following corollary is an immediate consequence of Theorems 4.1 and 4.2.

Corollary 4.1 Assume that F (x) has finite second moment.

(i) If F (x) is a log-concave d.f. (in particular, if F (x) has either a log-concave or a
non-increasing (in its interval support) density f(x)), then the partial maxima BLUE
and the partial maxima BLIE of θ2 are non-negative.

(ii) If F (x) has either a log-concave or a non-increasing (in its interval support)
density f(x) then it belongs to the NCP class.

Sometimes it is asserted that “the distribution of a log-convex density is log-
concave” (see, e.g., Sengupta and Nanda (1999), Proposition 1(e)), but this is not
correct in its full generality, even if the corresponding r.v. X is non-negative. For

example, let Y ∼ Weibull with shape parameter 1/2, and set X
d
= Y |Y < 1. Then

X has density f and d.f. F given by

f(x) =
exp(−

√
1− x)

2(1− e−1)
√
1− x

, F (x) =
exp(−

√
1− x)− e−1

1− e−1
, 0 < x < 1,

and it is easily checked that log f is convex in J = (0, 1), while F is not log-concave in
J . However, we point out that if sup J = +∞ then any log-convex density, supported
on J , has to be non-increasing in J and, therefore, its distribution is log-concave in
J . Examples of log-convex distributions having a log-convex density are given by
Bagnoli and Bergstrom (2005).

5 Consistent estimation of the scale parameter

Through this section we always assume that F (x), the d.f. that generates the location-
scale family, is non-degenerate and has finite second moment. The main purpose is
to verify consistency for L2, applying the results of section 4. To this end, we firstly
state and prove a simple lemma that goes through the lines of Lemma 2.1. Due to
the obvious fact that MSE[T2] 6 Var[L2], all the results of the present section apply
also to the BLIE of θ2.

13



Lemma 5.1 If F (x) belongs to the NCP class then

(i)

Var[L2] 6
θ22

∑n−1
k=1 m

2
k/s

2
k

, (5.1)

where mk = IE[Zk] is the k-th component of the vector m and s2k = skk = Var[Zk] is
the k-th diagonal entry of the matrix S.

(ii) The partial maxima BLUE, L2, is consistent if the series

∞
∑

k=1

m2
k

s2k
= +∞. (5.2)

Proof: Observe that part (ii) is an immediate consequence of part (i), due to the
fact that, in contrast to the order statistics setup, mk and s2k do not depend on the
sample size n. Regarding (i), consider the linear unbiased estimator

U2 =
1

cn

n−1
∑

k=1

mk

s2k
Z∗

k
d
=

θ2
cn

n−1
∑

k=1

mk

s2k
Zk,

where cn =
∑n−1

k=1 m
2
k/s

2
k. Since F (x) belongs to NCP and the weights of U2 are

positive, it follows that the variance of U2, which is greater than or equal to the
variance of L2, is bounded by the RHS of (5.1); this completes the proof. �

The proof of the following theorem is now immediate.

Theorem 5.1 If F (x) belongs to the NCP class and if there exists a finite constant

C and a positive integer k0 such that

IE[Z2
k ]

k IE2[Zk]
6 C, for all k > k0, (5.3)

then

Var[L2] 6 O

(

1

log n

)

, as n → ∞. (5.4)

Proof: Since for k > k0,

m2
k

s2k
=

m2
k

IE[Z2
k ]−m2

k

=
1

IE[Z2
k ]

IE2[Zk]
− 1

>
1

Ck − 1
,

the result follows by (5.1). �

Thus, for proving consistency of order 1/ logn into NCP class it is sufficient
to verify (5.3) and, therefore, we shall investigate the quantities mk = IE[Zk] and

14



IE[Z2
k ] = s2k+m2

k. A simple application of Lemma 2.2, observing that mk = µk+1−µk

and s2k = σ2
k+1 − 2σk,k+1 + σ2

k, shows that

IE[Zk] =

∫ ∞

−∞

F k(x)(1− F (x)) dx, (5.5)

IE2[Zk] = 2

∫ ∫

−∞<x<y<∞

F k(x)(1− F (x))F k(y)(1− F (y)) dy dx, (5.6)

IE[Z2
k ] = 2

∫ ∫

−∞<x<y<∞

F k(x)(1− F (y)) dy dx. (5.7)

Therefore, all the quantities of interest can be expressed as integrals in terms of the
(completely arbitrary) d.f. F (x) (cf. Jones and Balakrishnan (2002)).

For the proof of the main result we finally need the following lemma and its
corollary.

Lemma 5.2 (i) For any t > −1,

lim
k→∞

k1+t

∫ 1

0

uk(1− u)t du = Γ(1 + t) > 0. (5.8)

(ii) For any t with 0 6 t < 1 and any a > 0, there exist positive constants C1, C2,

and a positive integer k0 such that

0 < C1 < k1+t(log k)a
∫ 1

0

uk(1− u)t

La(u)
du < C2 < ∞, for all k > k0, (5.9)

where L(u) = − log(1− u).

Proof: Part (i) follows by Stirling’s formula. For part (ii), with the substitution
u = 1− e−x, we write the integral in (5.9) as

1

k + 1

∫ ∞

0

(k + 1)(1− e−x)ke−x exp(−tx)

xa
dx =

1

k + 1
IE

[

exp(−tT )

T a

]

,

where T has the same distribution as the maximum of k+1 i.i.d. standard exponential
r.v.’s. It is well-known that IE[T ] = 1−1 + 2−1 + · · · + (k + 1)−1. Since the second
derivative of the function x → e−tx/xa is x−a−2e−tx(a+ (a + tx)2), which is positive
for x > 0, this function is convex, so by Jensen’s inequality we conclude that

k1+t(log k)a
∫ 1

0

uk(1− u)t

(L(u))a
du >

k

k + 1

(

log k

1 + 1/2 + · · ·+ 1/(k + 1)

)a

× exp

[

−t

(

1 +
1

2
+ · · ·+ 1

k + 1
− log k

)]

,

and the RHS remains positive as k → ∞, since it converges to e−γt, where γ =
.5772 . . . is Euler’s constant. This proves the lower bound in (5.9). Regarding the
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upper bound, observe that the function g(u) = (1−u)t/La(u), u ∈ (0, 1), has second
derivative

g′′(u) =
−(1− u)t−2

La+2(u)
[t(1− t)L2(u) + a(1− 2t)L(u)− a(a + 1)], 0 < u < 1,

and since 0 6 t < 1, a > 0 and L(u) → +∞ as u → 1−, it follows that there exists a
constant b ∈ (0, 1) such that g(u) is concave in (b, 1). Split now the integral in (5.9)
in two parts,

Ik = I
(1)
k (b) + I

(2)
k (b) =

∫ b

0

uk(1− u)t

La(u)
du+

∫ 1

b

uk(1− u)t

La(u)
du,

and observe that for any fixed s > 0 and any fixed b ∈ (0, 1),

ksI
(1)
k (b) 6 ksbk−a

∫ b

0

ua(1− u)t

La(u)
du 6 ksbk−a

∫ 1

0

ua(1− u)t

La(u)
du → 0, as k → ∞,

because the last integral is finite and independent of k. Therefore, k1+t(log k)aIk is

bounded above if k1+t(log k)aI
(2)
k (b) is bounded above for some b < 1. Choose b close

enough to 1 so that g(u) is concave in (b, 1). By Jensen’s inequality and the fact that
1− bk+1 < 1 we conclude that

I
(2)
k (b) =

1− bk+1

k + 1

∫ 1

b

fk(u)g(u) du =
1− bk+1

k + 1
IE[g(V )] 6

1

k + 1
g[IE(V )],

where V is an r.v. with density fk(u) = (k + 1)uk/(1 − bk+1), for u ∈ (b, 1). Since
IE(V ) = ((k + 1)/(k + 2))(1 − bk+2)/(1 − bk+1) > (k + 1)/(k + 2), and g is positive
and decreasing (its first derivative is g′(u) = −(1 − u)t−1L−a−1(u)(tL(u) + a) < 0,
0 < u < 1), it follows from the above inequality that

k1+t(log k)aI
(2)
k (b) 6

k1+t(log k)a

k + 1
g[IE(V )] 6

k1+t(log k)a

k + 1
g

(

k + 1

k + 2

)

=
k

k + 1

(

log k

log(k + 2)

)a(
k

k + 2

)t

6 1.

This shows that k1+t(log k)aI
(2)
k (b) is bounded above, and thus, k1+t(log k)aIk is

bounded above, as it was to be shown. The proof is complete. �

Corollary 5.1 (i) Under the assumptions of Lemma 5.2(i), for any b ∈ [0, 1) there

exist positive constants A1, A2 and a positive integer k0 such that

0 < A1 < k1+t

∫ 1

b

uk(1− u)t du < A2 < +∞, for all k > k0.

(ii) Under the assumptions of Lemma 5.2(ii), for any b ∈ [0, 1) there exist positive

constants A3, A4 and a positive integer k0 such that

0 < A3 < k1+t(log k)a
∫ 1

b

uk(1− u)t

La(u)
du < A4 < ∞, for all k > k0.
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Proof: The proof follows from Lemma 5.2 in a trivial way, since the corresponding
integrals over [0, b] are bounded above by a multiple of bk−a, of the form Abk−a, with
A < +∞ being independent of k. �

We can now state and prove our main result:

Theorem 5.2 Assume that F (x) lies in NCP, and let ω = ω(F ) be the upper end-

point of the support of F , i.e., ω = inf{x ∈ R : F (x) = 1}, where ω = +∞ if

F (x) < 1 for all x. Suppose that limx→ω− F (x) = 1, and that F (x) is differentiable

in a left neighborhood (M,ω) of ω, with derivative f(x) = F ′(x) for x ∈ (M,ω). For
δ ∈ R and γ ∈ R, define the (generalized hazard rate) function

L(x) = L(x; δ, γ;F ) =
f(x)

(1− F (x))γ(− log(1− F (x)))δ
, x ∈ (M,ω), (5.10)

and set

L∗ = L∗(δ, γ;F ) = lim inf
x→ω−

L(x; δ, γ, F ), L∗ = L∗(δ, γ;F ) = lim sup
x→ω−

L(x; δ, γ, F ).

If either (i) for some γ < 3/2 and δ = 0, or (ii) for some δ > 0 and some γ with

1/2 < γ 6 1,
0 < L∗(δ, γ;F ) 6 L∗(δ, γ;F ) < +∞, (5.11)

then the partial maxima BLUE L2 (given by (2.2) or (4.1)) of the scale parameter θ2
is consistent and, moreover, Var[L2] 6 O(1/ logn).

Proof: First observe that for large enough x < ω, (5.11) implies that f(x) >
(L∗/2)(1 − F (x))γ(− log(1 − F (x)))δ > 0, so that F (x) is eventually strictly in-
creasing and continuous. Moreover, the derivative f(x) is necessarily finite since
f(x) < 2L∗(1 − F (x))γ(− log(1 − F (x)))δ. The assumption limx→ω− F (x) = 1 now
shows that F−1(u) is uniquely defined in a left neighborhood of 1, that F (F−1(u)) = u
for u close to 1, and that limu→1− F−1(u) = ω. This, in turn, implies that F−1(u) is
differentiable for u close to 1, with (finite) derivative (F−1(u))′ = 1/f(F−1(u)) > 0.
In view of Theorem 5.1, it suffices to verify (5.3), and thus we seek for an upper
bound on IE[Z2

k ] and for a lower bound on IE[Zk]. Clearly, (5.3) will be deduced if
we shall verify that, under (i), there exist finite constants C3 > 0, C4 > 0 such that

k3−2γ IE[Z2
k ] 6 C3 and k2−γ IE[Zk] > C4, (5.12)

for all large enough k. Similarly, (5.3) will be verified if we show that, under (ii),
there exist finite constants C5 > 0 and C6 > 0 such that

k3−2γ(log k)2δ IE[Z2
k ] 6 C5 and k2−γ(log k)δ IE[Zk] > C6, (5.13)

for all large enough k. Since the integrands in the integral expressions (5.5)-(5.7)
vanish if x or y lies outside the set {x ∈ R : 0 < F (x) < 1}, we have the equivalent
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expressions

IE[Zk] =

∫ ω

α

F k(x)(1− F (x)) dx, (5.14)

IE[Z2
k ] = 2

∫ ∫

α<x<y<ω

F k(x)(1− F (y)) dy dx, (5.15)

where α (resp., ω) is the lower (resp., the upper) end-point of the support of F .
Obviously, for any fixed M with α < M < ω and any fixed s > 0, we have, as in the
proof of Lemma 5.2(ii), that

lim
k→∞

ks

∫ M

α

F k(x)(1− F (x)) dx = 0,

lim
k→∞

ks

∫ M

α

∫ ω

x

F k(x)(1− F (y)) dy dx = 0,

because F (M) < 1 and both integrals (5.14), (5.15) are finite for k = 1, by the
assumption that the variance is finite ((5.15) with k = 1 just equals to the variance
of F ; see also (2.9) with i = 1). Therefore, in order to verify (5.12) and (5.13)
for large enough k, it is sufficient to replace IE[Zk] and IE[Z2

k ], in both formulae
(5.12), (5.13), by the integrals

∫ ω

M
F k(x)(1−F (x))dx and

∫ ω

M

∫ ω

x
F k(x)(1−F (y))dydx,

respectively, for an arbitrary (fixed) M ∈ (α, ω). Fix now M ∈ (α, ω) so large that
f(x) = F ′(x) exists and it is finite and strictly positive for all x ∈ (M,ω), and
make the transformation F (x) = u in the first integral, and the transformation
(F (x), F (y)) = (u, v) in the second one. Both transformations are now one-to-one
and continuous, because both F and F−1 are differentiable in their respective intervals
(M,ω) and (F (M), 1), and their derivatives are finite and positive. Since F−1(u) → ω
as u → 1−, it is easily seen that (5.12) will be concluded if it can be shown that for
some fixed b < 1 (which can be chosen arbitrarily close to 1),

k3−2γ

∫ 1

b

uk

f(F−1(u))

(
∫ 1

u

1− v

f(F−1(v))
dv

)

du 6 C3 and (5.16)

k2−γ

∫ 1

b

uk(1− u)

f(F−1(u))
du > C4, (5.17)

holds for all large enough k. Similarly, (5.13) will be deduced if it will be proved that
for some fixed b < 1 (which can be chosen arbitrarily close to 1),

k3−2γ(log k)2δ
∫ 1

b

uk

f(F−1(u))

(∫ 1

u

1− v

f(F−1(v))
dv

)

du 6 C5 and (5.18)

k2−γ(log k)δ
∫ 1

b

uk(1− u)

f(F−1(u))
du > C6, (5.19)

holds for all large enough k. The rest of the proof is thus concentrated on showing
(5.16) and (5.17) (resp., ((5.18) and (5.19)), under the assumption (i) (resp., under
the assumption (ii)).
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Assume first that (5.11) holds under (i). Fix now b < 1 so large that

L∗

2
(1− F (x))γ < f(x) < 2L∗(1− F (x))γ, for all x ∈ (F−1(b), ω);

equivalently,
1

2L∗
<

(1− u)γ

f(F−1(u))
<

2

L∗
, for all u ∈ (b, 1). (5.20)

Due to (5.20), the inner integral in (5.16) is

∫ 1

u

1− v

f(F−1(v))
dv =

∫ 1

u

(1− v)1−γ (1− v)γ

f(F−1(v))
dv 6

2(1− u)2−γ

(2− γ)L∗
.

By Corollary 5.1(i) applied for t = 2 − 2γ > −1, the LHS of (5.16) is less than or
equal to

2k3−2γ

(2− γ)L∗

∫ 1

b

uk(1− u)2−2γ (1− u)γ

f(F−1(u))
du 6

4k3−2γ

(2− γ)L2
∗

∫ 1

b

uk(1− u)2−2γ du 6 C3,

for all k > k0, with C3 = 4A2L
−2
∗ (2− γ)−1 < ∞, showing (5.16). Similarly, using the

lower bound in (5.20), the integral in (5.17) is

∫ 1

b

uk(1− u)

f(F−1(u))
du =

∫ 1

b

uk(1− u)1−γ (1− u)γ

f(F−1(u))
du >

1

2L∗

∫ 1

b

uk(1− u)1−γ du,

so that, by Corollary 5.1(i) applied for t = 1− γ > −1, the LHS of (5.17) is greater
than or equal to

k2−γ

2L∗

∫ 1

b

uk(1− u)1−γ du >
A1

2L∗
> 0, for all k > k0,

showing (5.17).

Assume now that (5.11) is satisfied under (ii). As in part (i), choose a large
enough b < 1 so that

1

2L∗
<

(1− u)γLδ(u)

f(F−1(u))
<

2

L∗

, for all u ∈ (b, 1), (5.21)

where L(u) = − log(1− u). Due to (5.21), the inner integral in (5.18) is

∫ 1

u

(1− v)1−γ

Lδ(v)

(1− v)γLδ(v)

f(F−1(v))
dv 6

2

L∗

∫ 1

u

(1− v)1−γ

Lδ(v)
dv 6

2(1− u)2−γ

L∗Lδ(u)
,

because (1−u)1−γ/Lδ(u) is decreasing (see the proof of Lemma 5.2(ii)). By Corollary
5.1(ii) applied for t = 2− 2γ ∈ [0, 1) and a = 2δ > 0, the double integral in (5.18) is
less than or equal to

2

L∗

∫ 1

b

uk(1− u)2−2γ

L2δ(u)

(1− u)γLδ(u)

f(F−1(u))
du 6

4

L2
∗

∫ 1

b

uk(1− u)2−2γ

L2δ(u)
du 6

C5

k3−2γ(log k)2δ
,
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for all k > k0, with C5 = 4A4L
−2
∗ < ∞, showing (5.18). Similarly, using the lower

bound in (5.21), the integral in (5.19) is

∫ 1

b

uk(1− u)1−γ

Lδ(u)

(1− u)γLδ(u)

f(F−1(u))
du >

1

2L∗

∫ 1

b

uk(1− u)1−γ

Lδ(u)
du,

and thus, by Corollary 5.1(ii) applied for t = 1 − γ ∈ [0, 1) and a = δ > 0, the LHS
of (5.19) is greater than or equal to

k2−γ(log k)δ

2L∗

∫ 1

b

uk(1− u)1−γ

Lδ(u)
du >

A3

2L∗
> 0, for all k > k0,

showing (5.19). This completes the proof. �

Remark 5.1 Taking L(u) = − log(1 − u), the limits L∗ and L∗ in (5.11) can be
rewritten as

L∗(δ, γ;F ) = lim inf
u→1−

f(F−1(u))

(1− u)γLδ(u)
=

(

lim sup
u→1−

(F−1(u))′(1− u)γLδ(u)

)−1

,

L∗(δ, γ;F ) = lim sup
u→1−

f(F−1(u))

(1− u)γLδ(u)
=

(

lim inf
u→1−

(F−1(u))′(1− u)γLδ(u)

)−1

.

In the particular case where F is absolutely continuous with a continuous density f
and interval support, the function f(F−1(u)) = 1/(F−1(u))′ is known as the density-
quantile function (Parzen, (1979)), and plays a fundamental role in the theory of
order statistics. Theorem 5.2 shows, in some sense, that the behavior of the density-
quantile function at the upper end-point, u = 1, specifies the variance behavior of the
partial maxima BLUE for the scale parameter θ2. In fact, (5.11) (and (6.1), below)
is a Von Mises-type condition (cf. Galambos (1978), §§2.7, 2.11).

Remark 5.2 It is obvious that condition limx→ω− F (x) = 1 is necessary for the
consistency of BLUE (and BLIE). Indeed, the event that all partial maxima are
equal to ω(F ) has probability p0 = F (ω) − F (ω−) (which is independent of n).
Thus, a point mass at x = ω(F ) implies that for all n, IP(L2 = 0) > p0 > 0. This
situation is trivial. Non-trivial cases also exist, and we provide one at the end of next
section.

6 Examples and conclusions

In most commonly used location-scale families, the following corollary suffices for
concluding consistency of the BLUE (and the BLIE) of the scale parameter. Its
proof follows by a straightforward combination of Corollary 4.1(ii) and Theorem 5.2.

Corollary 6.1 Suppose that F is absolutely continuous with finite variance, and

that its density f is either log-concave or non-increasing in its interval support
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J = (α(F ), ω(F )) = {x ∈ R : 0 < F (x) < 1}. If, either for some γ < 3/2 and

δ = 0, or for some δ > 0 and some γ with 1/2 < γ 6 1,

lim
x→ω(F )−

f(x)

(1− F (x))γ(− log(1− F (x)))δ
= L ∈ (0,+∞), (6.1)

then the partial maxima BLUE of the scale parameter is consistent and, moreover,

its variance is at most of order O(1/ logn).

Corollary 6.1 has immediate applications to several location-scale families. The fol-
lowing are some of them, where (6.1) can be verified easily. In all these families
generated by the distributions mentioned below, the variance of the partial maxima
BLUE L2 (see (2.3) or (4.1)), and the mean squared error of the partial maxima
BLIE T2 (see (2.5) or (4.2)) of the scale parameter is at most of order O(1/ logn), as
the sample size n → ∞.

1. Power distribution (Uniform). F (x) = xλ, f(x) = λxλ−1, 0 < x < 1 (λ > 0),
and ω(F ) = 1. The density is non-increasing for λ 6 1 and log-concave for λ > 1. It
is easily seen that (6.1) is satisfied for δ = γ = 0 (for λ = 1 (Uniform) see section 3).

2. Logistic distribution. F (x) = (1 + e−x)−1, f(x) = e−x(1 + e−x)−2, x ∈ R, and
ω(F ) = +∞. The density is log-concave, and it is easily seen that (6.1) is satisfied
for δ = 0, γ = 1.

3. Pareto distribution. F (x) = 1 − x−a, f(x) = ax−a−1, x > 1 (a > 2, so that the
second moment is finite), and ω(F ) = +∞. The density is decreasing, and it is easily
seen that (6.1) is satisfied for δ = 0, γ = 1 + 1/a. Pareto case provides an example
which lies in NCP and not in NCS class – see Bai, Sarkar & Wang (1997).

4. Negative Exponential distribution. F (x) = f(x) = ex, x < 0, and ω(F ) = 0.
The density is log-concave and it is easily seen that (6.1) is satisfied for δ = γ = 0.
This model is particularly important, because it corresponds to the partial minima
model from the standard exponential distribution – see Samaniego and Whitaker
(1986).

5. Weibull distribution (Exponential). F (x) = 1 − e−xc

, f(x) = cxc−1 exp(−xc),
x > 0 (c > 0), and ω(F ) = +∞. The density is non-increasing for c 6 1 and log-
concave for c > 1, and it is easily seen that (6.1) is satisfied for δ = 1 − 1/c, γ = 1.
It should be noted that Theorem 5.2 does not apply for c < 1, since δ < 0.

6. Gumbel (Extreme Value) distribution. F (x) = exp(−e−x) = exf(x), x ∈ R,
and ω(F ) = +∞. The distribution is log-concave and (6.1) holds with γ = 1, δ = 0
(L = 1). This model is particularly important for its applications in forecasting
records, especially in athletic events – see Tryfos and Blackmore (1985).

7. Normal Distribution. f(x) = ϕ(x) = (2πex
2

)−1/2, F = Φ, x ∈ R, and ω(F ) =
+∞. The density is log-concave and Corollary 6.1 applies with δ = 1/2 and γ = 1.
Indeed,

lim
+∞

ϕ(x)

(1− Φ(x))(− log(1− Φ(x)))1/2
= lim

+∞

ϕ(x)

x(1− Φ(x))

x

(− log(1− Φ(x)))1/2
,
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and it is easily seen that

lim
+∞

ϕ(x)

x(1 − Φ(x))
= 1, lim

+∞

x2

− log(1− Φ(x))
= 2,

so that L =
√
2.

In many cases of interest (especially in athletic events), best performances are
presented as partial minima rather than maxima; see, e.g., Tryfos and Blackmore
(1985). Obviously, the present theory applies also to the partial minima setup. The
easiest way to convert the present results for the partial minima case is to consider
the i.i.d. sample −X1, . . . ,−Xn, arising from F−X(x) = 1−FX(−x−), and to observe
that min{X1, . . . , Xi} = −max{−X1, . . . ,−Xi}, i = 1, . . . , n. Thus, we just have to
replace F (x) by 1− F (−x−) in the corresponding formulae.

There are some related problems and questions that, at least to our point of
view, seem to be quite interesting. One problem is to verify consistency for the
partial maxima BLUE of the location parameter. Another problem concerns the
complete characterizations of the NCP and NCS classes (see Definition 4.1), since
we only know S/BSW-type sufficient conditions. Also, to prove or disprove the non-
negativity of the partial maxima BLUE for the scale parameter, outside the NCP
class (as well as for the order statistics BLUE of the scale parameter outside the NCS
class).

Some questions concern lower variance bounds for the partial maxima BLUEs.
For example we showed in section 3 that the rate O(1/ logn) (which, by Theorem 5.2,
is just an upper bound for the variance of L2) is the correct order for the variance of
both estimators in the Uniform location-scale family. Is this the usual case? If it is so,
then we could properly standardize the estimators, centering and multiplying them
by (logn)1/2. This would result to limit theorems analogues to the corresponding
ones for order statistics – e.g., Chernoff, Gastwirth & Johns (1967); Stigler (1974);
– or analogues to the corresponding ones of Pyke (1965), (1980), for partial maxima
spacings instead of ordinary spacings. However, note that the Fisher-Information
approach, in the particular case of the one-parameter (scale) family generated by the
standard Exponential distribution, suggests a variance of about 3θ22/(logn)

3 for the
minimum variance unbiased estimator (based on partial maxima) – see Hoffman and
Nagaraja (2003, eq. (15) on p. 186).

A final question concerns the construction of approximate BLUEs (for both loca-
tion and scale) based on partial maxima, analogues to Gupta’s (1952) simple linear
estimators based on order statistics. Such a kind of approximations and/or limit
theorems would be especially useful for practical purposes, since the computation of
BLUE via its closed formula requires inverting an n × n matrix. This problem has
been partially solved here: For the NCP class, the estimator U2, given in the proof
of Lemma 5.1, is consistent for θ2 (under the assumptions of Theorem 5.2) and can
be computed by a simple formula if we merely know the means and variances of the
partial maxima spacings.

Except of the trivial case given in Remark 5.2, above, there exist non-trivial
examples where no consistent sequence of unbiased estimators exist for the scale
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parameter. To see this, we make use of the following result.

Theorem 6.1 (Hofmann and Nagaraja 2003, p. 183) Let X∗
1 , X

∗
2 , . . . , X

∗
n be an i.i.d.

sample from the scale family with distribution function F (x; θ2) = F (x/θ2) (θ2 > 0
is the scale parameter) and density f(x; θ2) = f(x/θ2)/θ2, where f(x) is known, it

has a continuous derivative f ′, and its support, J(F ) = {x : f(x) > 0}, is one of the

intervals (−∞,∞), (−∞, 0) or (0,+∞).
(i) The Fisher Information contained in the partial maxima data X∗

1:1 6 X∗
2:2 6 · · · 6

X∗
n:n is given by

Imax
n =

1

θ22

n
∑

k=1

∫

J(F )

f(x)F k−1(x)

(

1 +
xf ′(x)

f(x)
+

(k − 1)xf(x)

F (x)

)2

dx.

(ii) The Fisher Information contained in the partial minima data X∗
1:1 > X∗

1:2 > · · · >
X∗

1:n is given by

Imin
n =

1

θ22

n
∑

k=1

∫

J(F )

f(x)(1− F (x))k−1

(

1 +
xf ′(x)

f(x)
− (k − 1)xf(x)

1− F (x)

)2

dx.

It is clear that for fixed θ2 > 0, Imax
n and Imin

n both increase with the sample size
n. In particular, if J(F ) = (0,∞) then, by Beppo-Levi’s Theorem, Imin

n converges
(as n → ∞) to its limit

Imin =
1

θ22

∫ ∞

0

{

µ(x)

(

1 +
xf ′(x)

f(x)
− xµ(x)

)2

+ x2µ2(x) (λ(x) + µ(x))

}

dx, (6.2)

where λ(x) = f(x)/(1 − F (x)) and µ(x) = f(x)/F (x) is the failure rate and re-
verse failure rate of f , respectively. Obviously, if Imin < +∞, then the Cramér-Rao
inequality shows that no consistent sequence of unbiased estimators exists. This,
of course, implies that in the corresponding scale family, any sequence of linear (in
partial minima) unbiased estimators is inconsistent. The same is clearly true for the
location-scale family, because any linear unbiased estimator for θ2 in the location-
scale family is also a linear unbiased estimator for θ2 in the corresponding scale
family.

In the following we show that there exist distributions with finite variance such
that Imin in (6.2) is finite: Define s = e−2 and

F (x) =



















0, x 6 0,
1

1− log(x)
, 0 < x 6 s,

1− (ax2 + bx+ c)e−x, x > s,

where

a =
1

54
exp(e−2)(18− 6e2 + e4) ≃ 0.599,
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b = − 2

27
exp(−2 + e−2)(9− 12e2 + 2e4) ≃ −0.339,

c =
1

54
exp(−4 + e−2)(18− 42e2 + 43e4) ≃ 0.798.

Noting that F (s) = 1/3, F ′(s) = e2/9 and F ′′(s) = −e4/27, it can be easily verified
that the corresponding density

f(x) =







1

x(1− log(x))2
, 0 < x 6 s,

(ax2 + (b− 2a)x+ c− b)e−x, x > s,

is strictly positive for x ∈ (0,∞), processes finite moments of any order, and has
continuous derivative

f ′(x) =











1 + log(x)

x2(1− log(x))3
, 0 < x 6 s,

−(ax2 + (b− 4a)x+ 2a− 2b+ c)e−x, x > s.

Now the integrand in (6.2), say S(x), can be written as

S(x) =











1− 2 log(x)

x(− log(x))(1− log(x))3
, 0 < x 6 s,

A(x) +B(x), x > s,

where, as x → +∞, A(x) ∼ Ax4e−x and B(x) ∼ Bx6e−2x, with A, B being positive
constants. Therefore,

∫ s

0
S(x)dx =

∫∞

2
1+2y

y(1+y)3
dy = log(3/2) − 5/18 ≃ 0.128. Also,

since S(x) is continuous in [s,+∞) and S(x) ∼ Ax4e−x as x → +∞, it follows that
∫∞

s
S(x)dx < +∞ and Imin is finite.

Numerical integration shows that
∫∞

s
S(x)dx ≃ 2.77 and thus, Imin ≃ 2.9/θ22 <

3/θ22. In view of the Cramér-Rao bound this means that, even if a huge sample of
partial minima has been recorded, it is impossible to construct an unbiased scale
estimator with variance less than θ22/3. Also, it should be noted that a similar
example can be constructed such that f ′′(x) exists (and is continuous) for all x > 0.

Of course the above example can be adapted to the partial maxima case by
considering the location-scale family generated by the distribution function

F (x) =



















(ax2 − bx+ c)ex, x 6 −s,

− log(−x)

1− log(−x)
, −s 6 x < 0,

1, x > 0,

with s, a, b and c as before.
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