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ON MONOIDS OF ALMOST IDENTITY INJECTIVE PARTIAL SELFMAPS

IVAN CHUCHMAN AND OLEG GUTIK

Abstract. In the paper we study the semigroup I ∞

λ
of almost identity injective partial selfmaps of the

set of cardinality λ. We describe the Green relations on I ∞

λ
, all (two-sided) ideals and all congruences

of the semigroup I ∞

λ
. We prove that every Hausdorff hereditary Baire topology τ on I ∞

λ
such that

(I ∞

λ
, τ) is a semitopological semigroup is discrete and describe the closure of the discrete semigroup

I ∞

λ
in a topological semigroup. Also we show that the discrete semigroup I ∞

λ
does not embed into a

compact topological semigroup and construct two non-discrete Hausdorff topologies turning I ∞

λ
into

a topological inverse semigroup.

1. Introduction and preliminaries

In this paper all spaces are assumed to be Hausdorff. Furthermore we shall follow the terminology
of [3, 5, 7, 9, 22]. By ω we shall denote the first infinite cardinal and by |A| the cardinality of the
set A. If Y is a subspace of a topological space X and A ⊆ Y , then by clY (A) and IntY (A) we shall
denote the topological closure and the interior of A in Y , respectively.

If a semigroup S we denote the semigroup S with the adjoined unit by S1 (see [5]).
An algebraic semigroup S is called inverse if for any element x ∈ S there exists the unique element

x−1 ∈ S (called the inverse of x) such that xx−1x = x and x−1xx−1 = x−1. If S is an inverse semigroup,
then the function inv : S → S which assigns to every element x of S its inverse element x−1 is called
the inversion.

If S is a semigroup, then by E(S) we shall denote the band (i. e. the subset of idempotents) of
S. If the band E(S) is a non-empty subset of S, then the semigroup operation on S determines the
partial order 6 on E(S): e 6 f if and only if ef = fe = e. This order is called natural. A semilattice
is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or chain if the
semilattice operation induces a linear natural order on E. A maximal chain of a semilattice E is a
chain which is properly contained in no other chain of E. The Axiom of Choice implies the existence
of maximal chains in any partially ordered set. According to [20, Definition II.5.12] a chain L is called
an ω-chain if L is isomorphic to {0,−1,−2,−3, . . .} with the usual order 6. Let E be a semilattice
and e ∈ E. We denote ↓e = {f ∈ E | f 6 e} and ↑e = {f ∈ E | e 6 f}. By (P<ω(λ),⊆) we shall
denote the free semilattice with identity over a cardinal λ > ω, i. e., P<ω(λ) is the set of all finite
subsets of λ with the binary operation a · b = a ∪ b, for a, b ∈ P<ω(λ).

If S is a semigroup, then we shall denote by R, L , D and H the Green relations on S (see [5]):

aRb if and only if aS1 = bS1;

aL b if and only if S1a = S1b;

aJ b if and only if S1aS1 = S1bS1;

D = L ◦ R = R ◦ L ;

H = L ∩ R.

A semigroup S is called simple if S does not contain proper two-sided ideals.
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A semitopological (resp. topological) semigroup is a topological space together with a separately
(resp. jointly) continuous semigroup operation. An inverse topological semigroup with the continuous
inversion is called a topological inverse semigroup.

Further we shall assume that a cardinal λ is infinite.
Let Iλ denote the set of all partial one-to-one transformations of an infinite cardinal λ together

with the following semigroup operation: x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ domα | yα ∈ dom β},
for α, β ∈ Iλ. The semigroup Iλ is called the symmetric inverse semigroup over the cardinal λ (see
[5]). The symmetric inverse semigroup was introduced by Wagner [24] and it plays a major role in the
theory of semigroups.

A partial map α ∈ Iλ is called almost identity if the set λ \ domα is finite and (x)α 6= x only for
finitely many x ∈ λ. We denote

I ∞
λ = {α ∈ Iλ | α is almost identity}.

Obviously, I ∞
λ is an inverse subsemigroup of the semigroup Iω. The semigroup I ∞

λ is called the semi-
group of all almost identity partial bijections of λ. We shall denote every element α of the semigroup
Iω by (

x1 · · · xn
y1 · · · yn

∣∣∣∣A
)

and this means that the following conditions hold:

(i) A is the maximal subset of λ with the finite complement such that α|A : A → A is an identity
map;

(ii) {x1, . . . , xn} and {y1, . . . , yn} are finite (not necessary non-empty) subsets of λ \ A; and
(iii) α maps xi into yi for all i = 1, . . . , n.

Further by I we shall denote the identity of the semigroup I ∞
λ .

Many semigroup theorists have considered topological semigroups of (continuous) transformations
of topological spaces. Bĕıda [2], Orlov [18, 19], and Subbiah [23] have considered semigroup and inverse
semigroup topologies on semigroups of partial homeomorphisms of some classes of topological spaces.

Gutik and Pavlyk [12] considered the special case of the semigroup I n
λ : an infinite topological

semigroup of λ × λ-matrix units Bλ. They showed that an infinite topological semigroup of λ × λ-
matrix units Bλ does not embed into a compact topological semigroup and that Bλ is algebraically
h-closed in the class of topological inverse semigroups. They also described the Bohr compactification
of Bλ, minimal semigroup and minimal semigroup inverse topologies on Bλ.

Gutik, Lawson and Repovš [11] introduced the notion of a semigroup with a tight ideal series
and investigated their closures in semitopological semigroups, in particular, in inverse semigroups
with continuous inversion. As a corollary they showed that the symmetric inverse semigroup of finite
transformations I n

λ of infinite cardinal λ is algebraically closed in the class of (semi)topological inverse
semigroups with continuous inversion. They also derived related results about the nonexistence of
(partial) compactifications of semigroups with a tight ideal series.

Gutik and Reiter [14] showed that the topological inverse semigroup I n
λ is algebraically h-closed

in the class of topological inverse semigroups. They also proved that a topological semigroup S with
countably compact square S×S does not contain the semigroup I n

λ for infinite cardinals λ and showed
that the Bohr compactification of an infinite topological semigroup I n

λ is the trivial semigroup.
In [15] Gutik and Reiter showed that that the symmetric inverse semigroup of finite transformations

I n
λ of infinite cardinal λ is algebraically closed in the class of semitopological inverse semigroups with

continuous inversion. Also there they described all congruences on the semigroup I n
λ and all compact

and countably compact topologies τ on I n
λ such that (I n

λ , τ) is a semitopological semigroup.
Gutik, Pavlyk and Reiter [13] showed that a topological semigroup of finite partial bijections I n

λ

of infinite set with a compact subsemigroup of idempotents is absolutely H-closed. They proved that
no Hausdorff countably compact topological semigroup and no Tychonoff topological semigroup with
pseudocompact square contain I n

λ as a subsemigroup. They proved that every continuous homomor-
phism from a topological semigroup I n

λ into a Hausdorff countably compact topological semigroup or
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Tychonoff topological semigroup with pseudocompact square is annihilating. They also gave sufficient
conditions for a topological semigroup I 1

λ to be non-H-closed and showed that the topological inverse
semigroup I 1

λ is absolutely H-closed if and only if the band E(I 1
λ ) is compact [13].

In [16] Gutik and Repovš studied the semigroup Iր
∞(N) of partial cofinite monotone bijective trans-

formations of the set of positive integers N. They show that the semigroup Iր
∞ (N) has algebraic

properties similar to the bicyclic semigroup: it is bisimple and all of its non-trivial group homomor-
phisms are either isomorphisms or group homomorphisms. They prove that every locally compact
topology τ on Iր

∞ (N) such that (Iր
∞(N), τ) is a topological inverse semigroup, is discrete and describe

the closure of (Iր
∞ (N), τ) in a topological semigroup.

In [4] Gutik and Chuchman studied the semigroup I �ր
∞ (N) of partial co-finite almost monotone

bijective transformations of the set of positive integers N. They showed that the semigroup I �ր
∞ (N)

has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its non-trivial group
homomorphisms are either isomorphisms or group homomorphisms. Also they proved that every Baire
topology τ on I �ր

∞ (N) such that (I �ր
∞ (N), τ) is a semitopological semigroup is discrete, described the

closure of (I �ր
∞ (N), τ) in a topological semigroup and constructed non-discrete Hausdorff semigroup

topologies on the semigroup I �ր
∞ (N).

In this paper we study the semigroup I ∞
λ of almost identity injective partial selfmaps of the set

of cardinality λ. We describe the Green relations on I ∞
λ , all (two-sided) ideals and all congruences

of the semigroup I ∞
λ . We prove that every Hausdorff hereditary Baire topology τ on I ∞

λ such that
(I ∞

λ , τ) is a semitopological semigroup is discrete and describe the closure of the discrete semigroup
I ∞

λ in a topological semigroup. Also we show that the discrete semigroup I ∞
λ does not embed into a

compact topological semigroup and construct two non-discrete Hausdorff topologies turning I ∞
λ into

a topological inverse semigroup.

2. Algebraic properties of the semigroup I ∞
λ

The definition of the semigroup I ∞
λ implies the following proposition:

Proposition 2.1. A partial map α ∈ Iλ is an element of the semigroup I ∞
λ if and only if the

following assertions hold:

(i) |λ \ domα| = |λ \ ranα|; and
(ii) there exists a subset A ⊆ domα∩ ranα such that λ\A is a finite subset of λ and the restriction

α|A : A→ A is the identity map.

Proposition 2.2. (i) An element α of the semigroup I ∞
λ is an idempotent if and only if (x)α = x

for every x ∈ domα.
(ii) If ε, ι ∈ E(I ∞

λ ), then ε 6 ι if and only if dom ε ⊆ dom ι.
(iii) The semilattice E(I ∞

λ ) is isomorphic to (P<ω(λ),⊆) under the mapping (ε)h = λ \ dom ε.
(iv) Every maximal chain in E(I ∞

λ ) is an ω-chain.
(v) αRβ in I ∞

λ if and only if domα = dom β.
(vi) αL β in I ∞

λ if and only if ranα = ranβ.
(vii) αH β in I ∞

λ if and only if domα = dom β and ranα = ran β.
(viii) αDβ in I ∞

λ if and only if |λ \ domα| = |λ \ domβ|.
(ix) If n is a non-negative integer, then for every α, β ∈ I ∞

λ such that |λ\domα| = |λ\domβ| = n
there exist γ, δ ∈ I ∞

λ such that α = γ · β · δ and |λ \ dom γ| = |λ \ dom δ| = n.
(x) For every non-negative integer n the set In = {α ∈ I ∞

λ | |λ \ domα| > n} is an ideal in I ∞
λ .

Moreover, for every ideal I in I ∞
λ there exists an integer n > 0 such that I is isomorphic to In.

(xi) D = J in I ∞
λ

(xii) If λ1 and λ2 are infinite cardinals such that λ1 6 λ2 then I ∞
λ1

is a subsemigroup of the semigroup
I ∞

λ2
.

Proof. Statements (i)− (iv) are trivial and they follow from the definition of the semigroup I∞(λ).
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(v) Let be α, β ∈ I ∞
λ such that αRβ. Since αI ∞

λ = βI ∞
λ and I ∞

λ is an inverse semigroup,
Theorem 1.17 [5] implies that αI ∞

λ = αα−1I ∞
λ , βI ∞

λ = ββ−1I ∞
λ and hence αα−1 = ββ−1. Therefore

we get that domα = dom β.
Conversely, let be α, β ∈ I ∞

λ such that domα = dom β. Then αα−1 = ββ−1. Since I ∞
λ is an

inverse semigroup, Theorem 1.17 [5] implies that αI ∞
λ = αα−1I ∞

λ = βI ∞
λ and hence αI ∞

λ = βI ∞
λ .

The proof of statement (vi) is similar to (v).
Statement (vii) follows from (v) and (vi).
(viii) Let α, β ∈ I ∞

λ be such that αDβ. Then there exists γ ∈ I ∞
λ such that αL γ and γRβ.

Therefore by statements (v) and (vi) we have that ranα = ran γ and dom γ = dom β. Then Propo-
sition 2.1 implies that |λ \ ran γ| = |λ \ dom γ| and |λ \ ran β| = |λ \ dom β|, and hence we get that
|λ \ domα| = |λ \ dom β|.

Let α and β are elements of the semigroup I ∞
λ such that |λ \ domα| = |λ \ dom β|. Then Proposi-

tion 2.1 implies that |λ \ ranα| = |λ \domα| and |λ \ ran β| = |λ \dom β|. Let Aα and Aβ be maximal
subsets of λ such that the sets λ \ Aα and λ \ Aβ are finite and the restrictions α|Aα

: Aα → Aα and
β|Aβ

: Aβ → Aβ are identity maps. We put A = Aα ∩Aβ . Since λ \Aα and λ \Aβ are finite subsets of
λ we conclude that λ\A is a finite subset of λ too. Since |λ\domα| = |λ\domβ| < ω Proposition 2.1
implies that

| domα \ A| = | ranα \ A| = | domβ \ A| = | ranβ \ A| = n

for some non-negative integer n. If n = 0, then α = β. Suppose that n > 1. Let {x1, . . . , xn} = ranα\A
and {y1, . . . , yn} = domα \ A. We define

γ =

(
y1 · · · yn
x1 · · · xn

∣∣∣∣A
)
.

Then by statements (v) and (vi) we have that αL γ and γRβ in I ∞
λ . Hence αDβ in I ∞

λ .
(ix) Let α and β be arbitrary elements of the semigroup I ∞

λ such that |λ\domα| = |λ\domβ| = n
for some non-negative integer n. Let Aα and Aβ be maximal subsets of λ such that the sets λ \ Aα

and λ \ Aβ are finite and the restrictions α|Aα
: Aα → Aα and β|Aβ

: Aβ → Aβ are identity maps.
We put A = Aα ∩ Aβ. Since λ \ Aα and λ \ Aβ are finite subsets of λ we conclude that λ \ A is a
finite subset of λ too. Since |λ \ domα| = |λ \ dom β| the definition of the semigroup I ∞

λ implies
that | domα \ A| = | domβ \ A| < ω. If domα \ A = dom β \ A = ∅ then α = β and hence
α = γ · β · δ for γ = δ = I. Otherwise we put {x1, . . . , xk} = domα \ A, {y1, . . . , yk} = dom β \ A,
b1 = (y1)β, . . . , bk = (yk)β and a1 = (x1)α, . . . , ak = (xk)α, for some positive integer k. We define

γ =

(
x1 · · · xk
y1 · · · yk

∣∣∣∣A
)

and δ =

(
b1 · · · bk
a1 · · · ak

∣∣∣∣A
)
.

Then γ, δ ∈ I ∞
λ , |λ \ dom γ| = |λ \ dom δ| = n and α = γ · β · δ.

(x) Let α and β be arbitrary elements of the semigroup I ∞
λ . Since α and β are almost identity

partial bijections of the cardinal λ we conclude that

|λ \ dom(α · β)| > max{|λ \ domα|, |λ \ dom β|}.

This implies the first assertion of statement (x).
Let I be an ideal in I ∞

λ . Then the definition of the semigroup I ∞
λ implies that there exists α ∈ I

such that
|λ \ domα| = min{|λ \ dom γ| | γ ∈ I}.

Then |λ \ domα| = n for some integer n > 0. Hence I ⊆ In and by statement (ix) we get that In ⊆ I.
This implies the second assertion of the statement.

Statement (xi) follows from statement (ix).

(xii) Let α =

(
x1 · · · xn
y1 · · · yn

∣∣∣∣A
)

be an arbitrary element of the semigroup I ∞
λ1

and B = λ2 \ λ1.

We put

α̃ =

(
x1 · · · xn
y1 · · · yn

∣∣∣∣A ∪ B

)
.
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Obviously that α̃ ∈ I ∞
λ2
. Simple verifications show that the map h : I ∞

λ1
→ I ∞

λ2
defined by the

formula (α)h = α̃ is an isomorphic embedding of the semigroup I ∞
λ1

into I ∞
λ2
. �

Later we shall need the following proposition:

Proposition 2.3. Let λ be an arbitrary infinite cardinal. Then for every finite subset {x1, . . . , xn} of
λ the semigroups I ∞

λ and I ∞
η are isomorphic for η = λ \ {x1, . . . , xn}.

Proof. Since λ is infinite we conclude that there exists a bijective map f : λ → η. Then the bijection
f generates a map h : I ∞

λ → I ∞
η such that the following condition holds:

(αλ)h = αη if and only if ((x)f)αη = ((x)αλ)f for every x ∈ λ,

where αλ ∈ I ∞
λ and αη ∈ I ∞

η .
Now we shall show that so defined map h is injective. Suppose to the contrary that there exist

distinct elements αλ, βλ ∈ I ∞
λ such that (αλ)h = (βλ)h. We denote αη = (αλ)h and βη = (βλ)h.

Then domαη = dom βη and ranαη = ran βη and since f : λ → η is a bijective map we conclude that
domαλ = dom βλ and ranαλ = ranβλ. Therefore there exists x ∈ ranαλ such that (x)αλ 6= (x)βλ.
Since (αλ)h = (βλ)h we have that ((x)f)αη = ((x)f)βη. But ((x)f)αη = ((x)αλ)f and ((x)f)βη =
((x)βλ)f and since the map f : λ → η is bijective we conclude that (x)αλ = (x)βλ, a contradiction.
The obtained contradiction implies that the map h : I ∞

λ → I ∞
η is injective.

Let

αη =

(
x1 · · · xn
y1 · · · yn

∣∣∣∣A
)

be an arbitrary element of the semigroup I ∞
η , where A ⊆ η and x1, . . . , xn, y1, . . . , yn ∈ η. Since the

map f : λ→ η is bijective we conclude that

αλ =

(
(x1)f

−1 · · · (xn)f
−1

(y1)f
−1 · · · (yn)f

−1

∣∣∣∣ (A)f
−1

)

is a partial bijective map from λ into λ such that the sets λ\domαλ and λ\ranαλ are finite. Therefore
αλ ∈ I ∞

λ and hence the map h : I ∞
λ → I ∞

η is bijective.
Now we prove that the map h : I ∞

λ → I ∞
η is a homomorphism. We fix arbitrary elements αλ, βλ ∈

I ∞
λ and denote αη = (αλ)h and βη = (βλ)h. Then for every x ∈ ranαλ we have that

(
(x)f

)
(αη · βη) =

((
(x)f

)
αη

)
βη =

((
(x)αλ

)
f
)
βη =

((
(x)αλ

)
βλ

)
f =

(
(x)(αλ · βλ)

)
f,

and hence (αλ · βλ)h = αη · βη = (αλ)h · (βλ)h.
Therefore h is an isomorphism from the semigroup I ∞

λ onto I ∞
η . �

Proposition 2.4. Let λ be an arbitrary infinite cardinal. Then for every idempotent ε of the semigroup
I ∞

λ the semigroups I ∞
λ (ε) = ε · I ∞

λ · ε and I ∞
λ are isomorphic.

Proof. Since

I ∞
λ (ε) = ε · I ∞

λ · ε = ε · I ∞
λ ∩ I ∞

λ · ε =

= {α ∈ I ∞
λ | domα ⊆ dom ε} ∩ {α ∈ I ∞

λ | ranα ⊆ ran ε} =

= {α ∈ I ∞
λ | domα ⊆ dom ε and ranα ⊆ ran ε},

Proposition 2.3 implies the assertion of the proposition. �

Proposition 2.5. For every α, β ∈ I ∞
λ , both sets {χ ∈ I ∞

λ | α ·χ = β} and {χ ∈ I ∞
λ | χ ·α = β} are

finite. Consequently, every right translation and every left translation by an element of the semigroup
I ∞

λ is a finite-to-one map.

Proof. We denote S = {χ ∈ I ∞
λ | α · χ = β} and T = {χ ∈ I ∞

λ | α−1 · α · χ = α−1 · β}. Then
S ⊆ T and the restriction of any partial map χ ∈ T to dom(α−1 · α) coincides with the partial map
α−1 · β. Since every partial map from the semigroup I ∞

λ is almost identity we have that there exist
maximal subsets Aα−1α and Aα−1β in λ such that the sets λ \ Aα−1α and λ \ Aα−1β are finite and the
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restrictions (α−1 · α)|A
α−1α

: Aα−1α → Aα−1α and (α−1 · β)|A
α−1β

: Aα−1β → Aα−1β are identity maps.

We put A = Aα−1β ∩ Aα−1β . Then the definition of the semigroup I ∞
λ implies that the restrictions

(α−1 · α)|A : A→ A and (α−1 · β)|A : A→ A are identity maps and the set λ \A is finite. This implies
that the set T is finite and hence the set S is finite too. �

For an arbitrary non-empty set λ by S∞(λ) we denote the group of all bijective transformations of
λ with finite supports (i. e., α ∈ S∞(λ) if and only if the set {x ∈ λ | (x)α 6= x} is finite).

The definition of the semigroup I ∞
λ implies the following proposition:

Proposition 2.6. Every maximal subgroup of the semigroup I ∞
λ is isomorphic to S∞(λ).

3. On congruences on the semigroup I ∞
λ

If R is an arbitrary congruence on a semigroup S, then we denote by ΦR : S → S/R the natural
homomorphisms from S onto S/R. Also we denote by ΩS and ∆S the universal and the identity
congruences, respectively, on the semigroup S, i. e., Ω(S) = S × S and ∆(S) = {(s, s) | s ∈ S}.

The following lemma follows from the definition of a congruence on a semilattice:

Lemma 3.1. Let R is an arbitrary congruence on a semilattice E. Let a and b be elements of the
semilattice E such that aRb. Then

(i) aR(ab); and
(ii) if a 6 b then aRc for all c ∈ E such that a 6 c 6 b.

Proposition 3.2. Let R be an arbitrary congruence on the semigroup I ∞
λ . Let ε and ϕ be idempotents

of I ∞
λ such that εRϕ and ε 6 ϕ. If | domϕ \ dom ε| = 1 then the following conditions hold:

(i) ϕRι for all idempotents ι ∈ ↓ϕ; and
(ii) ϕRχ for all idempotents χ ∈ I ∞

λ such that |λ \ domϕ| = |λ \ domχ|.

Proof. (i) First we shall show that ϕRψ for all idempotents ψ ∈ ↓ε. By Proposition 2.2 (iv) there exists
a maximal (not necessary unique) ω-chain L in E(I ∞

λ ) which contains ε and ψ. Let L0 = {ε1, . . . , εn}
be a maximal subchain in L such that ψ = εn < . . . < ε1 = ε, where n is some positive integer. The
existence of the subchain L follows from Proposition 2.2 (iv) too. Let

xn = dom εn−1 \ dom εn, xn−1 = dom εn−2 \ dom εn−1, . . . , x2 = dom ε1 \ dom ε2, x1 = domϕ \ dom ε1.

We put

α1 =

(
x1
x2

∣∣∣∣ dom ε2

)
, α2 =

(
x2
x3

∣∣∣∣ dom ε3

)
, . . . , αn−1 =

(
xn−1

xn

∣∣∣∣ dom εn

)
.

Then we have that

α−1
1 · ϕ · α1 = ε1 and α−1

1 · ε1 · α1 = ε2;
α−1
2 · ε1 · α2 = ε2 and α−1

2 · ε2 · α2 = ε3;
· · · · · · · · ·

α−1
n−1 · εn−2 · αn−1 = εn−1 and α−1

n−1 · εn−1 · αn−1 = εn,

and hence ε1Rε2, ε2Rε3, . . . , εn−1Rεn. Since ϕRε we have that ϕRεn. This completes the proof of the
statement.

Let ι be an arbitrary idempotent of the semigroup I ∞
λ such that ι ∈ ↓ϕ. We put ι0 = ε · ι. Then

by previous part of the proof we have that ι0Rϕ and hence by Lemma 3.1 we get ιRϕ.
(ii) Let χ be an arbitrary idempotent of the semigroup I ∞

λ such that ϕ 6= χ and |λ \ domϕ| = |λ \
domχ|. Then ε·χ 6 ϕ and hence by statement (ii) we get that (ε·χ)Rϕ. Since |λ\domϕ| = |λ\domχ|
we conclude that | domϕ\dom(ε ·χ)| = | domχ\dom(ε ·χ)|. Let be {x1, . . . , xk} = domϕ\dom(ε ·χ)
and {y1, . . . , yk} = domχ \ dom(ε · χ). We put

α =

(
x1 · · · xk
y1 · · · yk

∣∣∣∣ dom(ε · χ)

)
.

Then α−1 ·ϕ ·α = χ and α−1 · (ε ·χ) ·α = ε ·χ. Therefore we get that (ε ·χ)Rχ and hence ϕRχ. This
completes the proof of our statement. �
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Theorem 3.3. Let R be an arbitrary congruence on the semigroup I ∞
λ and ε and ϕ be distinct

R-equivalent idempotents of I ∞
λ . Then αRε for every α ∈ I ∞

λ such that

|λ \ domα| > min {|λ \ domϕ|, |λ \ dom ε|} .

Proof. In the case when α is an idempotent of the semigroup I ∞
λ the statement of the theorem follows

from Lemma 3.1 and Proposition 3.2.
Suppose that α is an arbitrary non-idempotent element of the semigroup I ∞

λ such that |λ\domα| >
max {|λ \ domϕ|, |λ \ dom ε|}. Since I ∞

λ is an inverse semigroup we have that α · α−1 · α = α and
Propositions 2.1 and 2.2 imply that

|λ \ domα| = |λ \ domα−1| = |λ \ dom(α ·α−1)| = |λ \ dom(α−1 ·α)| > min {|λ \ domϕ|, |λ \ dom ε|} .

Hence (α · α−1)Rε and by Proposition 3.2 we have that (α · α−1)Rι for every idempotent ι of the
semigroup I ∞

λ such that ι ∈ ↓ε. Definition of the semigroup I ∞
λ implies that for every α ∈ I ∞

λ there
exists an idempotent ςα ∈ I ∞

λ such that α · ς = ς · α = ς · (α · α−1) = ς for all idempotents ς ∈ I ∞
λ

such that ς ∈ ↓ςα. Let ν = ςα · ε. Then (α · α−1)Rν and α · ν = ν · α = ν · (α · α−1) = ν. Therefore we
get

(α)ΦR = (α · α−1 · α)ΦR = (α · α−1)ΦR · (α)ΦR = (ν)ΦR · (α)ΦR = (ν · α)ΦR = (ν)ΦR

and αRν. Hence we have that αRε. �

Proposition 3.4. Let R be an arbitrary congruence on the semigroup I ∞
λ . Let ε be an idempotent

of I ∞
λ such that |λ \ dom ε| > 1 and the following conditions hold:

(i) there exists an idempotent ϕ ∈ I ∞
λ such that εRϕ and |λ \ domϕ| > |λ \ dom ε|; and

(ii) does not exist an idempotent ψ ∈ I ∞
λ such that εRψ and |λ \ domψ| < |λ \ dom ε|.

Then there exists no element α of the semigroup I ∞
λ such that εRα and |λ \ domα| < |λ \ dom ε|.

Proof. Suppose to the contrary that there exists α ∈ I ∞
λ such that εRα and |λ\domα| < |λ\dom ε|.

Since I ∞
λ is an inverse semigroup Lemma III.1.1 [20] implies that εRα−1 and hence εR(α ·α−1). But

|λ \ dom(α · α−1)| = |λ \ domα| < |λ \ dom ε|, a contradiction. An obtained contradiction implies the
statement of the proposition. �

Proposition 3.5. Let R be an arbitrary congruence on the semigroup I ∞
λ . Let α and β be non-H -

equivalent elements of I ∞
λ such that αRβ. Then γRα for all γ ∈ I ∞

λ such that

|λ \ dom γ| > min {|λ \ domα|, |λ \ dom β|} .

Proof. Since α and β are non-H -equivalent elements of the inverse semigroup I ∞
λ we conclude that

at least one of the following conditions holds:

(i) α · α−1 6= β · β−1;
(ii) α−1 · α 6= β−1 · β.

Suppose that the case α · α−1 6= β · β−1 holds. In the other case the proof is similar. Since I ∞
λ is an

inverse semigroup Lemma III.1.1 [20] implies that β−1
Rα−1 and hence (β · β−1)R(α · α−1). Then we

have that

|λ \ domα| = |λ \ dom(α · α−1)| and |λ \ dom β| = |λ \ dom(β · β−1)|

and hence the assumptions of the Theorem 3.3 hold. This completes the proof of the proposition. �

Proposition 3.6. Let R be an arbitrary congruence on the semigroup I ∞
λ . If α and β are H -

equivalent elements of I ∞
λ such that αRβ, then γRα for all γ ∈ I ∞

λ such that

|λ \ dom γ| > min {|λ \ domα|, |λ \ dom β|} .

Proof. Since I ∞
λ is an inverse semigroup Theorem 2.20 [5] and Proposition 2.2 (viii) imply that

without loss of generality we can assume that α and β are elements of a maximal subgroup H(ε) of
I ∞

λ with unity ε. Since (α ·α−1)R(β ·α−1) we can assume that α is an identity of the subgroup H(ε).
Let x ∈ domα such that (x)β 6= x. We put ε1 : domα \ {x} → domα \ {x} be an identity map. Then
ε1 · α = ε1 and ran(ε1 · β) 6= ran(ε1). Therefore by Proposition 2.2 (vii) we get that the elements ε1
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and ε1 · β are not H -equivalent. Since |λ \ dom ε1| = |λ \ dom(ε1 · β)| we have that the assumptions
of Proposition 3.5 hold. This completes the proof of the proposition. �

Theorem 3.3 and Propositions 3.4, 3.5 and 3.6 imply the following proposition:

Proposition 3.7. Let R be an arbitrary congruence on the semigroup I ∞
λ . Let α and β be H -

equivalent elements of I ∞
λ such that αRβ and suppose that there does not exist γ ∈ I ∞

λ such that
αRγ and |λ \ dom γ| < |λ \ domα|. Then elements µ, ν ∈ I ∞

λ with |λ \ domµ| < |λ \ domα| and
|λ \ dom ν| < |λ \ domα| are R-equivalent if and only if µ = ν.

Definition 3.8. For every non-negative integer n we denote by Kn(I) the congruence on the semigroup
I ∞

λ generated by the ideal In, i. e., Kn(I) = (In × In) ∪∆(I ∞
λ ). We observe that K0(I) = Ω(I ∞

λ ).

Remark 3.9. The group S∞(λ) has only one non-trivial normal subgroup: that is a group A∞(λ) of
all even permutations of the set λ (see [10, pp. 313–314, Example] or [17]). Therefore every non-trivial
homomorphism of S∞(λ) is either an isomorphism or its image is a two-elements cyclic group.

Definition 3.10. Fix an arbitrary non-negative integer n. We shall say that elements α and β of the
semigroup I ∞

λ are nS∞-equivalent if the following conditions hold:

(i) αH β; and
(ii) |λ \ domα| = |λ \ dom β| = n.

We define a relation Kn(S∞) on the semigroup I ∞
λ as follows:

Kn(S∞) = {(α, β) | (α, β) ∈ nS∞} ∪ (In+1 × In+1) ∪∆(I ∞
λ ).

Simple verifications show that so defined relation Kn(S∞) on I ∞
λ is an equivalence relation for every

non-negative integer n.

Proposition 3.11. The relation Kn(S∞) is a congruence on the semigroup I ∞
λ .

Proof. First we consider the case when n = 0. If α and β are distinct elements of the semigroup
I ∞

λ such that αK0(S∞)β, then either α, β ∈ H(I) or α, β ∈ I1. Suppose that α, β ∈ H(I). Then
for every γ ∈ I ∞

λ we have that either α · γ, β · γ ∈ H(I) or α · γ, β · γ ∈ I1, and similarly we get
that either γ · α, γ · β ∈ H(I) or γ · α, γ · β ∈ I1. If α, β ∈ I1 then for every γ ∈ I ∞

λ we have that
α · γ, β · γ, α · γ, β · γ ∈ I1. Therefore K0(S∞) is a congruence on the semigroup I ∞

λ .
Suppose that n is an arbitrary positive integer. Let α and β be distinct elements of the semigroup

I ∞
λ such that αKn(S∞)β. The definition of the relation Kn(S∞) implies that only one of the following

conditions holds:

(i) |λ \ domα| = |λ \ dom β| = n; or
(ii) |λ \ domα| > n and |λ \ dom β| > n.

First we suppose that |λ\domα| = |λ\domβ| = n. Let γ be an arbitrary element of the semigroup
I ∞

λ . We consider two cases:

a) domα ⊆ ran γ; and
b) domα * ran γ.

Since the elements α and β are H -equivalent in I ∞
λ Proposition 2.2 (vii) implies that in case a) we

have that dom(γ ·α) = dom(γ ·β) and ran(γ ·α) = ran(γ ·β). Then again by Proposition 2.2 (vii) the
elements γ · α and γ · β are H -equivalent in I ∞

λ . Since domα ⊆ ran γ we get that |λ \ dom(γ · α)| =
|λ\dom(γ ·β)| = n. Hence we obtain that (γ ·α)Kn(S∞)(γ ·β). In case b) we have that γ ·α, γ ·β ∈ In+1

and hence (γ · α)Kn(S∞)(γ · β).
The proof the assertion that αKn(S∞)β implies (α · δ)Kn(S∞)(β · δ) for every δ ∈ I ∞

λ is similar.
Suppose that |λ \ domα| > n and |λ \ dom β| > n. Then α, β ∈ In+1. By Proposition 2.2 (x) we

have that γ · α, γ · β, α · δ, β · δ ∈ In+1 and hence (γ · α)Kn(S∞)(γ · β) and (α · δ)Kn(S∞)(β · δ) for all
γ, δ ∈ I ∞

λ . This completes the proof of the proposition. �

Definition 3.12. Fix an arbitrary non-negative integer n. We shall say that elements α and β of the
semigroup I ∞

λ are nA∞
-equivalent if the following conditions hold:
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(i) αH β;
(ii) α · β−1 is an even permutation of the set domα; and
(iii) |λ \ domα| = |λ \ dom β| = n.

We define a relation Kn(A∞) on the semigroup I ∞
λ as follows:

Kn(A∞) = {(α, β) | (α, β) ∈ nA∞
} ∪ (In+1 × In+1) ∪∆(I ∞

λ ).

Simple verifications show that so defined relation Kn(A∞) on I ∞
λ is an equivalence relation for every

non-negative integer n.

Proposition 3.13. The relation Kn(A∞) is a congruence on the semigroup I ∞
λ .

Proof. First we consider the case when n = 0. If α and β are distinct elements of the semigroup I ∞
λ

such that αK0(S∞)β, then either α, β ∈ H(I) or α, β ∈ I1. Suppose that α, β ∈ H(I). Then for every
γ ∈ H(I) we have that α · γ, β · γ, γ ·α, γ · β ∈ H(I). Then (α · γ) · (β · γ)−1 = α · γ · γ−1 · β−1 = α · β−1

is an even permutation of the set λ. Also, since α ·β−1 is an even permutation of the set λ we get that
(γ ·α) · (γ ·β)−1 = γ ·α ·β−1 ·γ−1 is an even permutation of the set λ too. For every γ ∈ I1 we have that
α · γ, β · γ, γ · α, γ · β ∈ I1. If α, β ∈ I1 then for every γ ∈ I ∞

λ we have that α · γ, β · γ, α · γ, β · γ ∈ I1.
Therefore K0(A∞) is a congruence on the semigroup I ∞

λ .
Suppose that n is an arbitrary positive integer. Let α and β be distinct elements of the semigroup

I ∞
λ such that αKn(A∞)β. The definition of the relation Kn(A∞) implies that only one of the following

conditions holds:

(i) |λ \ domα| = |λ \ dom β| = n; or
(ii) |λ \ domα| > n and |λ \ dom β| > n.

First we suppose that |λ\domα| = |λ\domβ| = n. Let γ be an arbitrary element of the semigroup
I ∞

λ . We consider two cases:

a) domα ⊆ ran γ; and
b) domα * ran γ.

Suppose case a) holds. Since the elements α and β are H -equivalent in I ∞
λ we have that Propo-

sition 2.2 (vii) implies that dom(γ · α) = dom(γ · β) and ran(γ · α) = ran(γ · β). Then again by
Proposition 2.2 (vii) the elements γ · α and γ · β are H -equivalent in I ∞

λ . Since domα ⊆ ran γ
we get that |λ \ dom(γ · α)| = |λ \ dom(γ · β)| = n. We define a partial map γ1 : λ ⇀ λ as follows
γ1 = γ|(domα)γ−1 : (domα)γ−1 → domα. Then we get that |λ\dom γ1| = |λ\domα| = |λ\domβ| = n,

γ · α = γ1 · α, γ · β = γ1 · β and hence (γ · α) · (γ · β)−1 = (γ1 · α) · (γ1 · β)
−1 = γ1 · α · β−1 · γ−1

1 .
Since α · β−1 is an even permutation of the set domα we conclude that γ1 · α · β−1 · γ−1

1 is an even
permutation of the set dom γ1 = (domα)γ−1. Hence we obtain that (γ · α)Kn(A∞)(γ · β). In case b)
we have that γ · α, γ · β ∈ In+1 and hence (γ · α)Kn(A∞)(γ · β).

The proof the assertion that αKn(A∞)β implies (α · δ)Kn(A∞)(β · δ) for every δ ∈ I ∞
λ is similar.

Suppose that |λ \ domα| > n and |λ \ dom β| > n. Then α, β ∈ In+1. By Proposition 2.2 (x) we
have that γ · α, γ · β, α · δ, β · δ ∈ In+1 and hence (γ · α)Kn(A∞)(γ · β) and (α · δ)Kn(A∞)(β · δ), for all
γ, δ ∈ I ∞

λ . This completes the proof of the proposition. �

Theorem 3.14. The family

Cong(I ∞
λ ) = {∆(I ∞

λ ),Ω(I ∞
λ )} ∪ {Kn(S∞) | n = 0, 1, 2, . . .} ∪ {Kn(A∞) | n = 0, 1, 2, . . .}

determines all congruences on the semigroup I ∞
λ .

Proof. Let R be non-identity congruence on the semigroup I ∞
λ . Then there exist two distinct

elements α and β in I ∞
λ such that αRβ and min {|λ \ domα|, |λ \ dom β|} = n for some non-

negative integer n. Since the set of all non-negative integers with respect to the usual order 6 is
well ordered we conclude that without loss of generality we can assume that n is a minimal non-
negative integer such that there exist two distinct elements α and β in I ∞

λ such that αRβ and
min {|λ \ domα|, |λ \ dom β|} = n, i. e., for some non-negative integer m < n if for α and β in I ∞

λ

such that αRβ and min {|λ \ domα|, |λ \ dom β|} = m then α = β.
We consider two cases:
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(i) |λ \ domα| 6= |λ \ dom β|; and
(ii) |λ \ domα| = |λ \ dom β|.

Suppose case (i) holds and |λ \ domα| = n < |λ \ dom β|. Then α and β are not H -equivalent
elements in I ∞

λ and hence by Propositions 3.5, 3.6 and 3.7 we get that R = Kn(I). We observe if
n = 0 then R = Ω(I ∞

λ ).
Later we assume that case (ii) holds.
If α and β are not H -equivalent elements in I ∞

λ and then by Propositions 3.5, 3.6 and 3.7 we have
that R = Kn(I). Also in this case if n = 0 then R = Ω(I ∞

λ ).
Suppose that α and β are H -equivalent elements in I ∞

λ and there exists no non-H -equivalent
element δ of the semigroup I ∞

λ such that αRδ. Otherwise by the previous part of the proof we have
that R = Kn(I). Since (α · α−1)R(β · α−1) we conclude that without loss of generality we can assume
that α is an identity element of H -class H(α) which contains α and β 6= α. Since α is an idempotent
of the semigroup I ∞

λ we have that domα = ranα and the restriction α|domα : domα → domα is an
identity map. Also we observe that the restriction of the partial map β|domα : domα → domα is a
permutation of the set domα. Therefore without loss of generality we can consider β as a permutation
of the set domα.

We consider two cases:

(1) β is an odd permutation of the set domα; and
(2) β is an even permutation of the set domα.

Suppose that β is an odd permutation of the set domα. Since H(α) is a subgroup of the semigroup
I ∞

λ we conclude that the image (H(α))ΦR of H(α) is a subgroup in I ∞
λ /R. Since the subgroup

H(α) is isomorphic to the group S∞(λ) and the group of all even permutations A∞(λ) of the set λ
is a unique normal subgroup in S∞(λ) (see [10, pp. 313–314, Example] or [17]) we conclude that the
image (H(α))ΦR is singleton. Then by Theorem 2.20 [5] and Proposition 2.2 (viii) for every γ ∈ I ∞

λ

with |λ \ dom γ| = |λ \ domα| the image (Hγ)ΦR of the H -class Hγ which contains the element γ is
singleton and hence by Propositions 3.5, 3.6 and 3.7 we get that R = Kn(S∞).

Suppose that β is an even permutation of the set domα. If the subgroup H(α) contains an odd
permutation δ of the set domα then by previous proof we get that R = Kn(S∞). Suppose the subgroup
H(α) does not contain an odd permutation δ of the set domα. Since the subgroup H(α) is isomorphic
to the group S∞(λ) and the group of all even permutations A∞(λ) of the set λ is a unique normal
subgroup in S∞(λ) we conclude that the image (H(α))ΦR is a two-element subgroup in I ∞

λ /R. Then
by Theorem 2.20 [5] and Proposition 2.2 (viii) for every γ ∈ I ∞

λ with |λ \ dom γ| = |λ \ domα| the
image (Hγ)ΦR of the H -class Hγ which contains the element γ is a two-element subset in I ∞

λ /R and
hence by Propositions 3.5, 3.6 and 3.7 we get that R = Kn(A∞). �

4. On topologizations of the free semilattice (P<ω(λ),⊆)

Definition 4.1 ([4]). We shall say that a semigroup S has an F-property if for every a, b, c, d ∈ S1 the
sets {x ∈ S | a · x = b} and {x ∈ S | x · c = d} are finite or empty.

Recall [9] an element x of a semitopological semilattice S is a local minimum if there exists an open
neighbourhood U(x) of x such that U(x) ∩ ↓x = {x}. This is equivalent to statement that ↓x is an
open subset in S.

A topological space X is called Baire if for each sequence A1, A2, . . . , Ai, . . . of nowhere dense subsets

of X the union
∞⋃

i=1

Ai is a co-dense subset of X [7]. A Tychonoff space X is called Čech complete if for

every compactification cX of X the remainder cX \ c(X) is an Fσ-set in cX [7].
A topological space X is called hereditary Baire if every closed subset of X is a Baire space [7].

Every Čech complete (and hence locally compact) space is hereditary Baire (see [7, Theorem 3.9.6]).
We shall say that a Hausdorff semitopological semigroup S is an I-Baire space if for every s ∈ S either
sS or Ss is a Baire space [4].



ON MONOIDS OF ALMOST IDENTITY INJECTIVE PARTIAL SELFMAPS 11

Remark 4.2. We observe that every left ideal Ss and every right ideal sS of a regular semigroup S are
generated by some idempotents of S. Therefore every principal left (right) ideal of a regular Hausdorff
semitopological semigroup S is a closed subset of S. Hence every regular Hausdorff hereditary Baire
semitopological semigroup is a I-Baire space.

Theorem 4.3. Let S be a semilattice with the F-property. Then every I-Baire topology τ on S such
that (S, τ) is a Hausdorff semitopological semilattice is discrete.

Proof. Let x be an arbitrary element of the semilattice S. We need to show that x is an isolated point
in (S, τ).

Since τ is an I-Baire topology on S we conclude that the subspace ↓x is Baire. We denote Sx = ↓x.
For every positive integer n we put

Fn = {y ∈ Sx | |↑y| = n}.

Then we have that Sx =
⋃∞

i=1 Fn. Since the topological space Sx is Baire we conclude that that there
exists Fn ∈ F such that IntSx

(Fn) 6= ∅. We fix an arbitrary y0 ∈ IntSx
(Fn). We observe that the

definition of the family {Fn | n ∈ N} implies that for every non-empty subset Fn and for any s ∈ Fn

the sets ↑s ∩ Fn and ↓s ∩ Fn are singleton. This implies that y0 is a local minimum in Sx, i. e., ↓y0 is
an open subset of S. Since the semilattice Sx has the F-property we conclude that the Hausdorffness
of S implies that x is an isolated point in Sx. Then x is a local minimum in S and hence ↑x is an
open subset in S. Since the semilattice S has the F-property we conclude that the Hausdorffness of S
implies that x is an isolated point in S. �

Remark 4.4. We observe that the statement of Theorem 4.3 is true for T1-semitopological I-Baire
semilattices with the F-property.

Since every Čech complete (and hence locally compact) space is hereditary Baire, Theorem 4.3
implies the following corollary:

Corollary 4.5. Let S be a semilattice with the F-property. Then every Čech complete (locally compact)
topology τ on S such that (S, τ) is a semitopological semilattice is discrete.

Since the free semilattice (P<ω(λ),⊆) has F-property, Theorem 4.3 implies the following corollary:

Corollary 4.6. Every Hausdorff I-Baire (Čech complete, locally compact) topology τ on the free
semilattice P<ω(λ) such that (P<ω(λ), τ) is a semitopological semilattice is discrete.

5. On topological semigroup I ∞
ω

Theorem 5.1. Every hereditary Baire topology τ on the semigroup I ∞
ω such that (I ∞

ω , τ) is a Haus-
dorff semitopological semigroup is discrete.

Proof. Let α be an arbitrary element of the the semigroup I ∞
ω . We need to show that α is an isolated

point in (I ∞
ω , τ).

For every non-negative integer n we denote Cn = I ∞
ω \ In+1.

By induction we shall prove that for every non-negative integer n the following statement hold:
every α ∈ Cn is an isolated point in (I ∞

ω , τ).
First we shall show that our statement is true for n = 0. We define a family C = {{β} | β ∈ I ∞

ω }.
Since the topological space (I ∞

ω , τ) is Baire we have that the family C has an element with non-
empty interior and hence the topological space (I ∞

ω , τ) has an isolated point γ in (I ∞
ω , τ). Then

|ω \domα| = 0 and hence statements (viii)− (xi) of Proposition 2.2 imply that there exist µ, ν ∈ I ∞
ω

such that µ · α · ν = γ. Since translations in (I ∞
ω , τ) are continuous we conclude that Hausdorffness

of the space (I ∞
ω , τ) and Proposition 2.5 imply that α an isolated point in (I ∞

ω , τ).
Suppose our statement is true for all n < k, k ∈ N. We shall show that its is true for n = k. Our

assumption implies that Ik is a closed subset of (I ∞
ω , τ). Later we shall denote by τk the topology

induces from (I ∞
ω , τ) onto Ik. Then (Ik, τk) is a Baire space. We define a family Ck = {{β} | β ∈ Ik}.
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Since the topological space (Ik, τk) is Baire we have that the family Ck has an element with non-
empty interior and hence the topological space (Ik, τk) has an isolated point γ in (Ik, τk). Let U(γ)
be an open neighbourhood U(γ) of γ in (I ∞

ω , τ) such that U(γ) ∩ Ik = {γ}. Since (I ∞
ω , τ) is a

semitopological semigroup we have that there exists an open neighbourhood V (γ) of γ in (I ∞
ω , τ)

such that V (γ) ⊆ U(γ) and γ · γ−1 · V (γ) ⊆ U(γ). We remark that γ · γ−1 · V (γ) ⊆ {γ}. Hence by
Proposition 2.5 the neighbourhood V (γ) is finite and Hausdorffness of the space (I ∞

ω , τ) implies that γ
an isolated point in (I ∞

ω , τ). Let α be an arbitrary element of the set Ik \ Ik+1. Then |ω \ domα| = k
and hence statements (viii) − (xi) of Proposition 2.2 imply that there exist µ, ν ∈ I ∞

ω such that
µ ·α · ν = γ. Since translations in (I ∞

ω , τ) are continuous we conclude that Hausdorffness of the space
(I ∞

ω , τ) and Proposition 2.5 imply that α an isolated point in (I ∞
ω , τ). This completes the proof of

our theorem. �

Remark 5.2. We observe that the statement of Theorem 5.1 holds for every topology τ on the
semigroup I ∞

ω such that (I ∞
ω , τ) is a Hausdorff semitopological semigroup and every (two-sided)

ideal in (I ∞
ω , τ) is a Baire space.

Theorem 5.1 implies the following corollary:

Corollary 5.3. Every Čech complete (locally compact) topology τ on the semigroup I ∞
ω such that

(I ∞
ω , τ) is a Hausdorff semitopological semigroup is discrete.

Theorem 5.4. Let λ be an infinite cardinal and S be a topological semigroup which contains a dense
discrete subsemigroup I ∞

λ . If I = S \ I ∞
λ 6= ∅ then I is an ideal of S.

Proof. Suppose that I is not an ideal of S. Then at least one of the following conditions holds:

1) I · I ∞
λ * I, 2) I ∞

λ · I * I, or 3) I · I * I.

Since I ∞
λ is a discrete dense subspace of S, Theorem 3.5.8 [7] implies that I ∞

λ is an open subspace
of S. Suppose there exist a ∈ I ∞

λ and b ∈ I such that b · a = c /∈ I. Since I ∞
λ is a dense open

discrete subspace of S the continuity of the semigroup operation in S implies that there exists an open
neighbourhood U(b) of b in S such that U(b) · {a} = {c}. But by Proposition 2.5 the equation x ·a = c
has finitely many solutions in I ∞

λ . This contradicts to the assumption that b ∈ S \ I ∞
λ . Therefore

b · a = c ∈ I and hence I · I ∞
λ ⊆ I. The proof of the inclusion I ∞

λ · I ⊆ I is similar.
Suppose there exist a, b ∈ I such that a · b = c /∈ I. Since I ∞

λ is a dense open discrete subspace of S
the continuity of the semigroup operation in S implies that there exist open neighbourhoods U(a) and
U(b) of a and b in S, respectively, such that U(a) · U(b) = {c}. But by Proposition 2.5 the equations
x · b0 = c and a0 · y = c have finitely many solutions in I ∞

λ . This contradicts to the assumption that
a, b ∈ S \ I ∞

λ . Therefore a · b = c ∈ I and hence I · I ⊆ I. �

Proposition 5.5. Let S be a topological semigroup which contains a dense discrete subsemigroup I ∞
λ .

Then for every c ∈ I ∞
λ the set

Dc(A) = {(x, y) ∈ I ∞
λ × I ∞

λ | x · y = c}

is a closed-and-open subset of S × S.

Proof. Since I ∞
λ is a discrete subspace of S we have that Dc(A) is an open subset of S × S.

Suppose that there exists c ∈ I ∞
λ such that Dc(A) is a non-closed subset of S×S. Then there exists

an accumulation point (a, b) ∈ S × S of the set Dc(A). The continuity of the semigroup operation in
S implies that a · b = c. But I ∞

λ ×I ∞
λ is a discrete subspace of S×S and hence by Theorem 5.4 the

points a and b belong to the ideal I = S \ I ∞
λ and hence a · b ∈ S \ I ∞

λ cannot be equal to c. �

A topological space X is defined to be pseudocompact if each locally finite open cover of X is finite.
According to [7, Theorem 3.10.22] a Tychonoff topological space X is pseudocompact if and only if
each continuous real-valued function on X is bounded.

Theorem 5.6. If a topological semigroup S contains I ∞
λ as a dense discrete subsemigroup then the

square S × S is not pseudocompact.
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Proof. Since the square S×S contains an infinite closed-and-open discrete subspaceDc(A), we conclude
that S × S fails to be pseudocompact (see [7, Ex. 3.10.F(d)] or [6]). �

A topological space X is called countably compact if any countable open cover of X contains a finite
subcover [7]. We observe that every Hausdorff countably compact space is pseudocompact.

Since the closure of an arbitrary subspace of a countably compact space is countably compact (see
[7, Theorem 3.10.4]) Theorem 5.6 implies the following corollary:

Corollary 5.7. For every infinite cardinal λ the discrete semigroup I ∞
λ does not embed into a topo-

logical semigroup S with the countably compact square S × S.

Since every compact topological space is countably compact Theorem 3.24 [7] and Corollary 5.7
imply

Corollary 5.8. For every infinite cardinal λ the discrete semigroup I ∞
λ does not embed into a compact

topological semigroup.

We recall that the Stone-Čech compactification of a Tychonoff space X is a compact Hausdorff space
βX containing X as a dense subspace so that each continuous map f : X → Y to a compact Hausdorff
space Y extends to a continuous map f : βX → Y [7].

Theorem 5.9. For every infinite cardinal λ the discrete semigroup I ∞
λ does not embed into a Ty-

chonoff topological semigroup S with the pseudocompact square S × S.

Proof. By Theorem 1.3 [1] for any topological semigroup S with the pseudocompact square S × S the
semigroup operation µ : S× S → S extends to a continuous semigroup operation βµ : βS× βS → βS,
so S is a subsemigroup of the compact topological semigroup βS. Then Corollary 5.8 implies the
statement of the theorem. �

The following example shows that there exists a non-discrete topology τF on the semigroup I ∞
λ

such that (I ∞
λ , τF ) is a Tychonoff topological inverse semigroup.

Example 5.10. We define a topology τF on the semigroup I ∞
λ as follows. For every α ∈ I ∞

λ we
define a family

BF (α) = {Uα(F ) | F is a finite subset of domα},

where

Uα(F ) = {β ∈ I ∞
λ | domα = dom β, ranα = ran β and (x)β = (x)α for all x ∈ F}.

Since conditions (BP1)–(BP3) [7] hold for the family {BF (α)}α∈I ∞

λ
we conclude that the family

{BF (α)}α∈I ∞

λ
is the base of the topology τF on the semigroup I ∞

λ .

Proposition 5.11. (I ∞
λ , τF ) is a Tychonoff topological inverse semigroup.

Proof. Let α and β be arbitrary elements of the semigroup I ∞
λ . We put γ = α · β and let F =

{n1, . . . , ni} be a finite subset of dom γ. We denote m1 = (n1)α, . . . ,mi = (ni)α and k1 = (n1)γ, . . . ,
ki = (ni)γ. Then we get that (m1)β = k1, . . . , (mi)β = ki. Hence we have that

Uα({n1, . . . , ni}) · Uβ({m1, . . . , mi}) ⊆ Uγ({n1, . . . , ni})

and (
Uγ({n1, . . . , ni})

)−1
⊆ Uγ−1({k1, . . . , ki}).

Therefore the semigroup operation and the inversion are continuous in (I �ր
∞ (N), τF ).

We observe that the group of units H(I) of the semigroup I ∞
λ with the induced topology τF (H(I))

from (I ∞
λ , τF ) is a topological group (see [10, pp. 313–314, Example] or [17]) and the definition of

the topology τF implies that every H -class of the semigroup I ∞
λ is an open-and-closed subset of the

topological space (I ∞
λ , τF ). Therefore Theorem 2.20 [5] implies that the topological space (I ∞

λ , τF )
is homeomorphic to a countable topological sum of topological copies of

(
H(I), τF (H(I))

)
. Since every

T0-topological group is a Tychonoff topological space (see [21, Theorem 3.10] or [8, Theorem 8.4])
we conclude that the topological space (I ∞

λ , τF ) is Tychonoff too. This completes the proof of the
proposition. �
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Remark 5.12. We observe that the topology τF on I ∞
λ induces the discrete topology on the band

E(I ∞
λ ).

Example 5.13. We define a topology τWF on the semigroup I ∞
λ as follows. For every α ∈ I ∞

λ we
define a family

BWF (α) = {Uα(F ) | F is a finite subset of domα},

where
Uα(F ) = {β ∈ I ∞

λ | dom β ⊆ domα and (x)β = (x)α for all x ∈ F}.

Since conditions (BP1)–(BP3) [7] hold for the family {BWF (α)}α∈I ∞

λ
we conclude that the family

{BWF (α)}α∈I ∞

λ
is the base of the topology τWF on the semigroup I ∞

λ .

Proposition 5.14. (I ∞
λ , τWF ) is a Hausdorff topological inverse semigroup.

Proof. Let α and β be arbitrary elements of the semigroup I ∞
λ . We put γ = α · β and let F =

{n1, . . . , ni} be a finite subset of dom γ. We denote m1 = (n1)α, . . . ,mi = (ni)α and k1 = (n1)γ, . . .,
ki = (ni)γ. Then we get that (m1)β = k1, . . . , (mi)β = ki. Hence we have that

Uα({n1, . . . , ni}) · Uβ({m1, . . . , mi}) ⊆ Uγ({n1, . . . , ni})

and (
Uγ({n1, . . . , ni})

)−1
⊆ Uγ−1({k1, . . . , ki}).

Therefore the semigroup operation and the inversion are continuous in (I ∞
λ , τWF ).

Latter we shall show that the topology τWF is Hausdorff. Let α and β be arbitrary distinct points
of the space (I ∞

λ , τWF ). Then only one of the following conditions holds:

(i) domα = dom β;
(ii) domα 6= dom β.

In case domα = dom β we have that there exists x ∈ domα such that (x)α 6= (x)β. The definition
of the topology τWF implies that Uα({x}) ∩ Uβ({x}) = ∅.

If domα 6= dom β, then only one of the following conditions holds:

(a) domα $ dom β;
(b) dom β $ domα;
(c) domα \ dom β 6= ∅ and dom β \ domα 6= ∅.

Suppose that case (a) holds. Let be x ∈ dom β \ domα and y ∈ domα. The definition of the
topology τWF implies that Uα({y}) ∩ Uβ({x}) = ∅.

Case (b) is similar to (a).
Suppose that case (c) holds. Let be x ∈ dom β \ domα and y ∈ domα \ dom β. The definition of

the topology τWF implies that Uα({y}) ∩ Uβ({x}) = ∅.
This completes the proof of the proposition. �

Remark 5.15. We observe that the topology τWF on I ∞
λ induces a non-discrete topology on the

band E(I ∞
λ ). Moreover, H-classes in (I ∞

λ , τWF ) and (I ∞
λ , τF ) are homeomorphic subspaces.
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