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A COMMUTATOR METHOD FOR THE DIAGONALIZATION

OF HANKEL OPERATORS

D. R. YAFAEV

To the memory of Mikhail Shlëmovich Birman

Abstract. We present a method for the explicit diagonalization of some Han-
kel operators. This method allows us to recover classical results on the diag-
onalization of Hankel operators with the absolutely continuous spectrum. It
leads also to new results. Our approach relies on the commutation of a Hankel
operator with some differential operator of second order.

1. Introduction

1.1. Hankel operators can be defined (see, e.g., book [8]) as integral operators
in the space L2(R+) whose kernels depend on the sum of variables only. Thus, a
Hankel operator A is defined by the formula

(Af)(x) =

∫ ∞

0

a(x+ y)f(y)dy. (1.1)

Of course, A is self-adjoint if a = ā. If
∫ ∞

0

|a(x)|2xdx <∞,

then A belongs to the Hilbert-Schmidt class. This condition is satisfied if, for
example, the function a is continuous, it is not too singular at x = 0 and decays
sufficiently rapidly as x→ ∞. On the contrary, if a(x) ∼ a0x

−1 as x→ 0 or (and)
a(x) ∼ a∞x

−1 as x → ∞, then the operator A is no longer compact although it
remains bounded. A general philosophy (see paper [4] by J. S. Howland) is that
each of these singularities gives rise to the branch [0, a0π] or (and) [0, a∞π] of the
simple absolutely continuous spectrum.

There are very few examples where the operator A can be explicitly diagonalized,
that is its exact eigenfunctions can be found. The first result is due to F. Mehler
[6] who considered the case a(x) = (x+ 2)−1. He has shown that functions

ψk(x) =
(
k tanhπk

)1/2
P−1/2+ik(x+ 1), λ = π/ coshπk, k > 0, (1.2)

where P−1/2+ik is the Legendre function (see [3], Chapter 3), satisfy equations
Aψk = λψk. The functions ψk are usually parametrized by the quasimomentum k
related to λ = λ(k) by formula (1.2). The operator U : L2(R+) → L2(R+) defined
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by the equality

(Uf)(k) =

∫ ∞

0

ψk(x)f(x)dx (1.3)

is unitary. Observe that λ(k) is a one-to-one mapping of R+ on (0, π) and that
(ULf)(k) = λ(k)f(k) which implies that the spectrum of the operator A is simple,
absolutely continuous and coincides with the interval [0, π].

Below we use the term “eigenfunction” for ψk (although ψk 6∈ L2(R+)) such
that Aψk = λψk for the spectral parameter λ from the continuous spectrum of
the operator A. By definition, we also say that eigenfunctions ψk of the continu-
ous spectrum are orthogonal, normalized and the set of all ψk is complete if the
corresponding operator (1.3) is unitary (if A has no point spectrum).

The next result is due to W. Magnus [5] who considered the case a(x) =
x−1e−x/2. A more general result of the same type was obtained by M. Rosenblum
[9] who has diagonalized the operator A with kernel

a(x) = Γ(1 + β)x−1W−β,1/2(x), β ∈ R, β 6= −1,−2, . . . , (1.4)

where W−β,1/2 is the Whittaker function (see [3], Chapter 6) and Γ is the gamma

function. Note that W0,1/2(x) = e−x/2. The spectrum of the operator A with such
kernel is again simple and, up to a finite number of eigenvalues, it is absolutely
continuous and coincides with the interval [0, π]. Its “normalized eigenfunctions”
are expressed in terms of the Whittaker functions

ψk(x) = (2π)−1
√
k|Γ(1/2− ik + β)| sinh 2πkx−1W−β,ik(x), k > 0. (1.5)

Observe that the function a(x) = (x+ 2)−1 is singular at x = ∞ and eigenfunc-
tions (1.2) decay as linear combinations of x−1/2±ik as x→ ∞ while function (1.4)
is singular at x = 0 and eigenfunctions (1.5) behave as linear combinations of the
same functions x−1/2±ik as x→ 0.

We note also a simple case a(x) = x−1 where the operator A is directly diago-
nalized (see paper [2] by T. Carleman) by the Mellin transform. In this case the
spectrum of A has multiplicity 2 (because of the singularities of a(x) both at x = 0
and at x = ∞), it is absolutely continuous and coincides with the interval [0, π]. The
eigenfunctions of the Carleman operator equal x−1/2±ik (up to a normalization).

We emphasize a parallelism of theories of singular differential operators and
Hankel operators with singular kernels. Thus, the functions x−1/2±ik play (both
for x→ ∞ and x→ 0) for Hankel operators the role of exponential functions e±ikx

for differential operators of second order. From this point of view, the Carleman
operator plays the role of the operator −d2/dx2 in the space L2(R).

1.2. In the author’s opinion, the reason why in the cases described above eigen-
functions of a Hankel operator can be found explicitly remained unclarified. Our
approach shows that all diagonalizable Hankel operators A commute with differen-
tial operators

L = − d

dx
(x2 + γx)

d

dx
+ αx2 + βx (1.6)

for suitably chosen parameters α ≥ 0, β ∈ R and γ ≥ 0. Thus, eigenfunctions of
the operators A and L are the same which allows us to diagonalize the operator A.

Hopefully the commutator method will be applied to other kernels a. In this
paper we use the commutator method to find in subs. 4.4 eigenfunctions of a new
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Hankel operator with kernel

a(x) =

√
8

x
K1(

√
8x), (1.7)

where K1 is the MacDonald function (see [3], Chapter 7). Similarly to (1.4), this
function decays exponentially as x → ∞ and a(x) ∼ x−1 as x → 0. An example
of a different nature are Hankel operators with regular kernels; such operators are
compact.

Note that operator (1.6) for γ = 0 and α > 0 appeared already in [9]. Actually,
M. Rosenblum proceeded from the identity

Γ(1 + β)

∫ ∞

0

(x+ y)−1W−β,1/2(x+ y)y−1W−β,ik(y)dy =
π

coshπk
x−1W−β,ik(x)

(1.8)
found earlier by H. Shanker in [10]. This identity shows that functions (1.5) are
eigenfunctions of the Hankel operator with kernel (1.4). M. Rosenblum observed
that functions (1.5) are also eigenfunctions of operator (1.6) for γ = 0 and α = 1/4.
Since eigenfunctions of the self-adjoint differential operator L are orthogonal and
complete, the same is true for eigenfunctions of the Hankel operator A with kernel
(1.4). This yields the diagonalization of this operator.

Our approach is somewhat different. We prove the relation LA = AL which
shows that eigenfunctions of the operators L and A are the same. In particular, we
obtain identity (1.8) without a recourse to the theory of special functions.

It is well-known that the integrability of differential equations of second order
in terms of special functions has a deep group-theoretical interpretation (see, e.g.,
book [12] by N. Ya. Vilenkin). As far as Hankel operators are concerned, it is
evident that the diagonalization of the Carleman operator can be explained by its
invariance with respect to the group of dilations. The relation LA = AL means
that the operator A is invariant with respect to the group exp(−itL). In contrast
to the Carleman operator, for other Hankel operators this invariance does not look
obvious.

A commutator scheme is presented in Section 2 while specific examples of kernels
singular at x = ∞ and x = 0 are discussed in Sections 3 and 4, respectively. Hankel
operators with regular kernels are considered in Section 5.

2. Commutator method

2.1. For a moment, we consider the operator L defined by formula (1.6) as a
differential operator on the class C2(R+), but later it will be defined as a self-adjoint
operator in the space L2(R+). Let the operator A be given by formula (1.1) where
a ∈ C2(R+).

Let us commute the operators A and L. Suppose that f ∈ C2(R+) and that

lim
y→0

(y2 + γy)f(y) = lim
y→0

(y2 + γy)f ′(y) = 0 (2.1)

as well as

lim
y→∞

a′(x+ y)(y2 + γy)f(y) = lim
y→∞

a(x+ y)(y2 + γy)f ′(y) = 0 (2.2)

for all x ≥ 0. Then integrating by parts, we find that

(ALf)(x) =

∫ ∞

0

(
− ∂

∂y

(
(y2 + γy)a′(x+ y)

)
+ a(x+ y)(αy2 + βy)

)
f(y)dy.
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It follows that

((LA−AL)f)(x) =

∫ ∞

0

q(x, y)f(y)dy

where

q(x, y) =− ∂

∂x

(
(x2 + γx)a′(x+ y)

)
+

∂

∂y

(
(y2 + γy)a′(x+ y)

)

+ (αx2 − αy2 + βx− βy)a(x + y)

=(x− y)
(
− (z + γ)a′′(z)− 2a′(z) + (αz + β)a(z)

)

and z = x+ y. Thus, we arrive at the following general result.

Theorem 2.1. Suppose that kernel a of a Hankel operator A satisfies the differen-

tial equation

− (x + γ)a′′(x)− 2a′(x) + (αx+ β)a(x) = 0. (2.3)

Let f ∈ C2(R+) and let conditions (2.1) and (2.2) hold. Then

(LA−AL)f = 0. (2.4)

Note that after a change of variables

a(x) = (x+ γ)−1b(x+ γ) (2.5)

in (2.3), we get the Schrödinger equation with the Coulomb potential

− b′′(r) + (α+ βr−1)b(r) = 0. (2.6)

2.2. In specific examples below, we are going to use Theorem 2.1 in the following
way. If L is self-adjoint and has a simple spectrum, then the equality LA = AL
shows that A is a function F of L, i.e., the operators A and L have common
eigenfunctions. For a calculation of the function F, we argue as follows. Suppose
that a function ψµ satisfies conditions (2.1), (2.2) and the equation

−
(
(x2 + γx)ψ′

µ(x)
)′
+ (αx2 + βx)ψµ(x) = µψµ(x). (2.7)

Then according to equality (2.4) the same equation holds for the function Aψµ and

hence, for some numbers λ = λµ and λ̌ = λ̌µ,

(Aψµ)(x) = λψµ(x) + λ̌ψ̌µ(x) (2.8)

where ψ̌µ is a solution of the equation Lψ̌µ = µψ̌µ linearly independent of ψµ.

Further, comparing asymptotics of the functions ψµ(x), ψ̌µ(x) and (Aψµ)(x) as

x → 0 and x → ∞, we see that λ̌ = 0 and find λ = F(µ) as a function of µ.
Finally, if ψµ belong to the domain of some self-adjoint realization of the differential
operator L, then, for a proper normalization of functions ψµ, the system of all ψµ

is orthogonal and complete. In this case A = F(L). Note that this approach allows
one to avoid precise definitions of commutators and references to the functional
analysis.

It turns out that in all our applications F(µ) = π/ cosh
(
π
√
µ− 1/4

)
, and hence

A = π/ cosh
(
π
√
L− 1/4

)
.

Actually, it is somewhat more convenient to parametrize eigenfunctions by the
quasimomentum k > 0 related to µ and λ by the formulas

µ = k2 + 1/4 ∈ (1/4,∞), λ = π/ coshπk ∈ (0, π). (2.9)
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Note that ψk(x), ψµ(x) and ψλ(x) denote the same function provided the parame-
ters k, µ and λ are related by formulas (2.9).

The operator U defined by formula (1.3) is unitary and the operator UAU∗ acts
in L2(R+) as multiplication by the function λ(k) = π/ coshπk. Indeed, according to
the Fubini theorem it follows from the equation Aψk = λ(k)ψk that for g ∈ C∞

0 (R+)

(AU∗g)(x) =

∫ ∞

0

dkg(k)

∫ ∞

0

dya(x+ y)ψk(y)

=

∫ ∞

0

λ(k)ψk(x)g(k)dk = (U∗(λg))(x),

or equivalently

(UAf)(k) = λ(k)(Uf)(k), ∀f ∈ L2(R+). (2.10)

Since λ : R+ → (0, π) is a smooth one-to-one mapping, the operator A has the
simple absolutely continuous spectrum [0, π].

To realize this scheme, it is convenient to study the cases of singularities at
x = ∞ when γ > 0 and at x = 0 when γ = 0 separately.

3. Singularity at infinity

3.1. Set γ = 2. We first suppose that α = β = 0. Then the function a(x) =
(x+ 2)−1 satisfies equation (2.3), and the corresponding operator

L = − d

dx
p(x)

d

dx
where p(x) = x2 + 2x.

Let Pν(z) and Qν(z) be the Legendre functions (see, e.g., [3], Ch. 3) of the first
and second kinds, respectively. They are defined as solutions of the equation

(1− z2)u′′(z)− 2zu′(z) + ν(ν + 1)u(z) = 0, z > 1,

satisfying the conditions Pν(1) = 1 and Qν(z) = −2−1 ln(z − 1) + cν as z → 1 + 0
(the value of the number cν is inessential). Then the functions P−1/2+ik(x+1) and

Q−1/2+ik(x + 1) satisfy the equation Lu = (k2 + 1/4)u. We also note that (see
formulas (2.10.2) and (2.10.5) of [3])

P−1/2+ik(x+ 1) = m(k)x−1/2+ik +m(k)x−1/2−ik +O(x−3/2), x→ ∞, (3.1)

where

m(k) =
Γ(ik)√

2πΓ(1/2 + ik)
2ik. (3.2)

The operator L is symmetric in the space L2(R+) on the domain C∞
0 (R+),

but it is not essentially self-adjoint. Since both functions P−1/2+ik(x + 1) and

Q−1/2+ik(x+1) belong to L2 in a neighborhood of the point x = 0, the defect indices
of the operator L are (1, 1). One of self-adjoint extensions of L from C∞

0 (R+) (it
will be also denoted by L) is defined on the domain D(L) consisting of functions
f(x) from the Sobolev class H2

loc(R+) satisfying the boundary conditions

∃ lim
x→0

f(x), f ′(x) = o(x−1/2), x→ 0, (3.3)

(we call these boundary conditions regular); it is also required that f ∈ L2(R+) and
Lf ∈ L2(R+). Actually, the direct integration by parts shows that the operator L
is symmetric. Furthermore, using the appropriate Green function, we find that for
all h ∈ L2(R+) the equation (pf ′)′ = h has a solution satisfying condition (3.3).
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Thus the image of the operator L coincides with L2(R+), and hence L is self-adjoint
(cf. §132, part II, of [1]).

3.2. For a study of the operator L, it is convenient to make a standard (see,
e.g., book [11] by E. C. Titchmarsh) change of variables. Set

t = ω(x) =

∫ x

0

p(y)−1/2dy and f(x) = ω′(x)1/2f̃(ω(x)) =: (F f̃)(x). (3.4)

The operator F is unitary in the space L2(R+), and the operator L̃ = F−1LF acts

by the formula L̃ = −d2/dt2 + q(η(t)) where

q(x) = −16−1p(x)−1p′(x)2 + 4−1p′′(x)

and η = ω−1 is the inverse function to ω (so that x = η(t)).
In the case p(x) = x2 + 2x we have

ω(x) = 2 ln
(
x1/2 + (x+ 2)1/2

)
− ln 2 (3.5)

and hence

L̃ = − d2

dt2
+ q̃(t) + 1/4, (3.6)

where q̃(t) = −4−1
(
η2(t) + 2η(t)

)−1
. Since ω(x) = (2x)1/2 + O(x) as x → 0 and

ω(x) = ln(2x)+O(x−1) as x→ ∞, we see that η(t) ∼ t2/2 as t→ 0 and η(t) ∼ et/2
as t → ∞. It follows that q̃(t) ∼ −(4t2)−1 as t → 0 and q̃(t) = O(e−t) as t → ∞.

Note that the operator L̃ is self-adjoint on the domain D(L̃) consisting of functions

f̃(t) from the Sobolev class H2
loc(R+) satisfying the boundary conditions

∃ lim
t→0

t−1/2f̃(t), f̃ ′(t)− (2t)−1f̃(t) = o(t1/2), t→ 0, (3.7)

and such that f̃ ∈ L2(R+), L̃f̃ ∈ L2(R+).
All usual results of spectral and scattering theories can be applied to the oper-

ator L̃ and then used for the operator L. The operator L̃ has a simple absolutely
continuous spectrum coinciding with the interval [1/4,∞). It does not have eigen-

values because the equations L̃ũ = µũ, or equivalently Lu = µu, for µ ∈ R do
not have solutions from L2(R+) satisfying the regular boundary conditions at zero.

The diagonalization of the operator L̃ can be constructed (see, e.g., [11, 13]) in the
following way. Let ũk(t), k > 0, be a real-valued solution of the equation

L̃ũk = (k2 + 1/4)ũk (3.8)

satisfying boundary conditions (3.7). It has the asymptotics

ũk(t) = m(k)eikt +m(k)e−ikt + o(1) (3.9)

as t→ ∞. Then the operator Ũ defined by the equation

(Ũ f̃)(k) = (2π)−1/2|m(k)|−1

∫ ∞

0

ũk(t)f̃(t)dt, (3.10)

is unitary in the space L2(R+) and (Ũ L̃f̃)(k) = (k2 + 1/4)(Ũ f̃)(k).

Let us now make the change of variables (3.4) and set U = FŨF−1. Note that

(2π)−1/2|m(k)|−1 =
√
k tanhπk
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for the function m(k) defined by equation (3.2). It follows that the operator U
defined by the equation

(Uf)(k) =
√
k tanhπk

∫ ∞

0

P−1/2+ik(x+ 1)f(x)dx, (3.11)

is unitary in the space L2(R+) and

(ULf)(k) = (k2 + 1/4)(Uf)(k). (3.12)

3.3. Now we return to the Hankel operator A. Observe that the function
P−1/2+ik(x+1) satisfies2 both boundary conditions (2.1) and (2.2). It follows from
Theorem 2.1 that∫ ∞

0

(x+y+2)−1P−1/2+ik(y+1)dy = λP−1/2+ik(x+1)+ λ̌Q−1/2+ik(x+1). (3.13)

Considering here the limit x → 0, we see that λ̌ = 0. Then we take the limit
x→ ∞. It easily follows from (3.1) that the left-hand side of (3.13) equals

2Re
(
m(k)

∫ ∞

0

(x+ y + 2)−1y−1/2+ikdy
)
+O(x−1)

= 2Re
(
m(k)x−1/2+ik

∫ ∞

0

(t+ 1)−1t−1/2+ikdt
)
+O(x−1),

where we have set y = xt. Comparing this asymptotics with asymptotics (3.1) of
the right-hand side of (3.13), we see that

λ =

∫ ∞

0

(t+ 1)−1t−1/2+ikdt = π(coshπk)−1 (3.14)

and hence∫ ∞

0

(x+ y + 2)−1P−1/2+ik(y + 1)dy = π(coshπk)−1P−1/2+ik(x+ 1). (3.15)

It yields equation (2.10) with the operator U defined by formula (3.11). Since the
operator U is unitary, we have recovered the result of F. Mehler [6].

Proposition 3.1. The Hankel operator with kernel a(x) = (x+2)−1 has the simple

absolutely continuous spectrum coinciding with the interval [0, π]. Its normalized

eigenfunction corresponding to the spectral parameter λ = π(coshπk)−1 is given by

formula (1.2).

We emphasize that equation (3.15) has been obtained as a direct consequence of
the commutator method, without any use of the theory of special functions.

4. Singularity at zero

In the first three subsections we study the Hankel operator with kernel (1.4) and
in subs. 4 – with kernel (1.7). In both cases a(x) ∼ x−1 as x → 0 and a(x) decays
exponentially as x→ ∞. The corresponding operator L is defined by formula (1.6)
where γ = 0.

4.1. Note that in the case γ = 0, after a change of variables

ψ(x) = x−1ϕ(x)

2We are obliged to choose regular boundary conditions at zero since the function Q
−1/2+ik(x+

1) does not satisfy the second boundary condition (2.1)
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in (2.7), we get again (cf. equation (2.6)) the Schrödinger equation

− ϕ′′(x) + (α+ βx−1 − µx−2)ϕ(x) = 0 (4.1)

with the Coulomb potential but with a non-zero orbital term. Below we set α = 1/4.
Recall that the Whittaker function W−β,p(x) can be defined as the solution of

equation (4.1) for µ = 1/4− p2 such that

W−β,p(x) = x−βe−x/2(1 +O(x−1)) (4.2)

as x → ∞. Of course, W−β,−p(x) = W−β,p(x). In particular, the function b(x) =
W−β,1/2(x) satisfies equation (2.6) (where α = 1/4).

As far as asymptotics as x→ 0 are concerned (see §6.8 of [3]), we note that

W−β,ik(x) = m(k)x1/2+ik +m(k)x1/2−ik +O(x3/2), k > 0, x→ 0, (4.3)

where
m(k) = Γ(−2ik)Γ−1(1/2− ik + β). (4.4)

If p ≥ 0 and −1/2 + p+ β 6= −1,−2, . . ., we have as x→ 0

W−β,p(x) ∼ Γ(2p)Γ(1/2 + p+ β)−1x1/2−p, p > 0,

W−β,0(x) ∼ −Γ(1/2 + β)x1/2 ln x.
(4.5)

If −1/2 + p + β = −n where n = 1, 2, . . ., then taking into account formulas
(6.9.4) and (6.9.36) of [3], we can express the Whittaker functions in terms of the
Laguerre polynomials:

W−β,p(x) = (−1)n−1(n− 1)!e−x/2xp+1/2L2p
n−1(x). (4.6)

If γ = 0 and α = 1/4, then

L = − d

dx
x2

d

dx
+ x2/4 + βx. (4.7)

We emphasize that the coefficient β may be arbitrary. It turns out that the strong
degeneracy of the function x2 at x = 0 gives rise to a branch of the absolutely
continuous spectrum of the operator L.

First, let us define L as a self-adjoint operator in the space L2(R+). We will
check that the operator L is essentially self-adjoint on the domain C∞

0 (R+). Let3

(F f̃)(x) = x−1/2f̃(lnx). Then the transformation F : L2(R) → L2(R+) is unitary

and the operator L̃ = F−1LF acts by formula (3.6) where q̃(t) = e2t/4 + βet.

This is already a standard Sturm-Liouville operator in the space H̃ = L2(R). The

potential q̃(t) tends to 0 as t → −∞ and to +∞ as t → +∞. In particular, L̃ is
essentially self-adjoint on C∞

0 (R) which implies that L is essentially self-adjoint on
C∞

0 (R+) in the space L2(R+). Thus, a boundary condition at the point x = 0 is
unnecessary. Since q̃(t) → ∞ as t→ ∞, a quantum particle can evade to −∞ only.

This ensures that the spectrum of the operator L̃ is simple.

4.2. The expansion over eigenfunctions of the operator L̃ can be performed
by the following standard procedure (see, e.g., [13], §5.4). As we will see later,
in addition to the simple absolutely continuous spectrum which coincides with

[1/4,∞), for β < −1/2 the operator L̃ has a finite number of simple eigenvalues

µ1, . . . , µN , N = N(β), lying below the point 1/4. We denote by H̃(p) the subspace

3Note that the integral in (3.4) diverges for p(x) = x2 and hence the definition of the operator
F should be changed.
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spanned by the corresponding eigenfunctions. Let ũk(t), k > 0, be a real-valued
solution of equation (3.8) belonging to L2(R+). It has asymptotics (3.9) as t→ −∞
with a function m(k) which will be calculated later. Then the operator Ũ : H̃ →
L2(R+) defined by the equation (cf. (3.10))

(Ũ f̃)(k) = (2π)−1/2|m(k)|−1

∫ ∞

−∞
ũk(t)f̃(t)dt, (4.8)

is bounded, Ũ
∣∣
H̃(p) = 0, the mapping Ũ : H̃ ⊖ H̃(p) → L2(R+) is unitary and

equation

(Ũ L̃f̃)(k) = (k2 + 1/4)(Ũ f̃)(k)

holds.
The functions uk(x) = x−1/2ũk(lnx), k > 0, satisfy the equation

− (x2u′k(x))
′ + 4−1x2uk(x) + βxuk(x) = (k2 + 1/4)uk(x) (4.9)

and can be expressed in terms of Whittaker functions:

uk(x) = x−1W−β,ik(x). (4.10)

It follows from (4.3) that the function ũk(t) = et/2uk(e
t) has as t → −∞ asymp-

totics (3.9) with the function m(k) defined by (4.4). Calculating |m(k)| and making

in (4.4) the change of variables t = lnx, we find that the operator U = FŨF−1 is
given by the equation

(Uf)(k) = π−1
√
k sinh 2πk|Γ(1/2− ik + β)|

∫ ∞

0

x−1W−β,ik(x)f(x)dx.

It is bounded, U
∣∣
H(p) = 0, the mapping U : H ⊖ H(p) → L2(R+) is unitary and

equation (3.12) holds. Here H(p) is the subspace spanned by the eigenfunctions
ψ1, . . . , ψN of the operator L.

Let us calculate these functions. The function up(x) = x−1W−β,p(x) for p ≥ 0
satisfies equation (4.9) where the role of k2 is played by −p2. In view of (4.2) it
belongs to L2 at infinity. However, it follows from asymptotics (4.5) that it does
not belong to L2 in a neighborhood of the point x = 0 unless −1/2 + p+ β = −n
where n = 1, 2, . . .. Moreover, in view of (4.6) for all β = −1/2 the function
u0 6∈ L2. Thus, if β ≥ −1/2, the operator L is purely absolutely continuous. If
β < −1/2, it also has the eigenvalues µn = 1/4− (|β|+1/2−n)2 where n = 1, 2, . . .
and n < |β| + 1/2 (then p > 0). According to formula (4.6) the corresponding
eigenfunctions equal

ψn(x) = e−x/2xp−1/2L2p
n−1(x), p = |β|+ 1/2− n. (4.11)

4.3. Now we return to the Hankel operator A with kernel (1.4). It follows from
(4.2) that a(x) exponentially decays as x→ ∞, and it follows from the first formula
(4.5) for p = 1/2 that a(x) ∼ x−1 as x → 0. Observe that in view of asymptotics
(4.2) and (4.3), function (4.10) satisfies both boundary conditions (2.1) and (2.2).
Hence it follows from Theorem 2.1 that∫ ∞

0

a(x+ y)y−1W−β,ik(y)dy = λ(k)x−1W−β,ik(x) + λ̌(k)x−1M−β,ik(x) (4.12)

where the Whittaker functionM−β,ik is the solution of equation (2.6) exponentially
growing as x → ∞. Therefore considering the limit x → ∞ in (4.12), we see that
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necessarily λ̌(k) = 0. Then we take the limit x → 0 and use asymptotics (4.3).
Since a(x) ∼ x−1 as x→ 0, we have
∫ ∞

0

a(x + y)y−1W−β,ik(y)dy =2Re
(
m(k)

∫ ∞

0

(x + y)−1y−1/2+ikdy
)
+O(x1/2)

=2λ(k)Re
(
m(k)x−1/2+ik

)
+O(x1/2)

where λ(k) is again given by formula (3.14). This yields equation (1.8).
It remains to calculate eigenvalues λ1, . . . , λN of the operatorA. The correspond-

ing eigenfunctions are given by formula (4.11). We proceed again from equation
(4.12) where the role of ik is played by p = |β|+1/2−n. As before considering the
limit x→ ∞, we see that λ̌n = 0 and hence

∫ ∞

0

a(x+ y)e−y/2yp−1/2L2p
n−1(y)dy = λne

−x/2xp−1/2L2p
n−1(x). (4.13)

It follows from (1.4) and (4.2) that the left-hand side here equals

Γ(1 + β)x−β−1e−x/2

∫ ∞

0

e−yyp−1/2L2p
n−1(y)dy

(
1 +O(x−1)

)
, x→ ∞.

Putting together formulas (2.8.46) and (10.12.33) of [3], we see that

(n− 1)!

∫ ∞

0

e−yyp−1/2L2p
n−1(y)dy = Γ(p+ n− 1/2). (4.14)

Recall also that L2p
n−1(x) is a polynomial of degree n − 1 with the coefficient

(−1)n−1/(n− 1)! at xn−1. Hence it follows from relation (4.13) that

λn = (−1)nπ/ sinπβ, n = 1, 2, . . . , n < |β|+ 1/2. (4.15)

Since eigenfunctions of the operator L are orthogonal and complete, we have
recovered the result of M. Rosenblum [9].

Proposition 4.1. The Hankel operator A with kernel (1.4) has the simple abso-

lutely continuous spectrum coinciding with the interval [0, π]. Its normalized eigen-

function corresponding to a point λ = π(coshπk)−1 from the continuous spectrum

is given by the formula

ψk(x) = π−1
√
k sinh 2πk|Γ(1/2− ik + β)| x−1W−β,ik(x), k > 0.

Moreover, if β < −1/2, then the operator A has eigenvalues (4.15) with the corre-

sponding eigenfunctions defined by (4.11).

4.4. Next, we turn to the Hankel operator with singular kernel (1.7) which
probably was not considered in the literature. Recall that the MacDonald function

is defined by the relation Kp(z) = 2−1ieπip/2H
(1)
p (iz) where H

(1)
p is the Hankel

function. Now the function b(x) = xa(x) satisfies the Schrödinger equation (2.3)
for the zero energy α = 0 and the coupling constant β = 2. Of course, we could
have taken arbitrary β > 0, but we have to exclude negative β since in this case
the function b(x) grows as x→ ∞.

It follows from the well-known properties of H
(1)
p that function (1.7) has asymp-

totics

a(x) = 4π1/2x−3/4e−
√
8x(1 +O(x−1/2)) (4.16)

as x→ ∞ and a(x) ∼ x−1 as x→ 0.
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The corresponding operator

L = − d

dx
x2

d

dx
+ 2x

can be studied quite similarly to operator (4.7). For example, the operator L̃ =
F−1LF acts by formula (3.6) where q̃(t) = 2et. A solution of equation (2.7) where
µ = k2 + 1/4 belonging to L2 at infinity can be expressed again in terms of the
MacDonald function

uk(x) = x−1/2K2ik(
√
8x).

According to formulas (7.2.12) and (7.2.13) of [3] we have

uk(x) = m(k)x−1/2+ik +m(k)x−1/2−ik +O(x1/2), x→ 0,

where

m(k) = iπ2−1+ik
(
Γ(1 + 2ik) sinh 2πk

)−1
.

Calculating |m(k)| and using (4.8), we see that formula (1.3) now looks as

(Uf)(k) = 2π−1
√
k sinh 2πk

∫ ∞

0

x−1/2K2ik(
√
8x)f(x)dx. (4.17)

The operator L does not have eigenvalues because the functions x−1/2K2p(
√
8x)

for p ≥ 0 do not belong to L2 in a neighborhood of the point x = 0. Thus, similarly
to subs. 4.2, we see that the operator U defined by formula (4.17) is unitary in the
space L2(R+) and the operator L has the simple absolutely continuous spectrum
[1/4,∞).

Theorem 2.1 implies that
∫ ∞

0

a(x+ y)y−1/2K2ik(
√

8y)dy = λ(k)x−1/2K2ik(
√
8x) + λ̌(k)x−1/2H

(2)
2ik(i

√
8x)

(4.18)

(the Hankel function H
(2)
2ik(iz) exponentially increases as z → ∞) for some constants

λ(k) and λ̌(k). Since the integral in (4.18) (exponentially) decays as x → ∞,
necessarily λ̌(k) = 0. Comparing the asymptotics of the left- and right-hand sides
of (4.18) as x → 0 and using that a(x) ∼ x−1 as x → 0, we find that the constant
λ(k) is again given by formula (3.14). Thus, similarly to the previous subsection,
we obtain

Proposition 4.2. The Hankel operator A with kernel (1.7) has the simple abso-

lutely continuous spectrum coinciding with the interval [0, π]. Its normalized eigen-

function corresponding to a spectral point λ = π(coshπk)−1 is given by the formula

ψk(x) = 2π−1
√
k sinh 2πkx−1/2K2ik(

√
8x), k > 0.

As a by-product of our considerations, we obtain the equation

x1/2
∫ ∞

0

(x+ y)−1/2K1(
√
x+ y)y−1/2K2ik(

√
y)dy = π(coshπk)−1K2ik(

√
x).

We have not found this equation in the literature on special functions. Note, how-
ever, that it can formally be deduced from the Shanker equation (1.8) if one uses
the relation (formula (6.9.19) of [3])

lim
β→∞

Γ(β + 1)W−β,m(x/β) = 2x1/2K2m(2x1/2).
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4.5. The Carleman operator A trivially fits into the scheme exposed above. Now
the operator A commutes with operator (1.6) for α = β = γ = 0. This operator
has the absolutely continuous spectrum of multiplicity 2 coinciding with [1/4,∞).
It has eigenfunctions x−1/2+ik for all k ∈ R which are also eigenfunctions of the
operator A. The relation between the spectral parameters λ and k is again given
by formula (3.14) so that the operator A has the absolutely continuous spectrum
of multiplicity 2 coinciding with [0, π].

5. Regular kernels

5.1. Let us here consider kernels a(x) which decay rapidly as x → ∞ and have
finite limits as x→ 0. We set γ = 2 and distinguish the cases α > 0, β is arbitrary
and α = 0, β > 0. Let α = 1/4 and β = 2 in the first and second cases, respectively.
If α = 1/4, then the solution of equation (2.6) is given (see subs. 4.1) by the formula
b(r) = W−β,1/2(r) where W−β,1/2 is the Whittaker function. If α = 0 and β = 2,

then the solution of (2.6) equals b(r) = r1/2K1(
√
8r) where K1 is the MacDonald

function (see subs. 4.4). The corresponding functions (2.5) decay exponentially at
infinity and have finite limits as x→ 0. It follows that the operators A are compact.

Let the function ω(x) be defined by formula (3.5), η = ω−1 and

q̃(t) = −4−1
(
η2(t) + 2η(t)

)−1
+ αη2(t) + βη(t). (5.1)

Since η(t) ∼ et/2, the potential q̃(t) → +∞ as t → ∞. It follows that the operators

L̃ and hence L have now discrete spectra. We point out that these operators
are again defined by formulas (3.6) and (1.6) on functions satisfying boundary
conditions (3.7) and (3.3), respectively.

Theorem 2.1 implies that the operators A and L have common eigenfunctions.
Apparently, eigenfunctions of the operator L cannot be expressed in terms of
standard special functions. However, in their terms we can calculate eigenvalues
λ1, λ2, . . . of the operator A. Indeed, suppose that ψµ ∈ D(L) and Lψµ = µψµ.

Then the function ψ̃µ(t) = (F−1ψµ)(t) satisfies the equation

ψ̃′′
µ(t) + q̃(t)ψ̃µ(t) = (µ− 1/4)ψ̃µ(t)

where q̃(t) is function (5.1). For a suitable normalization, asymptotics of ψ̃µ(t) as
t→ ∞ is given (see, e.g., book [7]) by the semiclassical formula

ψ̃µ(t) ∼ q̃(t)−1/4 exp
(
−
∫ t

0

q̃(s)1/2ds
)
.

It follows that ψ̃µ(t) ∼ e−t/2 exp(−4−1et − βt) in the first case and ψ̃µ(t) ∼
e−t/4 exp(−23/2et/2) in the second case. Returning to the eigenfuctions ψµ(x),
we find that

ψµ(x) ∼ x−1−βe−x/2 and ψµ(x) ∼ x−3/4e−
√
8x, x→ ∞, (5.2)

in the first and second cases, respectively.
On the other hand, using asymptotics (4.2) and (4.16) for function (1.7), we see

that

(Aψµ)(x) ∼ x−1−βe−x/2

∫ ∞

0

e−y/2ψµ(y)dy

and

(Aψµ)(x) ∼
√
2πx−3/4e−

√
8x

∫ ∞

0

ψµ(y)dy
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as x → ∞ in the first and second cases, respectively. Comparing these relations
with relations (5.2) and using the equation Aψµ = λµψµ, we get expressions for
eigenvalues of the operators A:

λµ =

∫ ∞

0

e−y/2ψµ(y)dy and λµ =
√
2π

∫ ∞

0

ψµ(y)dy (5.3)

in the first and second cases, respectively.
Thus we have obtained the following results.

Proposition 5.1. The Hankel operator A with kernel

a(x) = (x+ 2)−1W−β,1/2(x + 2)

and the differential operator (1.6) for γ = 2 and α = 1/4 have common eigen-

functions. If ψµ ∈ D(L), Lψµ = µψµ and ψµ(x) has the first asymptotics (5.2) as

x→ ∞, then Aψµ = λµψµ where λµ is determined by the first formula (5.3).

Proposition 5.2. The Hankel operator A with kernel

a(x) = (x+ 2)−1/2K1(
√
8(x+ 2))

and the differential operator (1.6) for γ = 2, α = 0 and β = 2 have common

eigenfunctions. If ψµ ∈ D(L), Lψµ = µψµ and ψµ(x) has the second asymptotics

(5.2) as x → ∞, then Aψµ = λµψµ where λµ is determined by the first second

formula (5.3).

5.2. Finally, we consider kernel (1.4) for exceptional values β = −l where
l = 1, 2, . . .. To be more precise, we now set

a(x) = (−1)l−1(l − 1)!−1x−1Wl,1/2(x) = e−x/2L1
l−1(x), l = 1, 2, . . . , (5.4)

(here we have taken formula (4.6) into account). The Hankel operator A with this
kernel has rank l. Here we show how this simple example fits into the scheme
exposed above.

The spectral analysis of the corresponding operator (4.7) remains the same as in
subs. 4.2. In addition to the absolutely continuous spectrum [1/4,∞), the operator
L has eigenvalues µn = 1/4− (l + 1/2− n)2 where n = 1, . . . , l.

However, instead of the absolutely continuous spectrum, the operator A has the
zero eigenvalue of infinite multiplicity. Indeed, as in subs. 4.3, Theorem 2.1 yields
equation (4.12) where again λ̌(k) = 0. Observe that a(x) and hence in view of (4.3)
the integral in the left-hand side of (4.12) have finite limits as x→ 0. Therefore it
follows from (4.3) that necessarily λ(k) = 0 for all k > 0. Hence the kernel of the
operator A is spanned by the functions x−1Wl,ik(x), k > 0.

Eigenfunctions ψn(x) corresponding to non-zero eigenvalues λn of the operator
A are defined by formula (4.11) where p = l+ 1/2− n, n < l+ 1/2, and λn can be
found from equation (4.13):

∫ ∞

0

L1
l−1(x+ y)e−yyp−1/2L2p

n−1(y)dy = λnx
p−1/2L2p

n−1(x). (5.5)

Recall that Lα
p (x) is a polynomial of degree p with the coefficient (−1)p/p! at xp.

Comparing coefficients at the highest power xl−1 in the left- and right-hand sides
of (5.5) and taking into account formula (4.14), we find that

λn = (−1)n−l (n− 1)!

(l − 1)!

∫ ∞

0

e−yyp−1/2L2p
n−1(y)dy = (−1)n−l.
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Thus, we have obtained the following result.

Proposition 5.3. The Hankel operator A with kernel (5.4) has rank l. Its non-

zero eigenvalues are given by the formula λn = (−1)n−l where n = 1, . . . , l, and
the corresponding eigenfunctions ψn(x) are defined by equality (4.11) where p =
l+ 1/2− n.
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