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Elliptic operators with unbounded diffusion coefficients in Lp

spaces

G. Metafune, C. Spina∗

Abstract

In this paper we prove that, under suitable assumptions on α > 0, the operator L =
(1+ |x|α)∆ admits realizations generating contraction or analytic semigroups in L

p(RN ). For
some values of α, we also explicitly characterize the domain of L. Finally, some informations
about the location and composition of the spectrum are given.
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1 Introduction

In this paper we focus our attention on a class of elliptic operators with unbounded diffusion
coefficients. We deal with operators of the form

Lu = (1 + |x|α)∆u, (1)

for positive values of α, on Lp = Lp(RN , dx) with respect to the Lebesgue measure. The case α ≤ 2
has been already investigated in literature and for this reason we shall assume α > 2 throughout
the paper, even when some argument easily extends to lower values of α. We refer to [2] where it is
proved that the operator above generates a strongly continuous and analytic semigroup in Lp and
in spaces of continuous functions. For 1 < p < ∞ an explicit description follows from the a-priori
estimates

‖(1 + |x|α)D2u‖p ≤ C(‖u‖p + ‖(1 + |x|α)∆u‖p.

Similar estimates hold for a mor general class of operators, they can be deduced by some weigthed
norm inequalities for Caldéron-Zygmund singular integrals. Muckenhoupt and Wheeden for exam-
ple (see [12] or [14]) proved that estimates of the form

‖aD2u‖p ≤ C‖a∆u‖p

are true for a weight a in some suitable Muckenhoupt classes. In particular the estimates above
imply that

‖|x|αD2u‖p ≤ C‖|x|α∆u‖p (2)

and
‖(1 + |x|α)D2u‖p ≤ C(‖u‖p + ‖(1 + |x|α)∆u‖p
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for 0 < α < N
p′

where p′ is the conjugate exponent of p.

Similar estimates follow also by [6] where the author proved that certain singular integrals are
convolution operators in weighted Lp spaces for the weight 1 + |x|α, −N

p′
< α < N

p′
.

We will prove that for certain values of α > 2 the operator above admits realizations generating
analytic semigroups in Lp for 1 < p < ∞. Moreover for some values of α we will give also an
explicit description of the domain by proving some a-priori estimates.
The starting point is a generation result of strongly continuous semigroups in spaces of continuous
functions. It is known (see [11, Example 7.3]) that, if N ≥ 3, α > 2, the operator generates a
strongly continuous semigroup in C0(R

N ), it has also been proved that both the semigroup and
the resolvent are compact.

Notation. We use Lp for Lp(RN , dx), where this latter is understood with respect to the
Lebesgue measure. Cb(R

N ) is the Banach space of all continuous and bounded functions in RN ,
endowed with the sup-norm, and C0(R

N ) its subspace consisting of all continuous functions van-
ishing at infinity. C∞

c (RN ) denotes the set of all C∞ functions with compact support.

2 Solvability in spaces of continuos functions

The solvability of elliptic and parabolic problems associated to L in Lp depends on α, p,N . How-
ever, these restricions are not necessary in Cb(R

N ) for a larger class of operators. Following [11],
we recall the main results in spaces of continuos functions which will be useful for comparison
throughout the paper

Let A be a second order elliptic partial differential operator of the form

Au(x) =

N
∑

i,j=1

aij(x)Diju(x) +

N
∑

i=1

Fi(x)Diu(x) x ∈ R
N

under the following hypotheses on the coefficients: aij = aji, aij , Fi are real-valued locally Hölder
continuous functions of exponent 0 < α < 1 and the matrix (aij) satisfies the ellipticity condition

N
∑

i,j=1

aij(x)ξiξj ≥ λ(x)|ξ|2

for every x, ξ ∈ RN , with infK λ(x) > 0 for every compact K ⊂ RN . The operator A is locally
uniformly elliptic, that is uniformly elliptic on every compact subset of RN .
We endow A with its maximal domain in Cb(R

N ) given by

Dmax(A) = {u ∈ Cb(R
N ) ∩W 2,p

loc (R
N ) for all p < ∞ : Au ∈ Cb(R

N )}.

The main interest is in the existence of (spatial) bounded solutions of the parabolic problem

{

ut(t, x) = Au(t, x) x ∈ RN , t > 0,
u(0, x) = f(x) x ∈ RN (3)

with initial datum f ∈ Cb(R
N ). The unbounded interval [0,∞[ can be changed to any bounded

[0, T ] without affecting the results. Since the coefficients can be unbounded, the classical theory
does not apply and existence and uniqueness for (3) are not clear. Quite surprisingly, existence is
never a problem as stated in the following theorem.
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Theorem 2.1 There exists a positive semigroup (T (t))t≥0 defined in Cb(R
N ) such that, for any

f ∈ Cb(R
N ), u(t, x) = T (t)f(x) belongs to the space C

1+α
2 ,2+α

loc ((0,+∞) × RN ), is a bounded
solution of the following differential equation

ut(t, x) =

N
∑

i,j=1

aij(x)Diju(t, x) +

N
∑

i=1

Fi(x)Diu(t, x)

and satisfies
lim
t→0

u(t, x) = f(x)

pointwise.

When f ∈ C0(R
N ), then u(t, ·) → f uniformly as t → 0. This, however, does not mean that T (t)

is strongly continuous on C0(R
N ) since this latter need not to be preserved by the semigroup

The idea of the proof is to take an increasing sequence of balls filling the whole space and, in
each of them, to find a solution of the parabolic problem associated with the operator. Then the
sequence of solutions so obtained is proved to converge to a solution of the problem in RN . More
precisely, let us fix a ball Bρ = Bρ(0) in RN and consider the problem







ut(t, x) = Au(t, x) x ∈ Bρ, t > 0,
u(t, x) = 0 x ∈ ∂Bρ, t > 0
u(0, x) = f(x) x ∈ RN .

(4)

Since the operator A is uniformly elliptic and the coefficients are bounded in Bρ, there exists a
unique solution uρ of problem (4). The next step consists in letting ρ to infinity in order to define
the semigroup associated with A in RN . By using the parabolic maximum principle, it is possible
to prove that the sequence uρ increases with ρ when f ≥ 0 and is uniformly bounded by the
sup-norm of f . In virtue of this monotonicity and since a general f can be written as f = f+−f−,
the limit

T (t)f(x) := lim
ρ→∞

uρ(t, x)

is well defined for f ∈ Cb(R
N ) and one shows all relevant properties, using the interior Schauder

estimates.
It is worth-mentioning that also the resolvent of A, namely (λ − A)−1, is, for positive λ, the

limit as ρ → ∞ of the corresponding resolvents in the balls Bρ. The construction then shows that,
for positive f ∈ Cb(R

N ) and λ > 0, both the semigroup T (t)f (and the resolvent (λ − A)−1f)
select in a linear way the minimal solution among all bounded solutions of (3) (of λu −Au = f).
For this reason, from now on, the semigroup T (t) will be called the minimal semigroup associated
to A and will be denoted by Tmin(t). Its generator (A,D), where D ⊂ Dmax(A), will be denoted
by Amin

In contrast with the existence, the uniqueness is not guaranteed, in general, and relies on the
existence of suitable Lyapunov functions. We do not deal here with such a topic and refer again
to [11]. We only point out that uniqueness holds if and only if D = Dmax(A), i.e. when Amin

coincides with (A,Dmax(A)).
Let us specialize to our operator L.

Proposition 2.2 Let L = (1 + |x|α)∆.

(i) If α ≤ 2, the semigroup preserves C0(R
N ) and neither the semigroup nor the resolvent are

compact.
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(ii) If α > 2 and N = 1, 2, the semigroup is generated by (A,Dmax(A)), C0(R
N ) and Lp are

not preserved by the semigroup and the resolvent and both the semigroup and the resolvent
are compact.

(iii) If α > 2, N ≥ 3, then the semigroup is generated by (A,Dmax(A)) ∩ C0(R
N ), the resolvent

and the semigroup map Cb(R
N ) into C0(R

N ) and are compact.

See ([11, Example 7.3]). In particular (ii) will imply that if α > 2 and N = 1, 2, problem (3)
cannot be solved in Lp. Observe also that (iii) and the discussion above show that (Tmin(t))t≥0 is
strongly continuous on C0(R

N ).

3 Preliminary considerations in Lp

We consider the operator L̂p = (L, D̂p) on any domain D̂p contained in the maximal domain in
Lp(RN ) defined by

Dp,max(L) = {u ∈ Lp ∩W 2,p
loc : Lu ∈ Lp}. (5)

Note that Dp,max(L) is the analogous of Dmax(L) for p < ∞. We are interested in solvability of
elliptic and parabolic problems associated to L. We show that for certain values of p the equation

λu− Lu = f

is not solvable in Lp(RN ) for positive λ.

In the following proposition we show that functions in Dp,max(L) are globally in W 2,p.

Proposition 3.1

Dp,max(L) = {u ∈ W 2,p : (1 + |x|α)∆u ∈ Lp}.

Proof. It is clear that the right hand side is included in the left one. Conversely, if u ∈ Dp,max(L),
then u, ∆u ∈ Lp and we have to show that u ∈ W 2,p. Let v ∈ W 2,p be such that v−∆v = u−∆u.
Then w = u−v ∈ Lp solves w−∆w = 0. Since w is a tempered distribution, by taking the Fourier
transform it easily follows that w = 0, hence u = v.

The next lemma shows that the resolvent operator in Lp, if it exists, is a positive operator.

Lemma 3.2 Suppose that λ ∈ ρ(L̂p) for some λ ≥ 0. Then for every 0 ≤ f ∈ Lp,

(λ− L̂p)
−1f ≥ 0.

Proof. By density we may assume that 0 ≤ f ∈ C∞
c (RN ). Suppose first that λ > 0. We set

u = (λ− Lp)
−1f . Suppose supp f ⊂ B(R). Then u satisfies

λu− Lu = f

in B(R) and
λu− Lu = 0

in RN \B(R). By local elliptic regularity ([7, Theorem 6.5.3]), u ∈ C2,β
loc (R

N ) for every β < 1. In
RN \B(R), u satisfies

∆u =
λu

1 + |x|α
∈ Lp(RN ).
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By elliptic regularity, u ∈ W 2,p(RN \B(R)). If p >
N

2
, we immediately deduce u ∈ C0(R

N \B(R)).

Otherwise u ∈ Lp1(RN \B(R)) where
1

p1
=

1

p
−

2

N
(with the usual modification when p = N/2).

As before it follows ∆u ∈ Lp1(RN \B(R)) and u ∈ W 2,p1(RN \B(R)). By iterating this procedure
until pi >

N
2 we deduce u ∈ C0(R

N ). Therefore u attaints its minimum in a point x0 ∈ RN . The
equality

λu(x0) = (1 + |x0|
α)∆u(x0) + f(x0)

shows that u(x0) ≥ 0, since λ > 0, hence u ≥ 0. If λ = 0 ∈ ρ(L̂p), then λ ∈ ρ(L̂p) for small positive
values of λ and the thesis follows by approximation.

Lemma 3.3 Suppose that λ ∈ ρ(L̂p) for some λ ≥ 0. Then for every 0 ≤ f ∈ Cc(R
N ),

(λ− L̂p)
−1f ≥ (λ− Lmin)

−1f.

Proof. Let 0 ≤ f ∈ C∞
c (RN ) and set u = (λ − L̂p)

−1f . Proposition 3.2 and its proof show
that that 0 ≤ u ∈ Dmax(L). Since (λ − Lmin)

−1f is the minimal solution, we immediately have
u ≥ (λ− Lmin)

−1f .

Proposition 3.4 Let N ≥ 3, α > 2, p ≤ N
N−2 . Then ρ(L̂p) ∩ [0,∞[= ∅.

Proof. Let λ > 0 and χB(0) ≤ f ≤ χB(1) be a smooth radial function. Denote by u the (minimal)
solution of λu − Lu = f in C0(R

N ). Observe that from ([11, Example 7.3]) it follows that the
above equation has a unique solution in C0(R

N ) (not in Cb(R
N )). Hence, since the datum f is

radial, the solution u is radial too, and solves

λu(ρ)− (1 + ρα)

(

u′′(ρ) +
N − 1

ρ
u′(ρ)

)

= f(ρ).

For ρ ≥ 1, u solves the homogeneous equation

λu(ρ)− (1 + ρα)

(

u′′(ρ) +
N − 1

ρ
u′(ρ)

)

= 0.

Let us write u as u(ρ) = η(ρ)ρ2−N for a suitable function η. Elementary computations show that
η satisfies

λη(ρ)− (1 + ρα)

(

η′′(ρ) +
3−N

ρ
η′
)

= 0 (6)

for ρ ≥ 1. First observe that, since f 6= 0 is nonnegative, the strong maximum principle, see
[5, Theorem 3.5]), implies that u (and so η) is strictly positive. We use Feller’s theory to study
the asymptotic behavior of the solutions of the previous equation (see [3, Section VI.4.c]). We
introduce the Wronskian

W (ρ) = exp

{

−

∫ ρ

1

3−N

s
ds

}

= ρN−3

and the functions

Q(ρ) =
1

(1 + ρα)W (ρ)

∫ ρ

1

W (s)ds =
1

N − 2

1

(1 + ρα)ρN−3
(ρN−2 − 1)
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and

R(ρ) = W (ρ)

∫ ρ

1

1

(1 + sα)W (s)
ds = ρN−3

∫ ρ

1

1

(1 + sα)sN−3
ds.

Since α > 2 by assumption, we have Q ∈ L1(1,+∞) and R /∈ L1(1,∞). This means that ∞ is
an entrance endpoint. In this case there exists a positive decreasing solution η1 of (6) satisfying
limρ→∞ η1(ρ) = 1 and every solution of (6) independent of η1 is unbounded at infinity. This shows
that our solution u grows at infinity at least as ρ2−N and therefore it does not belong to Lp(RN ).
By Lemma 3.3 we deduce that λ 6∈ ρ(L̂p).

When N = 1, 2 and α > 2, then (3) is never solvable in Lp.

Proposition 3.5 Let N = 1, 2, α > 2. Then ρ(L̂p) ∩ [0,∞[= ∅.

This follows from Proposition 2.2 (ii), using Lemma 3.3.

4 Solvability in Lp

In this section we investigate the solvability of the equation λu − Lu = f in Lp, for λ ≥ 0. We
start with λ = 0. Since the equation −Lu = f is equivalent to −∆u(x) = f(x)/(1 + |x|α), we can
express u and its gradient through an integral operator involving the Newtonian potential. For
f ∈ Lp we set

Tf(x) = u(x) = CN

∫

RN

f(y) dy

(1 + |y|α)|x− y|N−2
(7)

and

Sf(x) = ∇u(x) = CN (N − 2)

∫

RN

f(y)(y − x) dy

(1 + |y|α)|x− y|N
(8)

where CN = (N(2−N)ωN )
−1

and ωN is the Lebesgue measure of the unit ball in RN .

We prove a preliminary result which will be useful to prove estimates for the norm of the
operator T in Lp.

Lemma 4.1 Let 2 < β < N . Then

1

N(2−N)ωN

∫

RN

dy

|x− y|N−2|y|β
=

1

(2− β)(N − β)
|x|2−β .

Proof. Set

u(x) =
1

N(2−N)ωN

∫

RN

dy

|x− y|N−2|y|β
.

By writing x, y in spherical coordinates, x = sη, y = rω, with η, ω ∈ SN−1, s, r ∈ [0,+∞), the
expression of u becomes

u(sη) =
1

N(2−N)ωN

∫

SN−1

dω

∫ ∞

0

rN−1dr

|sη − rω|N−2|r|β

=
1

N(2−N)ωN

∫

SN−1

dω

∫ ∞

0

rN−1−βdr

sN−2
∣

∣

∣
η −

r

s
ω
∣

∣

∣

N−2

=
1

N(2−N)ωN
s2−β

∫

SN−1

dω

∫ ∞

0

ξN−1−βdξ

|η − ξω|N−2
.
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By the rotational invariance of the integral,

u(sη) =
1

N(2−N)ωN
s2−β

∫

SN−1

dω

∫ ∞

0

ξN−1−βdξ

|e1 − ξω|N−2

=
1

N(2−N)ωN
s2−β

∫

RN

dy

|e1 − y|N−2|y|β
.

where e1 is the unitary vector in the canonical basis of SN−1. Therefore u(x) = C|x|2−β with

C =
1

N(2−N)ωN

∫

RN

dy

|e1 − y|N−2|y|β
.

To compute the constant C we note that u solves

∆u =
1

|x|β

or, in spherical coordinates,

u′′(ρ) +
N − 1

ρ
u′(ρ) =

1

ρβ
.

Inserting u(ρ) = Cρ2−β . we get C =
1

(2 − β)(N − β)
.

In the following lemma we investigate the boundedness of the operators T, S in weighted Lp-
spaces. Even though we need here only the boundedness of T in the unweighted Lp-space, we
prove the general result which will be of a central importance in the next sections.

Lemma 4.2 Let α ≥ 2 and N/(N − 2) < p < ∞. For every 0 ≤ β, γ such that β ≤ α − 2,
β < N

p′
− 2 and γ ≤ α− 1, γ < N

p′
− 1, there exists a positive constant C such that for any f ∈ Lp

‖| · |βu‖Lp(RN ) ≤ C‖f‖Lp(RN );

‖| · |γ∇u‖Lp(RN ) ≤ C‖f‖Lp(RN ),

where u is defined in (7).

Proof. Set x = sη, y = ρω with s, ρ ∈ [0,+∞), ηω ∈ SN−1, then

u(sη) =
1

N(2−N)ωN

∫

SN−1

dω

∫ ∞

0

f(ρω) ρN−1 dρ

(1 + ρα)|sη − ρω|N−2

=
1

N(2−N)ωN

∫

SN−1

dω

∫ ∞

0

s2f(sξω) ξN−1 dξ

(1 + (sξ)α)|η − ξω|N−2
.

We compute the Lp norm of | · |βu(·). We start by integrating with respect to s the inequality
above. We have, using Minkowski inequality for integrals,

(
∫ ∞

0

|u(sη)|p sβp+N−1 ds

)
1
p

≤

≤
1

N(N − 2)ωN

∫

SN−1

dω

∫ ∞

0

ξN−1 dξ

|η − ξω|N−2

(
∫ ∞

0

|f(sξω)|p sN−1+2p+βp ds

(1 + sαξα)p

)

1
p

=
1

N(N − 2)ωN

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−2ξ
N
p
+β+2

(
∫ ∞

0

|f(vω)|p

(1 + vα)p
vN−1+2p+βp dv

)
1
p

.
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By recalling that β ≤ α− 2 and since

v2+β

1 + vα
≤

(

2 + β

α− 2 + β

)

2+β
α α− 2 + β

α+ 2β
,

we obtain

(
∫ ∞

0

|u(sη)|p sβp+N−1 ds

)
1
p

≤

(

2 + β

α− 2 + β

)

2+β
α α− 2 + β

α+ 2β

1

N(N − 2)ωN
×

×

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−2ξ
N
p
+β+2

(
∫ ∞

0

|f(vω)|pvN−1 dv

)
1
p

.

Let us observe that, by Lemma 4.1 and the assumption β < N
p′

− 2, we have

1

N(N − 2)ωN

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−2ξ
N
p
+β+2

=
p2

(N + βp)(Np−N − βp− 2p)
. (9)

By applying Jensen’s inequality with respect to probability measures

ξN−1

c|η − ξω|N−2ξ
N
p
+β+2

dξ dω,

where c is the right-hand side in (9), we obtain

∫ ∞

0

|u(sη)|p sβp+N−1 ds ≤

(

2 + β

α− 2 + β

)

(2+β)p
α

(

α− 2 + β

α+ 2β

)p
cp−1

N(N − 2)ωN
×

×

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−2ξ
N
p
+β+2

∫ ∞

0

|f(vω)|pvN−1 dv.

By integrating with respect to η on SN−1, we obtain

∫

RN

|u(x)|p |x|βp ds ≤

(

2 + β

α− 2 + β

)

(2+β)p
α

(

α− 2 + β

α+ 2β

)p
cp−1

N(N − 2)ωN
×

×

∫

SN−1

dω

∫

SN−1

dη

∫ ∞

0

ξN−1dξ

|η − ξω|N−2ξ
N
p
+β+2

∫ ∞

0

|f(vω)|pvN−1 dv.

A simple change of variables gives

∫

SN−1

dη

∫ ∞

0

ξN−1dξ

|η − ξω|N−2ξ
N
p
+β+2

=

∫

SN−1

dη

∫ ∞

0

tN−1dt

|ηt− ω|N−2t
N
p′

−β

=

∫

RN

dy

|y − ω|N−2|y|
N
p′

−β
.
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By applying Lemma 4.1 again it follows that that
∫

RN

|u(x)|p |x|βp dx ≤ Cp

∫

RN

|f(x)|p dx

with

C =
p2

(N + βp)(Np−N − βp− 2p)

(

2 + β

α− 2 + β

)

2+β
α α− 2 + β

α+ 2β
. (10)

The Lp norm of | · |γ∇u(·) is estimated in a similar way but we shall not be as precise as before
concerning the constants. By the representation formula,

|∇u(x)| ≤ C

∫

RN

|f(y)| dy

(1 + |y|α)|x− y|N−1
.

and hence

|∇u(sη)| ≤ C

∫

SN−1

dω

∫ ∞

0

|f(ρω)| ρN−1 dρ

(1 + ρα)|sη − ρω|N−1

= C

∫

SN−1

dω

∫ ∞

0

s|f(sξω)| ξN−1 dξ

(1 + (sξ)α)|η − ξω|N−1
.

By Minkowski inequality and since γ ≤ α− 1,

(
∫ ∞

0

|∇u(sη)|p sγp+N−1 ds

)
1
p

≤ C

∫

SN−1

dω

∫ ∞

0

ξN−1 dξ

|η − ξω|N−1

(
∫ ∞

0

|f(sξω)|p sN−1+p+γp ds

(1 + sαξα)p

)

1
p

= C

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−1ξ
N
p
+γ+1

(
∫ ∞

0

|f(vω)|p

(1 + vα)p
vN−1+p+γp dv

)
1
p

≤ C

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−1ξ
N
p
+γ+1

(
∫ ∞

0

|f(vω)|pvN−1 dv

)
1
p

.

As before, the assumption γ < N
p′

− 1 imples that the integral

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−1ξ
N
p
+γ+1

=

∫

RN

dy

|η − y|N−1|y|
N
p
+γ+1

is finite and independent of η ∈ SN−1 (by the rotational invariance of the integrands). By applying
Jensen’s inequality we obtain

∫ ∞

0

|∇u(sη)|p sγp+N−1 ds

≤ C

∫

SN−1

dω

∫ ∞

0

ξN−1dξ

|η − ξω|N−1ξ
N
p
+γ+1

∫ ∞

0

|f(vω)|pvN−1 dv.

9



Integration with respect to η on SN−1 yields

∫

RN

|∇u(x)|p |x|γp ds

≤ C

∫

SN−1

dω

∫

SN−1

dη

∫ ∞

0

ξN−1dξ

|η − ξω|N−1ξ
N
p
+γ+1

∫ ∞

0

|f(vω)|pvN−1 dv.

A simple change of variables gives

∫

SN−1

dη

∫ ∞

0

ξN−1dξ

|η − ξω|N−1ξ
N
p
+γ+1

=

∫

SN−1

dη

∫ ∞

0

tN−1dt

|ηt− ω|N−1tN−N
p
−γ

=

∫

RN

dy

|y − ω|N−1|y|N−N
p
−γ

.

By the assumptions on γ, the last integral is convergent and independent of ω. It follows that

∫

RN

|∇u(x)|p |x|γp dx ≤ C

∫

RN

|f(x)|p dx

and the proof is complete.

By the previous lemma, the following estimate for the Lp-norm of the operator T immediately
follows.

Corollary 4.3 Let α ≥ 2 and N/(N − 2) < p < ∞. Then

‖T ‖p ≤

(

2

α− 2

)
2
α α− 2

α

p2

N(Np−N − 2p)
.

Proof. The estimate follows by setting β = 0 in (10).

Remark 4.4 The estimate with the constant C given by (10) is stable as p → ∞ only if β > 0.
On the other hand, the operator T is bounded also in L∞ (and its norm will be computed later
in Proposition 7.4). It is possible to prove that the operator T (with β = 0) is of weak-type p− p
with p = N/(N − 2) and then interpolate between N/(N − 2) and ∞ to obtain stable estimates for
large p. The weak-type estimate is deduced as follows. Write Tf as the Riesz potential I2 applied
to the function f(x)/(1 + |x|α) to get, using the classical estimate of the Riesz potentials through
the Hardy-Littlewood maximal function M ,

|Tf(x)| ≤ C

(

M

(

f(·)

1 + | · |α

)

(x)

)1−2/N ∥
∥

∥

∥

f(·)

1 + | · |α

∥

∥

∥

∥

2/N

1

then Holder inequality to control the L1-norms in terms of the LN/(N−2)-norm of f and the weak
1− 1 estimate for M . Such a proof works only for β = 0 and gives constants depending on those
of the Marzinkiewicz interpolation theorem and of the Hardy-Littlewood maximal function.

We can now prove the invertibility of L on Dp,max(L), defined in (5).

10



Proposition 4.5 Let α > 2 and N/(N − 2) < p < ∞. The operator L is closed and invertible on
Dp,max(L) and the inverse of −L is the operator T defined in (7).

Proof. The closedness of L on Dp,max(L) follows from local elliptic regularity. If u ∈ Dp,max(L)
satisfies Lu = 0, then ∆u = 0 and then u = 0, since u ∈ Lp. This shows the injectivity of L.
Finally, let f ∈ Lp and fn ∈ C∞

c (RN ) be such that fn → f in Lp. Then un = Tfn → u = Tf in
Lp, since T is bounded (apply Lemma 4.2 with β = 0). By elementary potential theory

∆un(x) =
fn(x)

1 + |x|α

hence un ∈ Dp,max(L) and Lun = fn. By the closedness of L, u ∈ Dp,max(L) and Lu = f .

Theorem 4.6 Let α > 2, N/(N − 2) < p < ∞ and λ ≥ 0. The operator λ − L is invertible on
Dp,max(L) and its inverse is a positive operator. Moreover, if f ∈ Lp∩C0(R

N ), then (λ−L)−1f =
(λ− Lmin)

−1f .

Proof. Let ρ be the resolvent set of (L,Dp,max(L)) and observe that the proposition above shows

that 0 ∈ ρ. Lemma 3.2 with D̂ = Dp,max(L) shows that if 0 ≤ λ ∈ ρ, than (λ − L)−1 ≥ 0 and
hence, by the resolvent equation, (λ− L)−1 ≤ (−L)−1 = T and therefore

‖(λ− L)−1‖ ≤ ‖T ‖ (11)

where the norm above is the operator norm in Lp. Let E = [0,∞[∩ρ. Then E is non empty
and open in [0,∞[, since ρ is open, and closed since the operator norm of (λ − L)−1 is bounded
in E. Then E = [0,∞[. To show the consistency of the resolvents we take f ∈ C∞

c (RN ) and

let u = (λ − L)−1f . As in Lemma 3.2 we see that u ∈ C0(R
N ) ∩ C2,β

loc (R
N ) for any β < 1. If

supp f ⊂ RN \B(R), then the equation Lu = λu holds outside B(R) and shows that u belongs to
Dmax(L) ∩ C0(R

N ), which is the domain of Lmin in C0(R
N ), see Proposition 2.2 (iii). Therefore

(λ−Lmin)
−1f = u = (λ−L)−1f . By density, this equality extends to all functions f ∈ Lp∩C0(R

N ).

It is worth mentioning that the resolvents of L in Lp and Lq are consistent, provided that
p, q > N/(N −2). This easily follows from above, together with a simple approximation argument,
since both resolvents are consistent with (λ−Lmin)

−1. Observe also that estimate (11) shows only
that the resolvent is bounded on [0,∞[ and is not sufficient to apply the Hille-Yosida theorem and
prove results for parabolic problems. This will be done in the next secion, under further restrictions
on the admitted values for p.

5 Sectoriality in Lp

We prove that, for 2 < α ≤ (N − 2)(p − 1) and N/(N − 2) < p < ∞, (L,Dp,max(L)) generates
a strongly continuous semigroup of positive contractions, analytic for α < (N − 2)(p − 1), which
coincides whith the minimal semigroup in Lp ∩ C0(R

N ).

Theorem 5.1 Let N ≥ 3, p > N/(N−2), 2 < α ≤ (p−1)(N−2). Then (L,Dp,max(L)) generates
a positive semigroup of contractions in Lp. If α < (p− 1)(N − 2), the semigroup is also analytic.
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Proof. Take f ∈ Lp(RN ), ρ > 0, λ ∈ C and consider the Dirichlet problem in Lp(B(ρ))

{

λu − Lu = f in B(ρ),
u = 0 on ∂B(ρ).

(12)

According to Theorem 9.15 in [5], for λ > 0 there exists a unique solution uρ in W 2,p(B(ρ)) ∩

W 1,p
0 (B(ρ)). In order to show that the above problem is solvable for complex values of λ and to

obtain estimates independent of ρ, we show that e±iθL is dissipative in B(ρ) for 0 ≤ θ ≤ θ0 and
a suitable 0 < θ0 ≤ π/2. Set u⋆ = uρ|uρ|p−2. Multiply Luρ by u⋆ and integrate over B(ρ). The
integration by parts is straightforward when p ≥ 2. For 1 < p < 2, |uρ|

p−2 becomes singular near
the zeros of uρ. It is possible to prove the the integration by parts is allowed also in this case (see
[9]). Notice also that all boundary terms vanish since uρ = 0 at the boundary. So we get

∫

B(ρ)

Luρ u
⋆dx = −

∫

B(ρ)

(1 + |x|α)|uρ|
p−4|Re(uρ∇uρ)|

2dx −

∫

B(ρ)

(1 + |x|α)|uρ|
p−4|Im(uρ∇uρ)|

2dx

−

∫

B(ρ)

uρ|uρ|
p−2∇(1 + |x|α)∇u dx− (p− 2)

∫

B(ρ)

(1 + |x|α)|uρ|
p−4uρ∇uρRe(uρ∇uρ)dx.

By taking the real and imaginary part of the left and the right hand side, we have

Re

(
∫

B(ρ)

Luρ u
⋆dx

)

= −(p− 1)

∫

B(ρ)

(1 + |x|α)|uρ|
p−4|Re(uρ∇uρ)|

2dx

−

∫

B(ρ)

(1 + |x|α)|uρ|
p−4|Im(uρ∇uρ)|

2dx−

∫

B(ρ)

|uρ|
p−2∇(1 + |x|α)Re(uρ∇uρ) dx;

Im

(
∫

B(ρ)

Luρ u
⋆dx

)

=− (p− 2)

∫

B(ρ)

(1 + |x|α)|uρ|
p−4Im(uρ∇uρ)Re(uρ∇uρ)dx

−

∫

B(ρ)

|uρ|
p−2∇(1 + |x|α)Im(uρ∇uρ) dx.

By Hardy’s inequality as stated in Proposition 8.7,

∣

∣

∣

∣

∣

∫

B(ρ)

|uρ|
p−2∇(1 + |x|α)Re(uρ∇uρ) dx

∣

∣

∣

∣

∣

≤ α

∫

B(ρ)

|uρ|
p−2|x|α−1|Re(uρ∇uρ)|dx

≤α

(

∫

B(ρ)

|uρ|
p−4|x|α|Re(uρ∇uρ)|

2dx

)
1
2
(

∫

B(ρ)

|uρ|
p|x|α−2dx

)
1
2

≤
pα

α− 2 +N

∫

B(ρ)

|uρ|
p−4(1 + |x|α)|Re(uρ∇uρ)|

2dx.

It follows that

−Re

(
∫

B(ρ)

Luρ u
⋆dx

)

≥

(

p− 1−
pα

α− 2 +N

)
∫

B(ρ)

(1 + |x|α)|uρ|
p−4|Re(uρ∇uρ)|

2dx

+

∫

B(ρ)

(1 + |x|α)|uρ|
p−4|Im(uρ∇uρ)|

2dx

12



and
∣

∣

∣

∣

Im

(
∫

B(ρ)

Luρ u
⋆dx

)∣

∣

∣

∣

≤ (p− 2)

(

∫

B(ρ)

|uρ|
p−4|x|α|Re(uρ∇uρ)|

2dx

)
1
2
(

∫

B(ρ)

|uρ|
p−4|x|α|Im(uρ∇uρ)|

2dx

)
1
2

+ α

∫

B(ρ)

|uρ|
p−2|x|α−1|Im(uρ∇uρ)| dx ≤

≤

(

p− 2 +
pα

α− 2 +N

)

(

∫

B(ρ)

|uρ|
p−4|x|α|Re(uρ∇uρ)|

2dx

)
1
2

×

(

∫

B(ρ)

|uρ|
p−4|x|α|Im(uρ∇uρ)|

2dx

)
1
2

.

Setting

B2 =

∫

RN

|uρ|
p−4|x|α|Re(uρ∇uρ)|

2dx,

C2 =

∫

RN

|uρ|
p−4|x|α|Im(uρ∇uρ)|

2dx,

we proved that

−Re

(
∫

RN

Luρ u
⋆dx

)

≥

(

p− 1−
pα

α− 2 +N

)

B2 + C2

and
∣

∣

∣

∣

∣

Im

(
∫

B(ρ)

Luρ u
⋆dx

)

∣

∣

∣

∣

∣

≤

(

p− 2 +
pα

α− 2 +N

)

BC.

Observe that p − 1 −
pα

α− 2 +N
is positive for α < (N − 2)(p − 1). In this case it is possible to

determine a positive constant lα, independent of ρ, such that
(

p− 1−
pα

α− 2 +N

)

B2 + C2 ≥ lα

(

p− 2 +
pα

α− 2 +N

)

BC

and, consequently,
∣

∣

∣

∣

∣

Im

(
∫

B(ρ)

Luρ u
⋆dx

)

∣

∣

∣

∣

∣

≤ l−1
α

{

−Re

(
∫

B(ρ)

Luρ u
⋆dx

)

}

.

If tan θα = lα, then e±iθL is dissipative in B(ρ) for 0 ≤ θ ≤ θα. The previous computations give
also the dissipativity of L if α = (N − 2)(p− 1). Let us introduce the sector

Σθ = {λ ∈ C \ {0} : |Arg λ| < π/2 + θ}.

It follows from [13, Theorem I.3.9], that problem (12) has a unique solution for every λ ∈ Σθ and
0 ≤ θ < θα and that there exists a constant Cθ, independent of ρ, such that the solution uρ satisfies

‖uρ‖Lp(B(ρ)) ≤
Cθ

|λ|
‖f‖Lp . (13)
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In the case α = (N − 2)(p− 1) the solutions uρ exist for Reλ > 0 and satisfy the estimate

‖uρ‖Lp(B(ρ)) ≤
1

Reλ
‖f‖Lp .

Moreover, if λ > 0 then uρ ≤ 0 if f ≤ 0 in B(ρ). In fact, multiplying the equation

λuρ − Luρ = f

by (u+
ρ )

p−1, integrating over B(ρ) and proceeding as before we obtain

λ

∫

B(ρ)

(u+
ρ )

p dx ≤

∫

B(ρ)

f(u+
ρ )

p−1 dx ≤ 0.

Therefore u+
ρ = 0 and uρ ≤ 0.

Next we use weak compactness arguments to produce a function u ∈ Dp,max(L) satisfying
λu − Lu = f . For definiteness, we consider the case α < (N − 2)(p − 1), the other one being
simpler, and fix λ ∈ Σθ, with 0 < θ < θα.

Let us fix a radius r and apply the interior Lp estimates ([5, Theorem 9.11]) together with (13)
to the functions uρ with ρ > r + 1

‖uρ‖W 2,p(B(r)) ≤ C1[‖λuρ − Luρ‖Lp(B(r+1)) + ‖uρ‖Lp(B(r+1))] ≤ C2‖f‖Lp.

By weak compactness and a diagonal argument, we can find a sequence ρn → ∞ such that the
functions (uρn

) converge weakly in W 2,p
loc to a function u. Clearly u satisfies λu− Lu = f and, by

(13),

‖u‖Lp ≤
Cθ

|λ|
‖f‖Lp. (14)

In particular u ∈ Dp,max(L) and, moreover, u is positive if λ, f ≥ 0. To complete the proof we
need only to show that λ− L is injective on Dp,max(L) for λ ∈ Σθ. Let

E = {r > 0 : Σθ ∩B(r) ⊂ ρ(L,Dp,max(L))}

and R = supE. Since 0 ∈ E, by Proposition 4.5, R is positive. On the other hand the norm of
the resolvent exists in B(R) ∩Σθ and is bounded by Cθ/|λ|, by (14), hence cannot explode on the
boundary of B(R). This proves that R = ∞ and concludes the proof.

Finally, let us show that on Lp ∩ C0(R
N ) the semigroup coincide with Tmin of Section 2. In

particular, the semigroups are coherent in different Lp spaces (when they are defined).

Corollary 5.2 Let (Tp(t)) be the semigroup generated by (L,Dp,max(L)) in Lp and (Tmin(t)) be
the minimal semigroup in C0(R

N ). Then for every f ∈ C0(R
N )∩Lp, Tp(t)f = Tmin(t)f . Moreover,

if p, q are allowed in the above theorem and f ∈ Lp ∩ Lq, then Tp(t)f = Tq(t)f .

Proof. Since (λ − L)−1f = (λ − Lmin)
−1f for f ∈ Lp ∩ C0(R

N ), see Theorem 4.6, the thesis
follows by representing the semigroups as the limit of iterates of the corresponding resolvents.
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6 Domain Characterization

The main result of this section consists in showing that, for N ≥ 3, 1 < p < ∞, 2 < α < N/p′, the
maximal domain Dp,max(L) defined in (5) coincides with the weighted Sobolev space Dp defined
by

Dp = {u ∈ W 2,p
loc (R

N ) ∩ Lp(RN ) : (1 + |x|α−2)u, (1 + |x|α−1)∇u, (1 + |x|α)D2u ∈ Lp(RN )}

and endowed with its canonical norm.

Remark 6.1 Observe that the assumption 2 < α < N/p′ forces p to be strictly greater than N
N−2 ,

according with Proposition 3.4.

The next lemma provides a core for Dp.

Lemma 6.2 The space C∞
c (RN ) is dense in Dp with respect to the norm

‖u‖D(Ap) = ‖u‖Lp(RN )+ ‖(1+ |x|α−2)u‖Lp(RN )+ ‖(1+ |x|α−1)∇u‖Lp(RN )+ ‖(1+ |x|α)D2u‖Lp(RN ).

Proof. Let us first observe that a function u ∈ W 2,p(RN ) with compact support can be approxi-
mated by a sequence of C∞ functions with compact support, in the D(Ap) norm. Indeed, if ρn are
standard mollifiers, un = ρn ∗ u ∈ C∞

c (RN ), suppun ⊂ supp u + B(1) for any n ∈ N and un → u
in Dp since (1 + |x|α−2), (1 + |x|α−1), (1 + |x|α) are bounded (uniformly with respect to n) on
suppu+B(1). Next we show that any function u in Dp can be approximated, with respect to the
norm of D(Ap), by a sequence of functions in W 2,p(RN ) each having a compact support. Let η be
a smooth function such that η = 1 in B(1), η = 0 in RN \B(2), 0 ≤ η ≤ 1 and set ηn(x) = η

(

x
n

)

.
If u ∈ Dp, then un = ηnu are compactly supported functions in W 2,p(RN ), un → u in Lp(RN ),
(1+ |x|α−2)un → (1+ |x|α−2)u in Lp(RN ) by dominated convergence. Concerning the convergence
of the derivatives we have

(1 + |x|α−1)∇un =
1

n
(1 + |x|α−1)∇η

(x

n

)

u+ (1 + |x|α−1)η
(x

n

)

∇u.

As before,

(1 + |x|α−1)η
(x

n

)

∇u → (1 + |x|α−1)∇u

in Lp(RN ). For the left term, since ∇η(x/n) can be different from zero only for n ≤ |x| ≤ 2n we
have

1

n
(1 + |x|α−1)

∣

∣

∣
∇η
(x

n

)∣

∣

∣
|u| ≤ C(1 + |x|α−2)|u|χ{n≤|x|≤2n},

and the right hand side tends to 0 as n → ∞. A similar argument shows the convergence of the
second order derivatives in the weighted Lp norm.

We can prove that L is closed on Dp.

Proposition 6.3 assume that 2 < α < N/p′. Then there exists a positive constant C such that
for any u ∈ Dp

‖u‖Lp(RN ) + ‖(1 + |x|α−2)u‖Lp(RN ) + ‖(1 + |x|α−1)∇u‖Lp(RN ) + ‖(1 + |x|α)D2u‖Lp(RN )

≤ C‖Lu‖Lp(RN ).
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Proof. Let u ∈ C∞
c (RN ) and set f = −Lu. Then f ∈ C2

c (R
N ), (1 + |x|α)∆u(x) = −f(x) or

equivalently

−∆u(x) =
f(x)

1 + |x|α
.

By elementary potential theory, u is given by (7). By setting β = α− 2 and γ = α− 1 in Lemma
4.2 and since α < N

p′
, we deduce that

‖u‖Lp(RN ) ≤ C‖Lu‖Lp(RN ),

‖(1 + |x|α−2)u‖Lp(RN ) ≤ C‖Lu‖Lp(RN ),

and
‖(1 + |x|α−1)∇u‖Lp(RN ) ≤ C‖Lu‖Lp(RN )

for every u ∈ C∞
c (RN ). In order to prove the estimates of the second order derivatives, we apply

the classical Calderón- Zygmund inequality to (1 + |x|α)u and the estimates of the lower order
derivates obtained above. We deduce

‖(1 + |x|α)D2u‖Lp(RN )

≤ C(α)[‖D2((1 + |x|α)u)‖Lp(RN )) + ‖(1 + |x|α−1)∇u‖Lp(RN ) + ‖(1 + |x|α−2)u‖Lp(RN )]

≤ C(N, p, α)[‖∆((1 + |x|α)u)‖Lp(RN ) + ‖Lu‖Lp(RN )]

≤ C(N, p, α)[‖(1 + |x|α)∆u‖Lp(RN ) + ‖Lu‖Lp(RN )] = C(N, p, α)‖Lu‖Lp(RN ).

By Lemma 6.2, these estimates extend from C∞
c (RN ) to Dp.

The following lemma is a tool to prove the equality Dp = Dp,max(L). Once the latter equality
has been proved, it is an obvious consequence of Proposition 4.5.

Lemma 6.4 If 2 < α < N/p′, the operator −(L,Dp) is invertible and its inverse is the operator
T defined in (7).

Proof. In fact, T is bounded in Lp, by Lemma 4.2 with β = 0, and the equality u = −TLu holds
for every u ∈ C∞

c (RN ). Since C∞
c (RN ) is a core for (L,Dp), see Lemma 6.2, then u = −TLu for

every u ∈ Dp. Since (L,Dp) is injective, the proof is complete.

Theorem 6.5 If 2 < α < N/p′, then Dp coincides with the maximal domain in Lp, that is

Dp = {u ∈ Lp ∩W 2,p
loc : Lu ∈ Lp}.

Proof. The inclusion Dp ⊂ Dp,max(L) is obvious. Let now u ∈ Dp,max(L). By Corollary 6.4,
there exists v ∈ Dp such that Lv = Lu. Therefore u− v belongs to the maximal domain of L and
L(u− v) = 0, that is ∆(u − v) = 0 . Since u, v ∈ Lp, then u = v and u belongs to Dp.

Next we show that if α ≥ N/p′ then Dp is properly contained in Dp,max(L)

Proposition 6.6 Let N ≥ 3, p > N/(N − 2), α ≥ N/p′, α > 2. Then Dp is a proper subset of
Dp,max(L).
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Proof. Let χB(1) ≤ f ≤ χB(2) be a smooth radial function. Denote by u the unique solution in
Dp,max(L) of Lu(ρ) = (1+ρα)f(ρ), see Proposition 4.5. Since the datum f is radial, by uniqueness,
the solution u is radial too, hence it solves

u′′(ρ) +
N − 1

ρ
u′(ρ) = f(ρ).

For ρ ≥ 2, u solves the homogeneous equation

u′′(ρ) +
N − 1

ρ
u′(ρ) = 0,

hence it is given by u = cρ2−N for some positive c. Then

∫

RN

|(1 + |x|α−2)u|pdx ≥ c1

∫ ∞

2

(1 + ρα−2)pρp(2−N)ρN−1 dρ ≥ C

∫ ∞

2

ρpα−Np+N−1dρ.

The last integral converges if and only if α <
N

p′
. In a similar way one can show that (1+|x|α−1)∇u

and (1 + |x|α)D2u are not in Lp(RN ).

A partial characterization of Dp,max(L) can be obtained from Lemma 4.2.

Proposition 6.7 Let N ≥ 3, p > N/(N−2), α ≥ N/p′. If 0 ≤ β < N/p′−2 and 0 ≤ γ < N/p′−1,
then |x|βu and |x|γ∇u belong to Lp, for every u ∈ Dp,max(L).

Proof. This follows immediately from Lemma 4.2, since the operator −T defined in (7) is the
inverse of (L,Dp,max(L)).

Observe that for β = γ = 0 the above result has been already proved in Proposition 3.1.
If α > N/p′, then C∞

c (RN ) is not a core for L. This fact also gives Dp 6= Dp,max(L) in this
case.

Proposition 6.8 Let α > N/p′. Then L(C∞
c (RN )) is not dense in Lp(RN ).

Proof. It is sufficient to observe that 0 6=
1

1 + |x|α
∈ Lp′

(RN ) and

∫

RN

(1 + |x|α)∆u
1

1 + |x|α
dx =

∫

RN

∆u dx = 0

for every u ∈ C∞
c (RN ).

Proposition 6.9 Let α = N/p′. Then L(C∞
c (RN )) is dense in Lp(RN ).

Proof. Let g ∈ Lp′

(RN ) such that

∫

RN

(1 + |x|α)∆u · g dx = 0

for every u ∈ C∞
c (RN ). It follows that

∆(g(1 + |x|α)) = 0
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in the distributional sense, hence in a classical sense. Set h = g(1 + |x|α). Since h is an harmonic
function, it satisfies

|∇h(0)| ≤
C

RN+1

∫

B(0,R)

|h|dx

for every R > 0. By assumption g =
h

(1 + |x|α)
∈ Lp′

(RN ), therefore Hölder’s inequality yields

|∇h(0)| ≤
C

RN+1

∫

B(0,R)

|h|

1 + |x|α
(1 + |x|α)dx ≤ CR−N−1+N

p
+α = CR

α−N
p′

−1
= CR−1.

Letting R to infinity, we deduce that |∇h(0)| = 0. In a similar way one proves that |∇h(x0)| = 0

for every x0 ∈ RN . It means that h = C for some constant C and g =
C

1 + |x|α
∈ Lp′

(RN ). But

1

1 + |x|α
∈ Lp′

(RN ) if and only if α > N
p′
, therefore C = 0 and, consequently, g = 0. This proves

the density of L(C∞
c (RN )) in Lp(RN ).

It can be proved that the a-priori estimates of Proposition 6.3 for p = 2 still hold in C∞
c (RN ) if

α 6= N/2. However, since C∞
c (RN ) is not a core for (L,D2,max(L), for α > N/2 they do not extend

to the domain of L. Next we show that the a-priori estimates fail even in C∞
c (RN ) if α = N/p′,

which is a core by the Proposition above.

Proposition 6.10 Let N ≥ 3, α = N/p′. Then the estimates in Proposition 6.3 do not hold on
C∞

c (RN ).

Proof. Let, R ≥ 2, φ ∈ C∞
c (RN ) be a radial function such that φ = 1 in B(R) \ B(2), φ = 0

in B(1) ∪
(

RN \B(2R)
)

, ‖φ′
R‖∞ ≤ C

R , ‖φ′′
R‖∞ ≤ C

R2 and set u(ρ) = φRρ
2−N , N > 2. Then

u ∈ C∞
c (RN ) (we omit to indicate the dependence of u on R) and

∆u = u′′ +
N − 1

ρ
u′ = φ′′

R(ρ)ρ
2−N + (3 −N)φ′

R(ρ)ρ
1−N .

A straightforward computation shows that, for α = N
p′
,

∫

RN

|(1 + |x|α)∆u|p dx ≤ C

with C independent of R. On the other hand u′(ρ) = φ′
R(ρ)ρ

2−N + φR(2−N)ρ1−N and

∫ ∞

0

(1 + ρα−1)pρN−1|u′(ρ)|p dρ =

∫ 2R

1

(1 + ρα−1)pρN−1
∣

∣φ′
R(ρ)ρ

2−N + φR(2−N)ρ1−N
∣

∣

p
dρ.

The last integral tends to ∞ as R → ∞ since

∫ 2R

1

(1 + ρα−1)pρN−1
∣

∣φR(2−N)ρ1−N
∣

∣

p
dρ ≥ C logR.

Therefore the Lp-norm of (1 + |x|α−1)∇u cannot be controlled by the Lp-norm of Lu on C∞
c (RN )

Similarly one shows that the Lp-norm of (1 + |x|α)D2u cannot be controlled by the Lp-norm of
Lu.
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7 The operator in C0(R
N)

Let
D(L) = Dmax(L) ∩ C0(R

N )

be the generator of (Tmin(t))t≥0 in C0, see Proposition 2.2 (iii) and note that we need the only
restriction N,α > 2.

As in the Lp-case we give a description of the domain when α < N and a partial description
when α ≥ N .

We need the analogous of Lemma 4.2 for p = ∞

Lemma 7.1 Let γ, β > 0 such that γ < N and γ + β > N . Set

J(x) =

∫

RN

dy

|x− y|γ(1 + |y|β)
.

Then J is bounded in RN and has the following behaviour as |x| goes to infinity

J(x) ≃







c1|x|N−(γ+β) if β < N
c2|x|−γ log |x| if β = N
c3|x|−γ if β > N

for suitable positive constants c1, c2, c3.

Proof. Since
1

|y|γ
and

1

1 + |y|β
are radial decreasing J(x) ≤ J(0) < ∞. In order to prove the

asymptotic behaviour, we write J in spherical coordinates. Set x = sη, y = ρω with s, ρ ∈ [0,+∞),
ηω ∈ SN−1, then

J(sη) =

∫

SN−1

dω

∫ ∞

0

ρN−1 dρ

(1 + ρα)|sη − ρω|N−2

=

∫

SN−1

dω

∫ ∞

0

sNξN−1 dξ

sγ(1 + (sξ)β)|η − ξω|γ
=

∫

SN−1

dω

∫ ∞

0

sN−γξN−1 dξ

(1 + sβξβ)|e1 − ξω|γ

=

∫

SN−1

dω

∫ 1
2

0

sN−γξN−1 dξ

(1 + sβξβ)|e1 − ξω|γ
+

∫

SN−1

dω

∫ ∞

1
2

sN−γξN−1 dξ

(1 + sβξβ)|e1 − ξω|γ
.

Set

J1(sη) =

∫

SN−1

dω

∫ 1
2

0

sN−γξN−1 dξ

(1 + sβξβ)|e1 − ξω|γ

and

J2(sη) =

∫

SN−1

dω

∫ ∞

1
2

sN−γξN−1 dξ

(1 + sβξβ)|e1 − ξω|γ
.

Concerning J2, we have

lim
s→+∞

sγ+β−NJ2 =

∫

SN−1

dω

∫ ∞

1
2

ξN−1 dξ

ξβ|e1 − ξω|γ
=

∫

RN\B(0, 12 )

dy

|y|β |e1 − y|γ
= C > 0
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for some positive contant C. Therefore

J2(x) ≃ C|x|N−(γ+β) (15)

as |x| → ∞. Let us estimate the remaining term. We have

J1(sη) =

∫

SN−1

dω

∫ 1
2

0

sN−γξN−1 dξ

(1 + sβξβ)|e1 − ξω|γ
= s−γ

∫

SN−1

dω

∫ s
2

0

tN−1 dt

(1 + tβ)
∣

∣e1 −
t
sω
∣

∣

γ .

Since 1
2 ≤

∣

∣e1 −
t
sω
∣

∣ ≤ 3
2 ,

c1J1 ≤ s−γ

∫ s
2

0

tN−1 dt

(1 + tβ)
≤ c2J1

for some positive c1, c2. Evidently

s−γ

∫ s
2

0

tN−1 dt

(1 + tβ)
≃







|s|N−(γ+β) if β < N,
|s|−γ log |x| if β = N,
|s|−γ if β > N

as s goes to infinity. From (15) and the last estimate the aymptotic behaviour of J follows.

The following two results are deduced from the lemma above as Theorem 6.5 and Proposition
6.7 are deduced from Lemma 4.2.

Theorem 7.2 Let 2 < α < N . Then

D(L) = {u ∈ C0 : (1 + |x|α−2)u, (1 + |x|α−1)∇u, (1 + |x|α)∆u ∈ C0}

Proposition 7.3 Let N ≥ 3, α ≥ N . If 0 ≤ β < N − 2 and 0 ≤ γ < N − 1, then for every
u ∈ D(L), |x|βu and |x|γ∇u belong to C0.

Finally, we compute the operator norm in C0 of the operator T = (−L)−1 defined in (7)

Proposition 7.4 If N ≥ 3 and α > 2 then

‖T ‖∞ =
π

(N − 2)α sin
(

2
απ
) .

Proof. We have

‖T ‖ =
1

N(N − 2)ωN
sup
x∈RN

J(x) =
1

N(N − 2)ωN
J(0) =

1

N(N − 2)ωN

∫

RN

dy

|y|N−2(1 + |y|α)
.

Since

1

NωN

∫

RN

dy

|y|N−2(1 + |y|α)
=

∫ ∞

0

sN−1

sN−2(1 + sα)
ds =

1

α

∫ ∞

0

t
2
α
−1

1 + t
dt =

π

α sin
(

2
απ
)

the proof is complete.
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8 Discreteness and location of the spectrum

Throughout this section, to unify the notation, when p = ∞, Lp stands for C0 and Dp,max(L) for
D(L).

Proposition 8.1 If N/(N − 2) < p < ∞, 2 < α ≤ ∞, then the resolvent of (L,Dp,max(L)) is
compact in Lp.

Proof. Let us prove that Dp,max(L) is compactly embedded into Lp for p < ∞. Let U be
a bounded subset of Dp,max(L). Fixing 0 < β < α − 2, N/p′ − 2 in Lemma 4.2 we obtain
∫

RN |(1 + |x|β)u|p ≤ M for some positive M and for every u ∈ U . Then, given ε > 0, there exists
R > 0 such that

∫

|x|>R

|u|p < εp

for every u ∈ U . Let U ′ be the set of the restrictions of the functions in U to B(R). Since the
embedding of W 2,p(B(R)) into Lp(B(R)) is compact, the set U ′ which is bounded in W 2,p(B(R))
is totally bounded in Lp(B(R)). Therefore there exist n ∈ N, f1, . . . , fn ∈ Lp(B(R)) such that

U ′ ⊆
n
⋃

i=1

{f ∈ Lp(B(R)) : ‖f − fi‖Lp(B(R)) < ε}.

Set f i = fi in B(R) and f i = 0 in R
N \B(R). Then f i ∈ Lp(RN ) and

U ⊆
n
⋃

i=1

{f ∈ Lp(RN ) : ‖f − f i‖Lp(R) < 2ε}.

It follows that U is relatively compact in Lp(RN ). The compactness of the resolvent of (L,D(L))
in C0 follows similarly from the results of the previous section or from ([11, Example 7.3]).

Clearly, the spectrum of L consists of eigenvalues. Let us show that it is independent of p.

Corollary 8.2 If N/(N − 2) < p ≤ ∞, 2 < α < ∞, then the spectrum of (L,Dp,max(L)) is
independent of p.

Proof. Let ρp, ρq be the resolvent sets in Lp, Lq, respectively. Then 0 ∈ ρp∩ρq and the inverse of
L in Lp and in Lq is given by the operator −T defined in (7), see Proposition 4.5. This shows the
consistency of the resolvents at 0 and, since ρp ∩ ρq is connected, the consistency of the resolvents
at any point of ρp ∩ ρq, see [1, Proposition 2.2]. An application of [1, Proposition 2.6] concludes
the proof.

In order to have more information on the spectrum of L, we introduce the Hilbert space L2
µ,

where dµ(x) = (1 + |x|α)−1dx, endowed with its canonical inner product. Note that the measure
µ is finite if and only if α > N . We consider also the Sobolev space

H = {u ∈ L2
µ : ∇u ∈ L2}

endowed with the inner product

(u, v)H =

∫

RN

(uv̄ dµ+∇u · ∇v̄ dx)

21



and let V be the closure of C∞
c in H , with respect to the norm of H . Observe that Sobolev

inequality
‖u‖22∗ ≤ C2

2‖∇u‖22 (16)

holds in V but not in H (consider for example the case where α > N and u = 1). Here 2∗ =
2N/(N − 2) and C2 is the best constant for which the equality above holds.

Lemma 8.3 If α > N , the embedding of V in L2
µ is compact.

Proof. The proof is very similar to that of Proposition 8.1 once one notes that on any ball B(R)
the measure µ is bounded above and below from zero. Therefore, it suffices to show that given U
a bounded subset of V and ε > 0, there exists R > 0 such that

∫

|x|>R

|u|2 dµ < ε2

for every u ∈ U . This easily follows from (16) since

∫

|x|>R

|u|2 dµ ≤

(

∫

|x|>R

|u|
2N

N−2 dx

)1− 2
N
(

∫

|x|>R

1

(1 + |x|α)
N
2

dx

)
2
N

.

Next we introduce the continuous and weakly coercive symmetric form

a(u, v) =

∫

RN

∇u · ∇v̄ dx (17)

for u, v ∈ V and the self-adjoint operator L defined by

D(L) = {u ∈ L2
µ : there exists f ∈ L2

µ : a(u, v) = −

∫

RN

f v̄ dµ for every v ∈ V} Lu = f.

Since a(u, u) ≥ 0, the operator L generates an analytic semigroup of contractions in etL in L2
µ.

An application of the Beurling-Deny criteria shows that the generated semigroup is positive and
L∞-contractive. For our purposes we need to show that the resolvent of L and of (L,Dp,max(L))
are coherent. This is done in the following proposition.

Proposition 8.4

D(L) ⊂ {u ∈ V ∩W 2,2
loc : (1 + |x|α)∆u ∈ L2

µ}

and Lu = (1 + |x|α)u for u ∈ D(L). If λ > 0 and f ∈ Lp ∩ L2
µ, then

(λ− L)−1f = (λ− L)−1f.

Proof. The first part of the proposition easily follows from local elliptic regularity, testing with
any v ∈ C∞

c in (17). To show the coherence of the resolvents we consider f ∈ C∞
c , supp f ⊂ B(R)

and u = (λ − Lmin)
−1f . Then u ∈ D(L) solves

∆u =
λu

1 + |x|α
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outside B(R) and is a C2-function. Theorem 4.6 implies that u ∈ Dp,max(L) for every p >
N/(N − 2). If N > 4, then u ∈ D2,max(L) hence ∇u ∈ L2, see Proposition 3.1, and clearly u ∈ L2

µ.
This yields u ∈ H but not yet u ∈ V . To show that u can be approximated with a sequence of
C∞

c -functions, in the norm of H , we fix a smooth C∞ function η such that η ≡ 1 in B(1) and
η ≡ 0 outside B(2) and set ηn(x) = η(x/n). Clearly ηnu → u in L2

µ. Concerning the gradients we
have ∇(ηnu) = ηn∇u+u∇ηn. The term ηn∇u converges to ∇u in L2, since ∇u ∈ L2 and we have
to show that u∇ηn → 0 in L2. Since u ∈ L2∗ we can use Hölder’s inequality to deduce

∫

RN

|u|2|∇ηn|
2 dx ≤

C

n2

∫

n≤|x|≤2n

|u|2 dx ≤ C1

(

∫

n≤|x|≤2n

|u|2
∗

)1− 2
N

(18)

which tends to zero as n → ∞. This shows u can be approximated with a sequence of W 1,2 com-
pactly supported functions and to produce a sequence of smooth approximants it is now sufficient
to use convolutions. Then u ∈ V and, by integration by parts,

a(u, v) = −(λu− f, v)L2
µ
,

that is u ∈ D(L) and λu−Lu = f . By density, this shows the coeherence of the resolvents of Lmin

and L for λ > 0, hence of L and (L,Dp,max(L)), see Theorem 4.6. The cases N = 3, 4 require
some variants, since p = 2 does not safisfy the inequality p > N/(N − 2). To show that u belongs
to L2

µ we use the fact that u ∈ Lp with p = 2N/(N − 2) and therefore

∫

RN

|u|2 dµ ≤

(
∫

RN

|u|
2N

N−2 dx

)1− 2
N

(

∫

RN

1

(1 + |x|α)
N
2

dx

)
2
N

Next we show that ∇u belongs to L2. Since u ∈ C2 and
∫

RN

∇u∇v dx =

∫

RN

(λu − f)v dµ

for every v ∈ C∞
c , the same equality holds for every v ∈ W 1,2 having compact support. Taking

vn = ηnu we get
∫

RN

ηn|∇u|2dx =

∫

RN

(λu − f)ηnu dµ−

∫

RN

u∇u · ∇ηn dx.

Since
∫

RN

u∇u · ∇ηn dx = −
1

2

∫

RN

|u|2∆ηn dx

we can proceed as in (18) to show that this term tends to zero and hence ∇u ∈ L2. From now
one, the proof proceeds as in the case N > 4.

We can now strengthen Corollary 8.2.

Proposition 8.5 If N/(N − 2) < p ≤ ∞, 2 < α < ∞, then the spectrum of (L,Dp,max(L)) lies
in ] −∞, 0[ and consists of a sequence λn of eigenvalues, which are simple poles of the resolvent
and tend to −∞. Each eigenspace is finite dimensional and independent of p.

Proof. Since the resolvents of (L,Dp,max(L)) and (L, (D(L)) are coherent and compact in Lp,
L2
µ, respectively all the assertions except the density of the eigenfuctions follow from [1, Proposition

2.2] (see also [10, Proposition 5.2] for more details).
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Observe that 0 is in the resolvent set of L, since it is injective. This is clear in Lp or C0 because
∆u ∈ Lp implies u = 0. However, constant functions are in H if α > N and this explains why we
work with V (constant functions are never in V since V embeds into L2∗).

Next we show some methods to estimate the first eigenvalue λ1.

Proposition 8.6 The following estimates hold

λ1 ≤ −

(

α− 2

2

)
2
α α

α− 2

(N − 2)2

4
(19)

and

λ1 ≤ −(N − 2)
α sin

(

2
απ
)

π
. (20)

Proof. By Corollary 4.3, we obtain

‖L−1‖ ≤

(

2

α− 2

)
2
α α− 2

α

p2

N(Np−N − 2p)

By classical spectral theory then

|λ1| ≥

(

α− 2

2

)
2
α α

α− 2

N(Np−N − 2p)

p2
.

The function appearing on the right hand side attaints its maximum for p =
2N

N − 2
where it

reaches the value
(

α− 2

2

)
2
α α

α− 2

(N − 2)2

4
.

Since the spectrum of L is independent of p we obtain (19). (20) is obtained in a similar way from
Proposition 7.4.

Observe that the coefficient
(

α− 2

2

)
2
α α

α− 2

is always greater than or equal to 1, and it is 1 for α = 2,∞. Then (19) improves the estimate
λ1 ≤ −(N − 2)2/4 which can be obtained using the classical Hardy inequality. On the other hand
(20) is better than (19) for large α and small N , but worse for α close to 2 or large N .

Since L is self-adjoint in L2
µ, its eigenvalues can be computed through the Raleigh quotients

and, in particular,

−λ1 = min

{
∫

RN

|∇u|2 dx :

∫

RN

|u|2 dµ = 1

}

.

Since

∫

RN

|u|2 dµ ≤

(
∫

RN

|u|2
∗

dx

)1−2 2
N
(
∫

RN

1

(1 + |x|α)N/2
dx

)2/N

≤ C2
2

∫

RN

|∇u|2 dx

(
∫

RN

1

(1 + |x|α)N/2
dx

)2/N

,
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it follows that −λ1 ≥
(

C2
2L(α)

)−1
where C2 is given by [15] and

L(α) =

(
∫

RN

1

(1 + |x|α)N/2
dx

)2/N

.

Obesrve also that, when α → ∞, then (formally) λ1 tends to the first eigenvalue of the Dirichlet
Laplacian in the unit ball.

Appendix

Here we prove a Hardy-type inequality used throughout the paper.

Proposition 8.7 Let u ∈ W 1,p(RN ) with compact support, 1 < p < ∞, γ ≥ 0. Then

∫

RN

|u|p|x|γ ≤

(

p

γ +N

)2 ∫

RN

|u|p−4|Re(u∇u)|2|x|γ+2.

Proof. Let first u ∈ C∞
c (RN ) and set g(t) = u(tx). Then

|u(x)|p = |g(1)|p = −p

∫ ∞

1

|g|p−2Re

(

g
∂g

∂t

)

dt

= −p

∫ ∞

1

|u(tx)|p−2Re(u∇u(tx))xdt.

It follows that
∫

RN

|u(x)|p|x|γdx ≤ p

∫ ∞

1

dt

∫

RN

|u(tx)|p−2|Re(u(tx)∇u(tx))||x|γ+1dx

= p

∫ ∞

1

dt

∫

SN−1

dω

∫ ∞

0

|u(trω)|p−2|Re(u(trω)∇u(trω)|rγ+Ndr

= p

∫ ∞

1

1

tγ+N+1
dt

∫

SN−1

dω

∫ ∞

0

|u(sω)|p−2|Re(u(sω)∇u(sω)|sγ+Nds

=
p

γ +N

∫

RN

|u(x)|p−2|Re(u(x)∇u(x)||x|γ+1dx.

By density this inequality holds for every u ∈ W 1,p(RN ) having compact support. At this point
Hölder’s inequality yields

∫

RN

|u(x)|p|x|γdx ≤
p

γ +N

(
∫

RN

|u(x)|p|x|γdx

)
1
2
(
∫

RN

|u(x)|p−4|Re(u(x)∇u(x)||x|γ+2dx

)
1
2

.
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