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Abstract

This note is a survey and collection of results, as well as present-

ing some original research. For Bessel sequences and frames, the analy-

sis, synthesis and frame operators as well as the Gram matrix are well-

known, bounded operators. We investigate these operators for arbitrary

sequences, which in general lead to possibly unbounded operators. We

characterize various classes of sequences in terms of these operators and

vice-versa. Finally, we classify these sequences by operators applied on

orthonormal bases.
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1 Introduction

Frames [12, 6, 10] have become an important topic in applied mathematics
in the last decades. They are also used in many engineering applications, for
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example in signal processing [5]. Clearly, they have some important advantages
compared to orthonormal bases. However, even the frame condition cannot
always be satisfied for the whole space, and so other classes of sequences have
been investigated, for example, frame sequences, Bessel sequences, lower frame
sequences, and Riesz-Fischer sequences [4, 7, 9, 10]. For such sequences, which
need not be frames in general, the frame-related operators, i.e. the analysis, the
synthesis and the frame operator can still be defined, see e.g. [7, 9]. In general,
these operators can be unbounded.

In this note we want to give an overview of the connection between the
properties of those operators and those of the sequences. We collect some ex-
isting results, extend them and add new, original results. Some known results
are proved here for the sake of completeness, in particular, when there is no
proof in the literature. Note that one result was obtained independently in [15].
While the paper [15] focuses on the investigation of sufficient conditions for the
closability of the synthesis operator, the main aim of the present paper is to
give a general overview of all the associated operators.

Our notation and some preliminary results are given in Section 2. In Section
3 we consider the operators associated to an arbitrary sequence, namely, the
analysis, synthesis and ‘frame’ operators, as well as the operator based on the
Gram matrix, and we investigate their properties. Section 4 is devoted to the
characterization of sequences (Bessel and frame sequences, frames, Riesz bases,
lower frame sequences, Riesz-Fischer sequences, complete sequences) via the
associated operators. Finally, we consider operators that preserve the sequence
type and present the classification via orthonormal bases.

2 Notation and Preliminaries

Throughout the paper we consider a sequence Ψ = (ψk)
∞
k=1 with elements from

a (infinite dimensional) Hilbert space (H, 〈·, ·〉). The notation span{Ψ} is used
to denote the linear span of (ψk)

∞
k=1 and span{Ψ} denotes the closed linear

span of (ψk)
∞
k=1. The sequence (ek)

∞
k=1 denotes an orthonormal basis of H and

(δk)
∞
k=1 denotes the canonical basis of ℓ2. The notion operator is used for a

linear mapping. Given an operator F , we denote its domain by dom(F ), its
range by ran(F ) and its kernel by ker(F ). First we recall the definitions of the
basic concepts used in the paper.

Definition 2.1 The sequence Ψ is called

• complete in H if span{Ψ} = H;

• a Bessel sequence for H with bound B if B > 0 and
∑∞

k=1 | 〈f, ψk〉 |2 ≤
B‖f‖2 for every f ∈ H;

• a lower frame sequence for H with bound A if A > 0 and A‖f‖2 ≤
∑∞

k=1 | 〈f, ψk〉 |2 for every f ∈ H;
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• a frame for H with bounds A,B if it is a Bessel sequence for H with bound
B and a lower frame sequence for H with bound A;

• a frame-sequence if it is a frame for its closed linear span;

• a Riesz basis for H with bounds A,B if Ψ is complete in H, A > 0,
B < ∞, and A

∑ |ck|2 ≤ ‖∑ ckψk‖2 ≤ B
∑ |ck|2 for all finite scalar

sequences (ck) (and hence, for all (ck)
∞
k=1 ∈ ℓ2);

• a Riesz-Fischer sequence with bound A if A > 0 and A
∑ |ck|2 ≤ ‖∑ ckψk‖2

for all finite scalar sequences (ck) (and hence, for all (ck)
∞
k=1 ∈ ℓ2 such

that
∑∞

k=1 ckψk converges in H).

Lemma 2.2 Let (dk)
∞
k=1 be a sequence such that

∞
∑

k=1

ckdk converges for all (ck)
∞
k=1 ∈ l2. (1)

Then (dk)
∞
k=1 ∈ l2.

Proof: If (1) is assumed to hold with absolute convergence of the series, the
above statement is proved in [17, §30 1.(5)]. Similar proof (using xj = 1

i|Mi|
vj

instead of xj =
1

iMi
vj) leads to the validity of the above lemma. 2

We also need the following well-known results:

Proposition 2.3 Let an operator F be densely defined. Then

(a) [11, Prop.X.1.6] F ∗ is closed; in particular, every self-adjoint operator is
closed;

(b) [11, Prop.X.1.6] F is closable if and only if F ∗ is densely defined;

(c) [21, Th.VIII.1] If F is closable, then its closure is F = (F ∗)∗ and F
∗
=

F ∗;

(d) [11, Prop. X.1.13] (ran(F ))⊥ = ker(F ∗);

(e) [11, Prop. X.4.2] If F is closed, then F ∗F is self-adjoint.

3 Associated Operators for Arbitrary Sequences

For any sequence Ψ, the associated analysis operator C, synthesis operator D,
‘frame’ operator S, and Gram operator G are (possibly unbounded) operators,
defined as follows:

C : dom(C) → ℓ2, Cf = (〈f, ψk〉)∞k=1, where

dom(C) =
{

f ∈ H : (〈f, ψk〉)∞k=1 ∈ ℓ2
}

;
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D : dom(D) → H, D(ck)
∞
k=1 =

∑∞
k=1 ck ψk, where

dom(D) =
{

(ck)
∞
k=1 ∈ ℓ2 :

∑∞
k=1 ck ψk converges in H

}

;

S : dom(S) → H, Sf =
∑∞

k=1 〈f, ψk〉ψk, where

dom(S) = {f ∈ H :
∑∞

k=1 〈f, ψk〉ψk converges in H} ;

G : dom(G) → ℓ2, G(ck)
∞
k=1 = (

∑∞
l=1Gk,lcl)

∞

k=1, where

dom(G) =
{

(ck)
∞
k=1 ∈ ℓ2 :

∑∞
l=1Gk,l cl converges ∀k ∈ N

and (
∑∞

l=1Gk,l cl)
∞

k=1 ∈ ℓ2
}

,

and the Gram matrix (Gk,l)k,l is defined by Gk,l = 〈ψl, ψk〉, k, l ∈ N.

3.1 Domains

Lemma 3.1 Given an arbitrary sequence Ψ, the following statements hold.

(i.1) dom(S) ⊆ dom(C).

(i.2) dom(S) = dom(C) if and only if ran(C) ⊆ dom(D).

(ii) dom(D) ⊆ dom(G) if and only if ran(D) ⊆ dom(C).

(iii) D is densely defined.

(iv) [9, Prop. 4.5] If
∑∞

l=1 | 〈ψl, ψk〉 |2 <∞ for every k ∈ N, then C is densely
defined.

(v) If
∑∞

l=1 | 〈ψl, ψk〉 |2 <∞ for every k ∈ N, then G is densely defined.

(vi) If
∑∞

l=1

∑∞
k=1 | 〈ψl, ψk〉 |2 < ∞, then dom(G) = dom(D) = ℓ2, G is a

Hilbert-Schmidt operator and Ψ is a Bessel sequence for H.

(vi) If
∑∞

l=1

∑∞
k=1 | 〈ψl, ψk〉 |2 < ∞, then dom(G) = dom(D) = ℓ2 and G is a

Hilbert-Schmidt operator.

(vii) If ψk ∈ dom(S) for every k ∈ N, then S is densely defined.

Proof: (i.1) Assume that f ∈ dom(S). Then
∑N

k=1 〈〈f, ψk〉ψk, f〉 → 〈Sf, f〉
as N → ∞, which implies that

∑N
k=1 |〈f, ψk〉|2 converges as N → ∞ and thus

f ∈ dom(C).
(i.2) If ran(C) ⊆ dom(D), it is obvious that dom(C) ⊆ dom(S) and the

other inclusion is given in (i.1). Now assume that dom(S) = dom(C) and take
Cf ∈ ran(C). Then f ∈ dom(S), which implies that Cf ∈ dom(D).

(ii) First observe that if
∑∞

l=1 clψl converges in H, then
∑∞

l=1 cl 〈ψl, ψk〉
converges for every k ∈ N and

∑∞
l=1 cl 〈ψl, ψk〉 = 〈Dc, ψk〉, ∀k ∈ N.

Assume that dom(D) ⊆ dom(G) and take Dc ∈ ran(D). Then c ∈ dom(G),
which implies that (〈Dc, ψk〉)∞k=1 ∈ ℓ2 and thus, Dc ∈ dom(C).

Now assume that ran(D) ⊆ dom(C) and take c ∈ dom(D). Then Dc ∈
dom(C) and

∑∞
l=1 cl 〈ψl, ψk〉 = 〈Dc, ψk〉, ∀k ∈ N. Therefore, c ∈ dom(G).
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(iii) is clear, since the finite sequences are dense in ℓ2.
(iv) Since the statement is given in [9] without proof, for the sake of com-

pleteness we include a proof here. First observe that (span{Ψ})⊥ ⊆ dom(C).
Assume that

∑∞
l=1 | 〈ψl, ψk〉 |2 <∞ for every k ∈ N. Then span{Ψ} ⊆ dom(C).

Therefore, H = span{Ψ} ⊕ (span{Ψ})⊥ ⊆ dom(C), which implies that dom(C)
is dense in H.

(v) Let
∑∞

l=1 | 〈ψl, ψk〉 |2 <∞ for every k ∈ N. Then all the canonical vectors
δk (and thus, all the finite sequences) belong to dom(G). Then the conclusion
follows as in (iii).

(vi) Assume that
∑∞

l=1

∑∞
k=1 | 〈ψl, ψk〉 |2 <∞. Then G is a Hilbert-Schmidt

operator [20, Cor. 16.11]. Furthermore, Ψ is a Bessel sequence [10, Lemma
3.5.1] (see Prop. 4.4(a2)), which implies that dom(D) = ℓ2 [10, Theor. 3.2.3]
(see Prop. 4.2).

(vii) Follows in a similar way as in (iv), having in mind that (span{Ψ})⊥ ⊆
dom(S). 2

Remarks 3.2

(1) Concerning Lemma 3.1(i):
If Ψ is a Bessel sequence for H, then dom(S) = dom(C) = H. Note that

the equality dom(S) = dom(C) might hold even in cases when Ψ is not a Bessel
sequence. Consider for example the non-Bessel sequence

Ψ = (e1, e1, e2, e1, e2, e3, e1, e2, e3, e4, . . .).
Then dom(C) = {0} and thus, Lemma 3.1(i.1) implies that dom(S) = {0}.

Note that the equality dom(S) = dom(C) might fail. Consider for example
the non-Bessel sequence Ψ = (12e1, 2e2,

1
22 e1, 2

2e3,
1
23 e1, 2

3e4, . . .). As an exam-
ple of an element which belongs to dom(C) and does not belong to dom(S)
consider h ∈ H such that 〈h, en〉 = 2−2(n−1), ∀n ∈ N.

(2) Concerning Lemma 3.1(ii):
If Ψ is a Bessel sequence for H, then dom(D) = dom(G) = ℓ2. For a

non-Bessel sequence Ψ, the inclusion dom(D) ⊆ dom(G) might fail. Take for
example Ψ = (e1, e2, e1, e3, e1, e4, . . .). Then δ1 ∈ dom(D) and δ1 /∈ dom(G).

Note that a necessary condition for the validity of dom(G) = dom(D)
is that all the canonical vectors are in dom(G), which holds if and only if
∑∞

l=1 | 〈ψl, ψk〉 |2 <∞ for every k.

(3) Concerning Lemma 3.1(iii):
If dom(D) = ℓ2, then

∑∞
k=1 ckψk converges unconditionally for every (ck) ∈

ℓ2 and Ψ is a Bessel sequence for H (see [10, Cor. 3.2.4 and 3.2.5]). Now
one could wonder whether this is pointwise true for an arbitrary sequence,
i.e. whether c ∈ dom(D) implies that

∑∞
k=1 ckψk is already uncondition-

ally convergent. This is not true in general, as shown by the following easy
example. Consider the non-Bessel sequence Ψ = (e1, e1, e1, . . .) and (ck) =
(1,− 1

2 ,
1
3 ,− 1

4 , . . .) ∈ ℓ2. Then
∑∞

k=1 ckψk = (ln 2)e1. However, if (ǫk) =
(1,−1, 1,−1, . . .), then the series

∑∞
k=1 ckǫkψk =

∑∞
k=1

1
k e1 does not converge,

which by [18, Theor. 2.8] implies that
∑∞

k=1 ckψk is conditionally convergent.



6

(4) Concerning Lemma 3.1(iv),(v):
The assumption in (iv) and (v) is clearly satisfied when Ψ is a Bessel sequence

for H (in which case dom(C) = H and dom(G) = ℓ2). However, the validity
of
∑∞

l=1 | 〈ψl, ψk〉 |2 < ∞ for every k ∈ N does not require Ψ to be a Bessel
sequence for H, consider for example Ψ = (e1, 2e2, 3e3, . . .).

(5) Concerning Lemma 3.1(vi):
For frames, the assumption in (vi) is equivalent to the Hilbert space being

finite dimensional [2]. This is not necessarily valid any more for other sequences,
consider for example Ψ = (e1, e2/2, e3/3, e4/4, ...), it satisfies (vi) and H is
infinite dimensional.

3.2 Connection between the associated operators

Having defined the operators associated to an arbitrary sequence, we will now
investigate the relationships among them.

Proposition 3.3 For an arbitrary sequence Ψ, the following statements hold.

(i) C = D∗ 1.

(ii) [9, Prop. 4.6] If C is densely defined, then D ⊆ C∗.

(iii) S = DC.

(iv) CD ⊆ G.

(v) [7, Lemma 3.1] C is closed.

(vi) S is symmetric 2, but not necessarily densely defined; it is positive on
dom(S) and positive definite on span{Ψ} ∩ dom(S).

(vii) If C is densely defined, then S is closable.

(viii) D is closable if and only if C is densely defined.

(ix) D is closed if and only if C is densely defined and D = C∗.

(x) If D is closed, then G is densely defined.

(xi) If
∑∞

l=1 | 〈ψl, ψk〉 |2 <∞ for every k, then G is closed.

Proof: (i) First we show that dom(D∗) ⊆ dom(C). Fix f ∈ dom(D∗). This
means that D : dom(D) → C, D(c) := 〈Dc, f〉, is a bounded functional. Since
dom(D) is dense in ℓ2, there is a unique bounded extension D0 : ℓ2 → C. For
c = (ck)

∞
k=1 ∈ ℓ2, denote

c
N
= (c1 , c2 , . . . , cN , 0, 0, . . .) ∈ c00 ⊆ dom(D).

1This result was obtained independently in [15].
2The terminology is not uniform in the literature. We use the definition of a symmetric

operator given by [14, Def. XII.1.7], [22, Def. 13.3], namely, S is symmetric if 〈Sf, g〉 =
〈f, Sg〉 ,∀f, g ∈ dom(S), without the assumption of a dense domain.
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Clearly, c
N

→ c in ℓ2-norm as N → ∞. Hence, D0cN → D0c as N → ∞.

Therefore, D0cN =
∑N

k=1 ck 〈ψk, f〉H converges as N → ∞ for every c ∈ ℓ2.
Now Lemma 2.2 implies that (〈ψk, f〉H) ∈ ℓ2, which proves that f belongs to
dom(C).

Now we show that dom(C) ⊆ dom(D∗). Let f ∈ dom(C). For every c =
(ck)

∞
k=1 ∈ dom(D),

〈Dc, f〉H = lim
N→∞

〈

N
∑

k=1

ck ψk, f

〉

H

= lim
N→∞

N
∑

k=1

ck 〈ψk, f〉H = 〈c, Cf〉ℓ2 . (2)

Therefore, the functional c 7→ 〈Dc, f〉H is bounded on dom(D) by ‖Cf‖. Hence,
f ∈ dom(D∗).

Furthermore, (2) implies that D∗f = Cf due to the uniqueness of D∗.
(iii) Assume that f ∈ dom(S). Then f ∈ dom(C) (see Lemma 3.1(i.1)).

Furthermore, Cf ∈ dom(D). Therefore, dom(S) ⊆ dom(DC). The converse
implication dom(DC) ⊆ dom(S) is obvious. Now it is clear that S = DC.

(iv) Let c = (ck)
∞
k=1 ∈ dom(CD). Then

∑∞
l=1 cl 〈ψl, ψk〉 converges for every

k and it is equal to 〈Dc, ψk〉. Furthermore, Dc ∈ dom(C), which implies that
c ∈ dom(G) and Gc = CDc.

(v) Since the statement is given in [7] without proof, for the sake of com-
pleteness we refer to [23, Lemma 3.1] for a proof. Note that [23, Lemma 3.1]
concerns sequences satisfying the lower p-frame condition, but the proof that C
is closed does not use the validity of the lower p-frame condition.

(vi) Let f, g ∈ dom(S). Then 〈Sf, g〉 =
∑∞

k=1 〈f, ψk〉 〈ψk, g〉 = 〈f, Sg〉 ,
which means that S is symmetric. An example of a sequence Ψ with S be-
ing non-densely defined can be seen in Remark 3.2(1). Further, 〈Sf, f〉 =
∑∞

k=1 |〈f, ψk〉|2 ≥ 0 for every f ∈ dom(S). If
∑∞

k=1 |〈f, ψk〉|2 = 0, then
f ∈ (span{Ψ})⊥, which implies that S is positive definite on span{Ψ}∩dom(S).

(vii) By (v), C is closed. Assume that C is densely defined. Then Proposition
2.3(e) implies that C∗C is self-adjoint and thus, closed. By (ii) and (iii), we
have that S = DC ⊆ C∗C, which implies that S is closable.

(viii) and (ix) follow from (i), Lemma 3.1(iii) and Prop. 2.3(b),(c) applied
with F = D.

(x) Let D be closed. By Lemma 3.1(iii) and Proposition 2.3(e), it follows
that D∗D is self-adjoint, in particular, densely defined. Using (i) and (iv), it
follows that D∗D ⊆ G, which implies that G is also densely defined.

(xi) Assume that
∑∞

l=1 | 〈ψl, ψk〉 |2 < ∞ for every k ∈ N. Denote cn =
(cnk )

∞
k=1, c = (ck)

∞
k=1, d = (dk)

∞
k=1. Let cn ∈ dom(G), n ∈ N, cn → c in ℓ2

and Gcn → d in ℓ2 as n → ∞. Fix k ∈ N and ε > 0. Let N ∈ N be such
that ‖c − cN‖ℓ2 < ε

2 (
∑

l | 〈ψl, ψk〉 |2)−1/2. Since
∑∞

l=1 c
N
l 〈ψl, ψk〉 converges,

there exists N1 so that |
∑j

l=i+1 c
N
l 〈ψl, ψk〉 | < ε

2 , ∀i, j > N1. Then, for every
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i, j > N1,

|
j
∑

l=i+1

cl 〈ψl, ψk〉 | ≤ |
j
∑

l=i+1

(cl − cNl ) 〈ψl, ψk〉 |+ |
j
∑

l=i+1

cNl 〈ψl, ψk〉 |

≤
(

j
∑

l=i+1

|cl − cNl |2
)1/2( j

∑

l=i+1

| 〈ψl, ψk〉 |2
)1/2

+
ε

2
< ε.

Therefore, the series
∑∞

l=1 cl 〈ψl, ψk〉 converges. Furthermore,

|
∞
∑

l=1

(cl − cnl ) 〈ψl, ψk〉 | ≤ ‖c− cn‖ℓ2
(

∞
∑

l=1

| 〈ψl, ψk〉 |2
)1/2

→ 0 as n→ ∞,

which implies that
∑∞

l=1 c
n
l 〈ψl, ψk〉 →

∑∞
l=1 cl 〈ψl, ψk〉 as n → ∞. Now, since

Gcn → d in ℓ2 as n → ∞ and since convergence in ℓ2 implies convergence
by coordinates, it follows that

∑∞
l=1 c

n
l 〈ψl, ψk〉 → dk as n → ∞. Therefore,

∑∞
l=1 cl 〈ψl, ψk〉 = dk for every k ∈ N, which implies that c ∈ dom(G) and

Gc = d. 2

Remark 3.4 (concerning Prop. 3.3(ii)): If C is densely defined, in general one
should not expect the validity of D = C∗. A counterexample can be found in
[9] after Corollary 4.7. When Ψ is a Bessel sequence for H, then D = C∗ (see,
e.g., [10, Theor. 3.2.3 and Lemma 3.2.1]).

Note that Proposition 3.3(ix) extends [9, Corollary 4.7].

3.3 Kernels

Lemma 3.5 For an arbitary sequence Ψ, the following statements hold.

(i) ker(S) = ker(C) = (span{Ψ})⊥ = (ran(D))⊥.

(ii) ker(D) ⊆ ran(C)
⊥
.

Proof: (i) Assume that f ∈ ker(S). Then
∑∞

k=1 |〈f, ψk〉|2 = 〈Sf, f〉 = 0,
which implies that f ∈ ker(C). It is obvious that ker(C) ⊆ ker(S). The equality

ker(C) = span{Ψ}⊥ is also obvious. The equality ker(C) = (ran(D))⊥ follows
from Lemma 3.1(iii), Proposition 3.3(i) and Proposition 2.3(d) with F = D.

(ii) Follows easily using Prop. 3.3(i). 2
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3.4 Ranges

Lemma 3.6 For an arbitrary sequence Ψ, the following statements hold.

(i) ran(S) ⊆ ran(D).

(ii) If ran(S) = ran(D), then ran(C) ∩ dom(D) = ran(C) ∩ dom(D).

(iii.1) Let Ψ be a Bessel sequence for H. Then ran(S) ⊆ ran(D) ⊆ ran(S) (with
dense inclusion).

(iii.2) Let Ψ be a Bessel sequence for H. Then ran(S) = ran(D) if and only if
Ψ is a frame sequence.

Proof: (i) follows from Prop. 3.3(iii).
(ii) Assume that ran(S) = ran(D). Let c ∈ ran(C) ∩ dom(D). Since Dc ∈

ran(D) = ran(S), there exists f ∈ dom(S) ⊆ dom(C) so that Dc = DCf . Since
Dran(C)∩dom(D) is injective (see Lemma 3.5(ii)), it follows that c = Cf ∈ ran(C).

Therefore, ran(C) ∩ dom(D) ⊆ ran(C) ∩ dom(D). The inverse inclusion is
obvious.

(iii.1) Let f ∈ ran(D). Since Ψ is a Bessel sequence for H, it follows that

kerD = ker(C∗) = ran(C)
⊥
, which implies that f = Dc for some c ∈ ran(C).

Therefore, f = limn→∞DCfn = limn→∞ Sfn for some fn ∈ H, n ∈ N, such
that c = limn→∞ Cfn. This completes the proof.

(iii.2) Assume that ran(S) = ran(D). Since Ψ is a Bessel sequence for H, it
follows that dom(D) = H and (ii) implies that ran(C) is closed. Now [10, Cor.
5.5.3] (see Prop. 4.1(b)) implies that Ψ is a frame sequence. Conversely, if Ψ
is a frame sequence, then ran(S) = ran(D) = span{Ψ} (see, e.g., [10, Lemma
5.1.5 and Theor. 5.5.1]). 2

4 Classification of General Sequences

In this section, we turn to the central topic of the paper, namely, the classifica-
tion of arbitrary sequences. We consider two different methods of classification,
first in terms of the associated operators, then via orthonormal bases.

Note that throughout this section, we use a rather unconventional numbering
technique to increase the comparability for the convenience of the reader. The
items (a), (b), . . . refer always to the same class of sequences, Bessel sequences,
frame sequences, . . . . Therefore, if no result is available for a given class, we
simply omit the corresponding item.

4.1 Classification by the associated operators

In the next four propositions, we proceed with the classification of arbitrary
sequences in terms of the operators C,D, S, and G.
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Proposition 4.1 Given a sequence Ψ, the following statements hold.

(a1) [18, Lemma 11.8] Ψ is a Bessel sequence for H if and only if dom(C) = H.

(a2) Ψ is a Bessel sequence for H with bound B if and only if dom(C) = H
and C is bounded with ‖C‖ ≤

√
B.

(b) [10, Cor. 5.5.3] Ψ is a frame sequence if and only if dom(C) = H and
ran(C) is closed.

(c) [10, Cor. 5.5.3] Ψ is a frame for H if and only if dom(C) = H, ran(C) is
closed and C is injective.

(d) Ψ is a Riesz basis for H if and only if dom(C) = H and C is bijective.

(e) [7, Lemma 3.1] Ψ is a lower frame sequence for H if and only if C is
injective and ran(C) is closed.

(f) [25, Ch.4 Sec.2] Ψ is a Riesz-Fischer sequence if and only if C is surjective.

(g) Ψ is complete in H if and only if C is injective.

Proof: (a2) Having (a1) proved, then (a2) is obvious.
(d) By [10, Theor. 5.4.1] and [16, Prop. 5.1.5], Ψ is a Riesz basis for H if

and only if Ψ is a frame for H and C is surjective. The rest follows from (c).
(g) follows from Lemma 3.5(i). 2

Proposition 4.2 Given a sequence Ψ, the following statements hold.

(a1) [10, Cor. 3.2.4 and Theor. 3.2.3] Ψ is a Bessel sequence if and only if
dom(D) = ℓ2.

(a2) [10, Theor. 3.2.3] Ψ is a Bessel sequence with bound B if and only if
dom(D) = ℓ2 and D is bounded with ‖D‖ ≤

√
B.

(b1) [10, Cor. 5.5.2] Ψ is a frame sequence if and only if dom(D) = ℓ2 and
ran(D) is closed.

(b2) Ψ is a frame sequence if and only if ran(D) is closed and ran(D) ⊆
dom(C).

(b3) Ψ is a frame sequence if and only if dom(D) = ℓ2 and ran(D) = ran(S).

(c) [10, Theor. 5.5.1] Ψ is a frame if and only if dom(D) = ℓ2 and D is
surjective.

(d) Ψ is a Riesz basis for H if and only if dom(D) = ℓ2 and D is bijective.

(e) Ψ is a lower frame sequence for H if and only if ran(D) is dense in H
and ran(D∗) is closed.
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(f) Ψ is a Riesz-Fischer sequence if and only if D is injective and D−1 is
bounded on ran(D).

(g) Ψ is complete in H if and only if ran(D) is dense in H.

Proof: (b2) Assume that ran(D) is closed and ran(D) ⊆ dom(C). Then
H = ran(D)⊕ (ran(D))⊥ ⊆ dom(C), which by Proposition 4.1(a1) implies that
Ψ is a Bessel sequence for H. Now apply (a1) and (b1).

Conversely, assume that Ψ is a frame sequence. By (b1), ran(D) is closed,
and clearly, dom(C) = H ⊇ ran(D).

(b3) follows from Lemma 3.6(iii.2) and (a1).
(d) By [10, Theor. 5.4.1 and 6.1.1], Ψ is a Riesz basis for H if and only if Ψ

is a frame for H and D is injective. The rest follows from (c).
(e) By Propositions 4.1(e) and 3.3(i), Ψ is a lower frame sequence for H if

and only if D∗ is injective and ran(D∗) is closed. Since D is densely defined,
Proposition 2.3(d) completes the proof.

(f) is clear (see, e.g., [19, V.4.3 Theorem 2 and the Remark after that]).
(g) follows from Lemma 3.5(i). 2

Note that (f) (a result about the Riesz-Fischer sequences) is missing in
Proposition 4.3. The operator S does not distinguish between a frame which
is a Riesz-Fischer sequence and a frame which is not a Riesz-Fischer sequence.
For example, an orthonormal basis and a Parseval frame have the same frame
operator, the identity. This can also be seen in Proposition 4.3(d), where the
properties of (S−1ψk) have to be taken into account.

Proposition 4.3 Given a sequence Ψ, the following statements hold.

(a1) Ψ is a Bessel sequence for H if and only if dom(S) = H.

(a2) Ψ is a Bessel sequence for H with bound B if and only if dom(S) = H
and S is bounded with ‖S‖ ≤ B.

(b1) Ψ is a frame sequence if and only if dom(S) = H and ran(S) is closed.

(b2) Ψ is a frame sequence if and only if dom(S) = H and ran(S) = span{Ψ}.

(c1) [8, Theorem 2.1] Ψ is a frame for H if and only if dom(S) = H and S is
surjective.

(c2) Ψ is a frame for H if and only if dom(S) = H and S is bijective.

(d) Ψ is a Riesz basis for H if and only if dom(S) = H, S is bijective and
(S−1ψk)

∞
k=1 is biorthogonal to Ψ.

(e) Ψ is a lower frame sequence for H if and only if S is injective and ran(C)
is closed.

(g) Ψ is complete in H if and only if S is injective.
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Proof: (a1) Let dom(S) = H. Validity of the upper frame inequality follows
from the first part of the proof in [8, Theorem 2.1]. For the sake of completeness,
we sketch a proof. If dom(S) = H, then

∑ | 〈f, ψk〉 |2 = 〈Sf, f〉 < ∞ for every
f ∈ H, which implies that dom(C) = H and the rest follows from Proposition
4.1(a1). For the other direction, see the text after Example 5.1.4 in [10, Sec. 5.1].

(a2) See (a1); the boundedness of S can be found, e.g., in the proof of [10,
Lemma 5.1.5].

(b1) Assume that dom(S) = H and ran(S) is closed. By (a1), Ψ is a Bessel
sequence for H. Then Lemma 3.6(iii.1) implies that ran(D) is closed, which by
Proposition 4.2(b1) implies that Ψ is a frame sequence.

Conversely, if Ψ is a frame sequence, the conclusion follows from [8, Theorem
2.1] (see (c1)).

(b2) follows from [8, Theorem 2.1] (see (c1)).
(c2) follows from (c1) and [10, Lemma 5.1.5].
(d) Use (c2) and the fact that Ψ is a Riesz basis for H if and only if Ψ is a

frame for H and (S−1ψk)
∞
k=1 is biorthogonal to Ψ [10, Theor. 5.4.1 and 6.1.1].

(e) By Lemma 3.5(i), S is injective if and only if C is injective. The rest
follows from Proposition 4.1(e).

(g) follows from Lemma 3.5(i). 2

Proposition 4.4 For a sequence Ψ, the following statements hold.

(a1) Ψ is a Bessel sequence for H if and only if dom(G) = ℓ2.

(a2) [10, Lemma 3.5.1] Ψ is a Bessel sequence for H with bound B if and only
if dom(G) = ℓ2 and G is bounded with ‖G‖ ≤ B.

(a3) If Ψ is a Bessel sequence for H, then G|ran(C) is an injective operator from
ran(C) into ran(C) and ran(G|ran(C)) is dense in ran(C).

(b) Ψ is a frame sequence if and only if dom(G) = ℓ2 and G|ran(C) is a bounded
operator from ran(C) onto ran(C) with bounded inverse.

(c) Ψ is a frame for H if and only if Ψ is complete in H, dom(G) = ℓ2

and G|ran(C) is a bounded operator from ran(C) onto ran(C) with bounded
inverse.

(d) [10, Theor. 3.6.6] Ψ is a Riesz basis for H if and only if Ψ is complete in
H and G is a bounded invertible operator on H.

(f) [25, Ch.4 Sec.2] Ψ is a Riesz-Fischer sequence with bound A if and only if
the “sections” Gn of G satisfy the inequality A ‖c‖ ≤ ‖Gnc‖ for all finite
sequences and all n, where the “section” Gn is the matrix (〈ψl, ψk〉)nl,k=1.

Proof: (a1) Let dom(G) = ℓ2. Then G admits a matrix representation
via the orthonormal basis (δk)

∞
k=1 of ℓ2 and thus, G is bounded [1, Sec. 29
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Theor. 1].3 Since [1] is in Russian, for convenience of the reader we add a
sketch of a proof. Let n ∈ N. Consider the operator Gn defined by Gn(c)

∞
c=1 =

(
∑∞

l=1 cl 〈ψl, ψk〉)nk=1. Then dom(Gn) = ℓ2 and Gn is bounded. Therefore, by
the Banach-Steinhaus theorem, G is bounded. Now the rest follows from [10,
Lemma 3.5.1] (see (a2)).

(a3) follows from [10, Lemma 3.5.2] and Proposition 3.3(i).
(b) If Ψ is a frame sequence, the statement follows from [10, Prop. 5.2.2]

and Proposition 3.3(i). Conversely, assume that dom(G) = ℓ2 and G|ran(C) is
a bounded operator from ran(C) onto ran(C) with bounded inverse. Then Ψ
is a Bessel sequence for H and thus G = CD. Consider the subspace span{Ψ}
of H and the operator C1 = Cspan{Ψ}. By Lemma 3.5(i), C1 is a bijection
from span{Ψ} onto ran(C). Since ran(D) ⊆ span{Ψ}, for every c ∈ ran(C) one
has G|ran(C)c = CDc = C1D|ran(C)c and thus, C1D|ran(C)(G|ran(C))

−1d = d for
every d ∈ ran(C). Therefore,

C−1
1 = D|ran(C)(G|ran(C))

−1,

which implies that C−1
1 is bounded. Thus, the bounded injective operator C1

has a bounded inverse on ran(C1), which implies that C1 has closed range [24,
Cor. IV.3.6] (for a reference in English, see [13, Ex. VI.9.15(i)]). Therefore, by
Proposition 4.1(c), Ψ is a frame for span{Ψ}.

(c) follows from (b). 2

Note that again some items are missing, as in Proposition 4.3. It is impossible
to have some connection of properties of the Gram matrix to completeness. For
example, the standard orthonormal basis (e1, e2, e3, . . .) as well as (e2, e3, e4, ....)
have the same Gram matrix. The problem concerning sequences that satisfy the
lower frame condition is still open.

4.2 Operators that preserve the sequence properties

Proposition 4.5 Given a sequence Ψ, the following statements hold.

(a) Let Ψ be a Bessel sequence for H with bound B and let F : span{Ψ} → H
be a bounded operator. Then (Fψk)

∞
k=1 is a Bessel sequence for H with

bound B ‖F‖2.

(b) Let Ψ be a frame sequence with bounds A,B and let F : span{Ψ} →
span{Ψ} be a bounded surjective operator. Then (Fψk)

∞
k=1 is a frame

sequence with frame bounds A‖F †‖−2 and B‖F‖2, where F † 4 denotes the
pseudo-inverse of F .

(c) [10, Cor. 5.3.2] Let Ψ be a frame for H with bounds A,B and let F : H →
H be a bounded surjective operator. Then (Fψk)

∞
k=1 is a frame for H with

bounds A‖F †‖−2 and B‖F‖2, where F † denotes the pseudo-inverse of F .

3For a matrix representation using frames refer to [3].
4For the pseudo-inverse of a bounded operator with closed range see, e.g., [10, App. A.7].
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(d) Let Ψ be a Riesz basis for H with bounds A,B and let F : H → H be
a bounded bijective operator. Then (Fψk)

∞
k=1 is a Riesz basis for H with

bounds A‖F−1‖−2, B‖F‖2.

(e) Let Ψ be a lower frame sequence for H with bound A and let the operator
F : span{Ψ} → H be bounded and such that F ∗ has a bounded inverse on
ran(F ∗) (equivalently, F be bounded and surjective). Then (Fψk)

∞
k=1 is a

lower frame sequence for H with bound A‖(F ∗)−1‖−2.

(f) Let Ψ be a Riesz-Fischer sequence with bound A and let the operator F :
span{Ψ} → H have a bounded inverse F−1 : ran(F ) → H with bound K.
Then (Fψk)

∞
k=1 is a Riesz-Fischer sequence with bound AK−2.

(g) Let Ψ be complete in H and let F : span{Ψ} → H be bounded with ran(F )
being dense in H. Then (Fψk)

∞
k=1 is complete in H.

Proof: (a) Let F denote the bounded extension of F on span{Ψ} without
increasing the norm. For every f ∈ H,

∞
∑

k=1

|〈f, Fψk〉|2 =

∞
∑

k=1

∣

∣

∣

〈

F
∗
f, ψk

〉∣

∣

∣

2

≤ B ‖F ∗
f‖2 ≤ B ‖F‖2 · ‖f‖2.

(b) follows from [10, Cor. 5.3.2] (see (c)).
(d) By (c), (Fψk)

∞
k=1 is a frame for H and thus, complete in H (see Propo-

sition 4.2(c)). Furthermore, for every finite sequence (ck),

‖
∑

ck Fψk‖2 = ‖F (
∑

ck ψk)‖2 ≥ 1

‖F−1‖2A
∑

|ck|2

and similar, ‖∑ ck Fψk‖2 ≤ ‖F‖2B∑ |ck|2.
(e) A bounded operator from a Banach space into a Banach space is surjec-

tive if and only if its adjoint has a bounded inverse on the range of the adjoint
(see, e.g., [22, Theorem 4.15] and [19, V.4.3 Theorem 2 and the Remark after
that]). For every f ∈ H,

∞
∑

k=1

|〈f, Fψk〉|2 =

∞
∑

k=1

|〈F ∗f, ψk〉|2 ≥ A ‖F ∗f‖2 ≥ A

‖(F ∗)−1‖2 ‖f‖2.

(f) As in (d), ‖∑ ck Fψk‖2 ≥ K−2A
∑ |ck|2 for every finite sequence (ck).

(g) Let Ψ be complete in H and let F denote the bounded extension of F on

span{Ψ} = H. Assume that f ∈ H and 〈f, Fψk〉 = 0, ∀k ∈ N. Then F
∗
f = 0.

Since ran(F ) is dense in H, it follows that F
∗
is injective (see Proposition

2.3(d)). Therefore, f = 0. 2
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4.3 Classification with Orthonormal Bases

Another way of classifying the sequences is to examine how an orthonormal
basis behaves under application of a given class of operators. This we do in the
present subsection. From now on, DΨ denotes the synthesis operator for Ψ and
C(ek) denotes the analysis operator for (ek)

∞
k=1.

Proposition 4.6 Let (ek)
∞
k=1 be an orthonormal basis for H.

(a) The Bessel sequences for H are precisely the families (V ek)
∞
k=1, where

V : H → H is a bounded operator.

(b) The frame sequences for H are precisely the families (V ek)
∞
k=1, where

V : H → H is a bounded operator with closed range.

(c) [10, Theor. 5.5.5] The frames for H are precisely the families (V ek)
∞
k=1,

where V : H → H is a bounded and surjective operator.

(d) [10, Def. 3.6.1 and Theor. 3.6.6] The Riesz bases for H are precisely the
sequences (V ek)

∞
k=1, where V : H → H is a bounded bijective operator.

(e) The lower frame sequences for H are precisely the families (V ek)
∞
k=1,

where V : dom(V ) → H is a densely defined operator such that ek ∈
dom(V ), ∀k ∈ N, V ∗ is injective with bounded inverse on ran(V ∗), and
V (
∑n

k=1 ckek) → V (
∑∞

k=1 ckek) as n→ ∞ for every
∑∞

k=1 ckek ∈ dom(V ).

(f) [7, Prop. 2.3] The Riesz-Fischer sequences are precisely the families (V ek)
∞
k=1,

where V is an operator having all ek in the domain and which has a
bounded inverse V −1 : ran(V ) → H.

(g) The complete sequences are precisely the families (V ek)
∞
k=1, where V :

dom(V ) → H is a densely defined operator such that ek ∈ dom(V ),
∀k ∈ N, ran(V ) is dense in H (equivalently, the adjoint V ∗ is injective)
and V (

∑n
k=1 ckek) → V (

∑∞
k=1 ckek) as n → ∞ for every

∑∞
k=1 ckek ∈

dom(V ).

Proof: (a) If V : H → H is a bounded operator, the conclusion follows from
Proposition 4.5(a).

Conversely, assume that Ψ is a Bessel sequence for H. Then the operator
V = DΨC(ek) is bounded and Ψ = (V ek)

∞
k=1.

(b) If V : H → H is a bounded operator with closed range, then [10, Prop.
5.3.1] implies that (V ek)

∞
k=1 is a frame sequence.

Conversely, assume that Ψ is a frame sequence. Consider the operator V =
DΨC(ek). Since C(ek) is a bounded bijection (see Proposition 4.1(d)) and DΨ is
a bounded operator with closed range (see Proposition 4.2(b1)), it follows that
V is bounded and ran(V ) is closed. Clearly, Ψ = (V ek)

∞
k=1.

(e) Let Ψ be a lower frame sequence for H. Consider the operator V :=
DΨC(ek). It is clear that dom(V ) contains all ek, k ∈ N, (and thus, V is
densely defined) and (V ek)

∞
k=1 = Ψ. Using the fact that C(ek) is a bounded
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bijection of H onto ℓ2, and C(ek) maps bijectively dom(V ) onto dom(D), it is
not difficult to see that dom(V ∗) = dom((DΨ)

∗) = dom((C(ek))
∗(DΨ)

∗) and
V ∗ = (C(ek))

∗(DΨ)
∗. Using Proposition 3.3(i), it follows that V ∗ = D(ek)CΨ.

Now Propositions 4.1(e) and 4.2(d) imply that V ∗ is injective. Furthermore,
(V ∗)−1 = (CΨ)

−1(D(ek))
−1|ran(D(e

k
)CΨ) and (V ∗)−1 is bounded on ran(V ∗).

Now assume that
∑∞

i=1 ciei ∈ dom(V ). Then (ck)
∞
k=1 = C(ek)(

∑∞
i=1 ciei) ∈

dom(DΨ), which implies that
∑∞

k=1 ckψk converges in H and V (
∑∞

i=1 ciei) =
∑∞

k=1 ckψk. For every n ∈ N,
∑n

k=1 ckek ∈ dom(V ) and V (
∑n

k=1 ckek) =
∑n

k=1 ckψk. Therefore, V (
∑n

k=1 ckek) → V (
∑∞

i=1 ciei) as n→ ∞.
Conversely, assume that V : dom(V ) → H satisfies the conditions in the

statement of (e). Let f ∈ H be such that
∑∞

k=1 | 〈f, V ek〉 |2 < ∞ and de-
note N :=

∑∞
k=1 | 〈f, V ek〉 |2. First we prove that f belongs to dom(V ∗). Let

∑∞
k=1 ckek be an arbitrary element of dom(V ). For every n ∈ N,

∑n
k=1 ckek

belongs to dom(V ) and

∣

∣

∣

∣

∣

〈

V

(

n
∑

k=1

ckek

)

, f

〉
∣

∣

∣

∣

∣

≤
(

n
∑

k=1

|ck|2
)1/2( n

∑

k=1

| 〈V ek, f〉 |2
)1/2

≤
√
N

∥

∥

∥

∥

∥

n
∑

k=1

ckek

∥

∥

∥

∥

∥

.

By the assumptions, V (
∑n

k=1 ckek) → V (
∑∞

k=1 ckek) as n → ∞. Therefore,
taking the limit as n→ ∞ in the above inequalities, it follows that

∣

∣

∣

∣

∣

〈

V

(

∞
∑

k=1

ckek

)

, f

〉∣

∣

∣

∣

∣

≤
√
N

∥

∥

∥

∥

∥

∞
∑

k=1

ckek

∥

∥

∥

∥

∥

.

Hence, f ∈ dom(V ∗) and

∞
∑

k=1

| 〈f, V ek〉 |2 = ‖V ∗f‖2 ≥ 1

‖(F ∗)−1‖‖f‖
2.

(f) Since the statement in [7, Prop. 2.3] is given without proof, for the
sake of completeness we add a proof here. One of the directions follows from
Proposition 4.5(f). For the other direction, assume that Ψ is a Riesz-Fischer
sequence with bound A. Consider then the operator V = DΨC(ek). Then
the domain of V contains all ek, (V ek)

∞
k=1 = Ψ, and ‖V f‖ = ‖DΨC(ek)f‖ ≥√

A‖C(ek)f‖ =
√
A‖f‖ for every f ∈ dom(V ). Therefore, V is injective with

bounded inverse on ran(V ).
(g) Let Ψ be complete in H. Consider the operator V := DΨC(ek). In a

similar way as in (e), it follows that V has the desired properties.
Conversely, assume that V : dom(V ) → H satisfies the conditions in the

statement of (g). Let f ∈ H be such that 〈f, V ek〉 = 0, ∀k ∈ N. First we
prove that f belongs to dom(V ∗). Every finite sum

∑

ckek belongs to dom(V )
and 〈V (

∑

ckek) , f〉 = 0. Now, let
∑∞

k=1 ckek ∈ dom(V ). By the above, it
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follows that 〈V (
∑n

k=1 ckek) , f〉 = 0, ∀n ∈ N. By assumption, V (
∑n

k=1 ckek) →
V (
∑∞

k=1 ckek) as n→ ∞. Therefore, 〈V (
∑∞

k=1 ckek) , f〉 = 0. Hence, 〈V h, f〉 =
0, ∀h ∈ dom(V ), which implies that f ∈ dom(V ∗). Therefore, the assumptions
〈f, V ek〉 = 0, ∀k ∈ N, imply that 〈V ∗f, ek〉 = 0, ∀k ∈ N, which implies that
V ∗f = 0 and the injectivity of V ∗ implies that f = 0. This ends the proof that
(V ek)

∞
k=1 is complete in H. 2

Note that, in each of the statements in Proposition 4.6, the orthonormal
basis can be replaced by a Riesz basis, in view of Proposition 4.6(d).
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