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Abstract.

We prove that certain quotients of entire functions are attaristic functions. Under some conditions,
the probability measure corresponding to a characteristiction of that type has a density which can be
expressed as a generalized Dirichlet series, which in suamiinfinite linear combination of exponential or
Laplace densities. These results are applied to sevenalaa.
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1 Introduction

There are many cases in the literature where a charaatefiustction ¢ (¢) of a probability measure can be
written asp(t) = 1/g(it) for t € R, whereg(z) is an entire function of the complex variable Two important
examples are the square of a Kolmogorov law and the Lévy. aBgecifically, the characteristic function
of the square of a Kolmogorov law is given kpy(t) = +/2it/sin(v/2it), and thus we are setting (z) =
sin(v/2z)/v/2z. This example was studied by Duglé [6], who determineditkatistribution function is the
Jacobi theta function

Fi(z) = Ya(a) =1+2 (~DFe™™ /2 550,
k=1

The Lévy area was introduced by Lévy [14] (with a slightifferent parametrization) as the random variable
given by

1 1
/ W () dWa(t) — / Wal(t)dWi(t) |
0 0

where {Wy(t), t > 0} and{Ws(t), t > 0} are two independent standard Brownian motions. Lévy [14]
deduced that its characteristic functiongg(t) = sech(¢). In this case we takgy(z) = cos(z). The density
was also computed by Lévy [14] and is

o—lal/2

1 T > _@k-Dr
fZ(x) - §SeCh <§ x) = m = Z(_l)k+1€ 2 |‘T| s xT 3& 0.
k=1

What these two examples share is that regardless of the ibahaf the entire functiong; (z) andga(z),
their inverses are characteristic functions. In fact, wvidl known that for an entire functiop(z) of order
p < 2 which has only real zeros anl0) = 1, the inversep(t) = 1/¢(it) is a characteristic function (see
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Lukacs [15, pp. 88 and 212] for an equivalent formulationhisTresult follows from Hadamard factorization
Theorem (see, for example, Levin[13, p. 26]) which statasdin entire function of order < 2 can be written

as
o Py /
— oC% 1-—- = z/an
o) = [T (1 )l
n=1
where{a,,, n > 1} are the zeros of(z) (c must be real so that the characteristic function assersigrue).
Note that such factorization @f =) induces a factorization af(¢), and each factor is of the type

1

e—it/an
1 —it/ay,

which is the characteristic function of a translated pesitir negative exponential law. #f < 1, then we can
leave aside the exponential part inside the infinite proftwci canonical representation ane- 0. In any case
©(t) is factorized as a convergent product of characteristictfans, and hence it is a characteristic function
due to Lévy’s continuity Theorem.

The two mentioned examples differ in terms of the densitycfiom. Notice that the density deduced from
F(z) can be considered an infinite linear combination of expdakdénsities, whilefz(z) seems to be a mix
of Laplace densities. The difference between both casesligne entire functiog(z). On the one handy, (z)
has ordei /2 and all its zeros are simple and positive; as opposed to tumdeexample, wherg, (=) has order
1 and its zeros are simple but symmetric with respect to ttgirori

The aim of this paper is to give some general results sugijdstehose and other similar examples. It
will be shown that wheg(z) andh(z) are both entire functions of order p’ € (0, 2) respectively, satisfying
g(0) = h(0) = 1 and with a further condition over their zeros thett) = h(it)/g(it) is a characteristic
function. We prove that whep, o’ € (0,1), the zeros ofi(z) andg(z) are simple and positive, and some
other additional hypotheses, then the probability measomesponding te(t) has a density (z) that can be
written as a sum of exponential type densities,

f(x) =— Z ;L,((ZZ)) e "t x>0.

n=1

This series is a generalized Dirichlet series (see Mandigldi6]) which has very good properties; in particular,
we prove that it is uniformly convergent on every compactsstiof (0, co), and the cumulative distribution
function also turns out to be a generalized Dirichlet series

When the zeros are simple and symmetric, positive and megdlie existence of a density can be also
proved forp = 1 andh(z) = 1. Then the density can be written as a series of Laplace typstass. This case
is important because it covers some elements of the doutd@af/ichaos (see Janson [8]) as the double Itb-
Wiener integrals where the kernel has symmetric zeros withiplicity 2; in particular, the Lévy area belongs
to this class.

We study some examples. In addition to the square of a Kolnoegaw and the Lévy area, we consider
the law of the first hitting time of a Bessel process, whoseattaristic function is expressed as a quotient of
Bessel functions (Kenlt [12] and Borodin and Salmirien [3]ke &lso show how this technique can be used to
invert some Laplace transforms. In our last example we stuggrticular case of the Heston model used in
mathematical finance and we prove that the general theosia®d in the first part can be applied to it; such
a study was the starting point of this paper.

To summarize, the paper is twofold. On the one hand, it showayato construct a rich family of charac-
teristic functions. On the other, given a characteristitcfion that can be identified as belonging to that family,
our results provide a procedure to invert that characteffisction.

2 Construction of characteristic functions

In this section we identify a rich family of characteristignttions which can be constructed by quotients of
entire functions.



From now on we will consider that strictly increasing sequence of positive numbdis, n > 1}, is a
sequence satisfying < a; < ay < --- and such thalim,, .~ a,, = cc.

Proposition 2.1. Consider two entire functiong(z) andh(z) of order lying in(0, 1) such thaty(0) = h(0) =
1, with simple positive zeros given by the strictly incregssequences of positive numbéts,, n > 1} and
{bn, n > 1} respectively. Assume tha{ < b, for all n. Theny(t) = h(it)/g(it) is a characteristic function
of a probability measure oft), co).

Proof. By Hadamard'’s factorization Theorem (see, for examplejiLf3, p. 26]),

W):ﬁ(bi) and h(z):ﬁ(l—i) .

n=1

We conclude from the convergence of both products that

oIl (-0 e-) e

n=1

Since0 < a,/b, < 1 it follows that each factor of the above product is the chargstic function of the
probability measure

a—n&) +(1- an Explay,) ,

by, by,
where ¢, is a Dirac measure d and Exp(a,,) is an exponential law with parametey,. The result is a
consequence of Lévy’s continuity TheoremMl

Remarks 2.2.

1) The conditiong(0) = h(0) = 1 is merely a way to ease the notation, in fact the same resuwitdnze true
if we let g(0) = h(0) # 0.

2) By means of standard manipulations, Propositionh 2.1 holdsfori = 1. In this case each factor ¢f(t)
is the characteristic function of the probability I&ap(a,,).

3) A similar result to Propositiof 2.1 is proved in Corollaryl8.by Schillinget al. [19], where it is also
deduced that the corresponding probability measure beltmghe Bondesson class, andhif= 1, then
the probability measure is in the class of convolutions gfozential densities (for the definition of these
classes see Schillingt al. [19, Pages 80 and 87]).

4) It is easy to show that the restriction of simple zeros in Bsitipn[2.1 can be relaxed if we let, andb,
have the same multiplicity for ai.

Proposition 2.3. Consider two even entire functiog$z) and i(z) of order lying in(0, 2) such thatg(0) =
h(0) = 1. Let{a,, n > 1} and{b,, n > 1} be two strictly increasing sequences of positive numberd;let
{£a,, n > 1} and{+b,, n > 1} be the simple zeros gfz) and h(z) respectively; assume thaf, < b,, for
all n. Thenyp(t) = h(it)/g(it) is a characteristic function of a probability measure Rn

Proof. By Hadamard'’s factorization Theorem
a 22 a 22
g(z) = nH1 (1 - E) and  h(z) = nl'[l (1 - %)

due to the symmetry of the entire functions. The rest of teefifiollows the same argument as the derivation of
Proposition Z.IL. In this setting each factorgf) = h(it)/g(it) is the characteristic function of the probability
measure

2 2
Z—; do + <1 — Z—;) Laplace(ay,) ,
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whereLaplace(a,,) is a Laplace law with parametey,. B

As pointed out in Remark 2.2 there is a straightforward gaization of Propositiof 213 wheln= 1.

The statements of Propositions|2.1 2.3 are related tm#ne results of the following sections. The
reader will notice that it is possible to state more genearaliits using the same ideas and hence with similar
derivations. We may state Proposit[onl2.3 without requgstie functions to be symmetric but with their zeros
given by the sequencds,,, n > 1} and{b,, n > 1} wherea,, andb,, have the same sign, and,| < |b,|. In

such a case )
h(it) dit = [ an an i\ it(L_L)
t) = — g - 1—— 1— — bn  an
#(t) g(it) € nl;[l by, + by, an €

(assumingl € R) and each factor is the characteristic function of a traimsiaof the probability measure

<‘b"—: 8o + <1 - E) 5Xp(an)> .

For example, we can sef(t) = Ai(uit)/Ai(vit), where0 < u < v < oo and Ai(z) is Airy’s function. The

Airy function is an entire function of orde3/2 and its zeros are real and negative (see Katori and Tanemura
[11]]). In this case, although we can state thét) is a characteristic function we will not be able to write its
distribution function explicitly.

2.1 Finite convolution of exponential and Laplace densitie

The next two lemmas will prove useful for determining thesignof the characteristic functions in Proposition
2.1 and_2.B; we will consider a finite product approximatiéno@) and determine its density so we can take
the limit afterwards. This section and the one after willelep the first steps of the procedure.

Let us recall some standard notations. Given two probgilgasures ofR, B(R)), P, and P, we denote
by P, x P, its convolution

Py x Py(B) := /RPl(B —y)Pa(dy) ,

whereB € B(R) andB — y = {x — y, = € B}. The characteristic function d?, » P» is the product of the
characteristic functions dP; and P,. Moreover, if P, and P, are absolutely continuous with densijtyand f5
respectively, then the density &f x P is given by the convolution of; and /5

+oo

fix fa(z) = f1(y) fa(z — y) dy

The convolution off’; * - - - P, (resp. f1 x - - - * f,,) is denoted by/_, P; (resp.x"_, f;).

LemmdZ.4 is well known in the literature (see, for examptepfem 12 of chapter 1 of Feller][7]).

Lemma 2.4. Fix 0 < A\; < Ay < ... < )\, and define the couplel(n) := [[; A; and B(k,n) :=
[Ti=1 (A — Ai). Thenx_;Exp();) has density given by
i#k

fal2) = (=1)"An ZB z>0.

The proof of the following result uses an interesting proypegiven by Bondesson (se€ [2]) in the context
of generalized gamma convolutions that, in our setup, Staig if Y is a non—negative random variable with
moment generating functiol/y (u), for « in a neighborhood df, andT is a centered normal random variable
with variance2, independent ol”, then the random variabl® := /Y T has moment generating function
Mx (u) = My (u?). The proof is completed in the line

My (u) = B[V 7] =E[E[eY /Y]] = B[] = My (u?).
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In fact, the next result is a consequence of the previous keamd will be useful for deriving the density of the
characteristic function of Propositign 2.3.

Lemma 2.5.Fix0 < A\; < A2 < ... < A\, and defineE'(k,n) = ]_[Z 1 (A2 = \2). Thenx}_, Laplace();) has
density given by

which corresponds to a random varialite that is the sum of. independent exponential random variables with
parameterét)\j?, 1 < j < n}. By the previous lemma, the density ¥fis
,)\2

fY(y) — n+1A2 Z E Z n

y>0.

Let T be a centered normal random variable with variaticeence the random variablé := /YT has

characteristic function
n 2 -1
t
j=1 J

which corresponds to the sumwindependent Laplace random variables with paramgtersl < j < n}. In
order to find the density ok, consider the paifX,7") and compute its marginal density by means of a change

of variables to the paifY,T"). The Jacobian determinant%’é—‘, which means that the change of variables is
an almost everywhere diffeomorphism of the plane. #& R, then

00 0
fx(z) = 1120/0 f(X,T)(xat)dt+1m<0/ foxr (. t)dt

00 .%'2 2|z 1‘2 2|z
= 1x20/ f(Y,T)<t27> | ’dt+1x<0/ f(YT)<t27t> %dt
0
& 2|z
/ f < )fT() | ’
0
J

Y
Zn: (—1)n+1A2(”)67,\§m2/t2 2 1 2|x|dt
=1

- E(i,n) MW
n n+l 42 e~ Nz 2/t2 —t2/4

B OEy g »
pat VTE(i,n)

B ( l)nJrl —Xil|z|

N 2 A4 (n) — )\Z-E(z,n)

as required. W

2.2 Finite density approximation of the characteristic furction

We derive here the density function for a finite approximatid the characteristic functions of Propositlonl2.1
andZ.3.



Lemma2.6.Let0 < a; <as <---<a,and0 < by < by <--- < b, suchthata; < b; for1 < i < n. Write
either

(@) gn(2) = [11~, (1~ 2/a;) and hy(2) = [Ty (1 - 2/b;), or

(0) gn(2) =TTiZy (1= 2%/af) and hn(z) = [T, (1 - 2%/87).

Let o, (t) be the characteristic functiop,,(t) = h,(it)/g,(it). Then the corresponding law ¢f,(¢) is
n ai

wherep,, is a finite measure of), co) — casera) — or o \ {0} — casel(b) —, with density given by

dpin — h(ai) dpin — i (ai) g
TP = a;xT 0 M m\ ajl|x 0.
@) 7 ; o (@) e T > or (0) T ; o (@) e T #

Proof. We will prove the result for the case (a); case (b) is simince the convolution of two finite measures
is absolutely continuous when one of them is, we abuse ofdtetion and write

(Z—j 8o + (1 - E> Exp(aj)> ()

to denote the probabilitdensityfunction of the measure which is a mixture of a delta measndeam expo-
nential distribution. Let us denote H}Z{ the set of all subsets dfl,2,...,n} of cardinall < i <n. Then

Ky (Z_j 5o + (1 - E) Exp(a])> (2) =

(i) s 3 [0 (10 | S ey

(-
(fiE)seor Sty s 2 mEC-) || e8]

r#k kdJ

- a; " _ ag n ap ap a
=I5 | do(x) + > e= 1) 421k
<zl_Il Z) O(w) k:le o <1 - Z_k> r=1 << br> br < ar>>
#k "

where we have used Lemimal2.4. &
Remark 2.7. If h = 1 in Lemmd.2.6 then the law af,,(¢) is just .

Lemma 2.6 shows that the distribution has an atom at thenorighis causes a handicap towards apply-
ing the conventional limit theorems to the expressions efdhnsities therein. Section ¥.2 will give further
assumptions and criteria to overcome this difficulty. Hinalotice that the key point to this end is determining
the behaviour of



3 Fundamental lemmas

The following lemmas are essential for the purposes of tipempand they give the technical results to allow us
to use the standard convergence results on the expresdibesnma2.6. Before that, let us remark on a key
property of an entire function: the order of an entire fumetis greater or equal to the exponent of convergence
of its zeros (see Titchmarsh [20, p. 251]). That meansf le¢ an entire function of orderand{a,,, n > 1}

its zeros, then

o0
p>inf{a>0: Z lan| ™ < oo} .
n=1
In particular,y > | lan|™? < oo for B > p. The equality holds iff has a representation as a canonical product,
in fact Propositio 2J1 arld 2.3 give such representatioi famdg.

Lemma 3.1. Letg(z) be an entire function of ordes € (0, 1) such thatg(0) = 1, with simple positive zeros
given by the strictly increasing sequence of positive nusnpg,, n > 1}. Leth(z) be another function that
either

(@ h(z)=1or

z) is an entire function of ordep’ € (0, 1) such thath(a,,) # 0 for all n.
(b) h(z)i ire functi f ordep’ h thath for all

h(an)
n21 g'(an)

Proof. We will prove the lemma for case (b); case (a) is similar antt@d easier. Consider the closed contour

Then, for every: > 0, the seriesy |

e~ % is convergent.

D(R) in Figure[l, whereR > 0, 6y € (0,7/2) andR # qa; for all j. Fixz > 0. The functionzg)) e % is
~ /s
\
// \ //
D'®R) \\ D’®) //
\ /
/
Ve \ //
/ \ 7
% \ /
/ \ 7
6 °)
A ANV &
\\ q a an ’|R 4 \\ q 1WW oo Ay
N I N
AN / N\
N N
N\ / N\
AN / N
L, / N
DR N / N
N / \\
\v/ N,
Figure 1. Dashed line is the contour Figure 2. The function |g(2)| is
D(R) of integration. bounded below in the region ex-

cluded from the gray circles.

analytic in the region bounded by (R), except at the zeros; that lie in the interior ofD(R). The Residue
Theorem allows us to write

i h(Z) e~y — Z RES{CL]') — Z h(aj‘) e~ T

2mi Jp(ry 9(2)

aj<R aj<R
Our objective is to prove that there is an increasing seaydit,, n > 1}, towards infinity such that the limit

lim i(z)
n Jp(r,) 9(2)

e **dz 2
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exists and is finite. The key point of the proof is that an erftinction of ordep < 1 can be bounded below in
the region excluded from small circles around its zeroscé&the zeros of(z) are located on the positive real
axis, convenient bounds af |g(z)| can be obtained. Specifically, the proof is based on:

1. For everys > 0, g(2) = O(e*l) andh(z) = O(e?l). Thisis due toy", |a,|~! < oo, and hence we can
apply Titchmarsh’s issue 15 [R0, p. 286].

2. As a consequence of the previous statement, for every0) there is an increasing sequende,,,n > 1}
such thalim,, R,, = oo and|g(R,¢")| > exp{—eR,} uniformly oné < [0,2x]. See TitchmarsH[20, p.
276, it. 8.75].

3. For everye > 0, there isfy € (0,7/2) andry > 0 such that

|g(re®0)| > exp{—er}, forr > rg.

This is deduced from Titchmarsh [20, p. 273, it. 8.71]. Takaight lines through the origin with anglés
and—6, that do not intersect with any of the circles with cenierand radiusl /a; (for a; > 1), see Figure
2. Titchmarsh proves that for all > 0 existsr), such that ifr > ), we have|g(z)| > exp{—r"**'} in the
region excluded from these discs. TaKesatisfyingp + ¢/ < 1 and thus for sufficiently large we have
rPte’ < er. Choosery a slightly larger tham(, in order to obtain the claimed inequality.

Now we are ready to complete the proof. Eix- 0 such thake < z cos 0y, wheref) is the angle depending
on e such that propert is fulfilled. Denote byD!(R,,) and D?(R,,) the lower and upper straight segment of
D(R,,) while D3(R,,) stands for the arch. All paths are considered with the cpomging orientation. Then
we divide the integral into three parts :

b S0 o o
—e dz = + + .
D(R) 9(2) DY (Rn) JD2(Rn)  JD3(Rn)

We first consider the integral ovér*(R,,). Due to point§land2, we can bound the module of this integral
in the following way:
0o
<r |
—0g

h
/ (Z) e~T%
D3(Ry) 9(2)
< Rne—J:Rncoseo/

—0,

h(R,e")
9(Re')

0o

e—a:Rn cos A6

h(R,e?)
i0

d@ < K@ Rn _Rn(l'COSG()—Qa)
g(Rpe ) - 04tn€ )

for R, large enough. This goes to zeroras> co.
The integral oveD! (R,,) can be parametrized as

A Rn —ifo »

/ h(z) e~y — 6—190/ h(re,‘g ) e~ TTe God’l“ ]
DI(R,) 9(2) o g(re—*)

We claim that

[e%¢) —160p .
/ 'L(re ) e=are” 0 gy < 0. 3
0

glre=™)
According to observatiori§ and3, there isry > 0 depending om such that

[e%s) —160p » [e'e) —10g
/ ‘h(re ) e / ‘h(re )
ro ro

0o
efzm“coseo dr < K/ efr(:ccos€072€) dr < oo.
o

g(re—ieo) g(re—ieo)
: _ib ) . h(re_w") _ 00 : .
Sinceg(re~") # 0 for r > 0, it turns out that the functio (re—100) e~*reosto js continuous ono, ro| and
g\re
hence ”
/TO h(Li% ) gmare o dr < oc.
o |g(re=i)

Adding up the two upper bounds we obtdih (3). Fo1(R,,) the computations are equivalent and the lifit (2)
exists and is finite. W



Lemma 3.2. Under assumptions of Leminal3.1, the series

Z h(an) e~ an® (4)

n>1 9'(an)

converges absolutely far > 0, and the convergence is uniform on any compact subgét of).

Proof. The above expression is a generalized Dirichlet series. @maequence, if{4) is convergent for some
xg, then it is so for alle > zy and the convergence is uniform on every compact subset dfalfidine (see
Mandelbrojt [16, p. 9]). Therefore the second part of therterfollows from Lemma 3]1. Each general
Dirichlet series has associated an abscigsaf convergence and an abscigsaof absolute convergence. In
general these two values are not equal but their distanaauisded (see Mandelbrojt [16, p. 11]) by

. Inn
0<0,—0.<limsup—.
n—oo Qp
From the previous observation we know that< 0; we claim that the above limit is zero to derive the first
part of the result. The claim is proved through Jensen’s ftgnwhich gives the relationship(r) = O(r#+¢)
for the entire functiory(z), wheres > 0 andn(r) stands for the number of zeros with norm less than or equal
to r (see TitchamrsH [20, p. 249]). Choossuch thap + ¢ < 1, thenn < Kaf, " for some positive constant
K. Finally
1nn§n—1§Kaﬁ+€—1,

and hencer, =0,. N

Remark 3.3. Straightforward manipulations lead to generalizing Lersi@d and 32 for the case where the
simple zeros of(z) are{=+a,, n > 1}, but still of an order lying in0, 1).

The next result somehow extends case (a) of Leinma 3.1 butawpéimalization of extra hypotheses. As
will be shown in the examples, this particular case is alsgreét interest.

Lemma 3.4. Consider an even entire functigfiz) of order1 such thaty(0) = 1 andg(z) = O(e“)*!) for some
positive constantl. Let{a,, n > 1} be a strictly increasing sequence of positive numbers{iet,, n > 1}
be the simple zeros gf z); assume that the following limit exists:

lim - =6>0. (5)

n—00 (A,

1

Then, for every > 0, the seriesZn21 7lan)

on any compact subset (f, co).

e~ is absolutely convergent and the convergence is uniform

Proof. Itis clear from [) thatr, = o, thus if we prove the plain convergence of the serig®imo) the result
will follow. The proof is very similar to that of Lemnia 3.1 btlte fact that the order @f(z) is 1 demands some
modifications. We will consider as before the closed confouR) in Figure[1, wherek > 0, 6y € (0,7/2)
andR # a; for all j. Our objective is to prove that there is an increasing setpigii?,,, n > 1}, towards

infinity such that
lim% L e ** (6)
n Jp(r,) 9(2)

exists and is finite for a fixead > 0. Split the above integral as in Lemmal3.1 ifqR,) = D'(R,) U
D*(R,) U D?(Ry,).
The functiong(z) admits an expression as a canonical product given by

(]

n=1



Define the function

o 0-3)

n=1
of order1/2 and noticej(z2) = g(z). Fortunately, the functiog(z) inherits the good properties gfz). To
start with, sincgj(z) has ordef /2, for everye > 0 there is a sequende,, ,”* co such that for alb € [0, 27]

[G(Rne®)| > Mg(Rn)™,
whereMz(r) = maxy, - [g(z)| (see Titchmarsh [20, p. 275, it. 8.74]). Singe) is even, we deduce that

there is a sequende,, := RY? /" oo such that for alb € [0, 2]
l9(Rne™®)| > My(Rn) ™ .

Given thatg(z) = O(e? ?l), for R, large enough,

'; < Ce*AB uniformly onf € [0, 2x].

9(Ry, ew)

Now consider such thatde < z cos 6, and the bound

1 %o
/ ——e Pdz| < Rn/
D3(Ry) 9(2) — 0o

<R e:cRncoseo/
>~ fip
—6

1

——<| €

—x Ry cosf
A " do
g(Rpei?)

6o 1

——— | df < KOyR, —Rn(x cos g—Ae)
9(Rye'?) N 0T 7

for R, large enough. This goes to zeroras co.
In order to bound the integral ové' (R,,) consider the following Remark in Levin [1L3, p. 82, ed@’)]:
o(rl/?)

In NFeig = 7 278sin(0/2 + —
lg(re™)| (0/2) n()2)

for g e (0,27) and as” — oo; that asymptotic result is based on the fact ghat a canonical product of order
1/2. Notice thafj(7e’?) = g(71/2e/?) := g(re??) = g(re'®*™), hence the above asymptotic equation is
translated intgy(z) as

o(r)

Inlg(re®)| = o sin(0)| + 2

for 0 € (0,27) \ {n}. Therefore

/ Le*“alz </00‘; e
D(Ry) 9(2) ~Jo |g(re=it)

where~ means that both converge or diverge together. Clearlyastartegral is finite. The same derivation
is valid for the integral oveD?(R,,) and [6) holds. W

SO ; O(r)
—zr cos 0o dr ~ / e r(:c cos Op+7d| Sln(€0)|+r\sin(90)\) dr |
0

4 Construction of density functions

This section will derive the density function associatedht® characteristic functions of Proposition]2.1 and
PropositiorL 2.8 under the restrictions of Lenima 3.4.

Lemmal[2.6 shows the density function for a finite product agipnation of the characteristic function.
From Lévy’s continuity theorem, this means a convergenceistribution of the associated probability mea-
sures. We first show a pointwise convergence of the distobutinction to finally obtain the convergence of
densities. In order to avoid Dirac’s delta measure, astead of using the distribution functidn(z) we work
with F(z) :== 1 — F(x).
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Theorem 4.1. Under assumptions of Proposition 2.1, the probability nbea®n [0, co) corresponding to the
characteristic functionp(t) = h(it)/g(it) is absolutely continuous off), co) with (perhaps defective) density

given by
Z e x>0.

Proof. Recall h,,(2), gn(z) andy,(t) from Lemma 2.6 casegi(a). Denote By () the distribution function
corresponding to the characteristic functipp(¢). It is clear thaty, (t) — ¢(t) pointwise, wherep(t) is
defined in[(1). Since,, # 0 for all n, it follows thaty(¢) is continuous a. Therefore there exists a distribution
function F'(x), such that

lim F,(z) = F(x)

n—oo

for all z whereF'(z) is continuous. From the expression of the density ofz) we deduce that

n

Enl hn 7 —a;x
Fol@)=-Y (@) aa s

i1 aigy(a;)

Our objective is to prove that

Jim Z p gn( =>. h(, e, x>0. )

a
=1 i9'(

The proof of [7) is done using the dominated convergenceré¢neoFirst notice that for al > 1,

lim ¢, (a;) = ¢'(a;). (8)

n—oo

This is proved in the following way: On the one hand,

nli_{gog;z(az = _a_lnh—ggo H (1 - —) = —CL_Z H (1 — —) (9)
J;Z j;éz
On the other hand, for # a;,

AT (- 2)

J#i
The function on the right hand side is entire, so by analydiatiouation,
lim ﬂ = ﬁ <1 — ﬂ). (10)
z—a; 1 — z/a; e a;
J#i
Further, the function /g(z) has a simple pole at;. Hence,
lim (= — a;)—~ = Res(1/g.0;) = = a1
m(z —a;)—F— = g,a;) = .
2=a; 9(2) g'(a;)

Combining [9)4(1l1) we obtainl8).

Fix z > 0, setA = {a;, ¢ > 1} and denote the counting measurelb\By (8),

hn(y) e YT — h(y) efy:z:, Vy cA.

lim
n—c0 g’ (y) yg' (y)



Now observe that fon > j
hn+l(aj):: hn(aj) 1 _’aj/bn+1
In1(ai)  gnlag) 1—aj/anis’
and sincer,, 1 < b,11 we conclude that

hn(a;) hnt1(ay) h(a;)

9n(a;) = Iny1(aj) = g (a;) (12)
Finally, let®(y) be the function

W)= y};g?;) top(w)e™ + ’((Z))'l[l ) (®e ™, y>0
Then (o) - .
0ol < | B e 20 1 e <o), g0
By Lemmd 3.2,
h(a;)

e M < 00

h(a;)
g'(a;)

a;g'(a;)

= & [ s 3
A irai<1 iai>1

Hence we can apply the dominated convergence theorem te pidvit follows
[e.e]
— ha;) _,
F(z)=— e~ M x>0.
(=) ; a;g'(a;)

Also from Lemmd& 3.2, we check that the set of continuityFafz) is (0,00). Moreover, from the uniform
convergence on compact sets[df (4),

h(an) —anz
/(an)e , x>0

Fla)=fa) ==~
n=1

as required. |
Remark 4.2. Standard manipulations show that Theofen 4.1 is also tiue fo 1.

Remark 4.3. Notice that inequality[(112) also holds true for Lemind 2.6ecd. Thus, Theorein 4.1 for such
g(z) andh(z) with orders lying in(0, 1) still holds and concludes that the limiting density is

o N M) e
f@) nzz:lg’(an) w70

Moreover, the same proof of Theoréml4.1 will be valid for fimies g(z) andh(z) of order lying in[1, 2),
provided thatr, < 0 for the series(4).

The next result is an extension of the preceding theoremaexistence of a density function. One would
like to generalize such a result for characteristic fumdip(t) = h(it)/g(it) whereg(z) andh(z) have zeros
{xan, n > 1} and{=£b,, n > 1} and orders lying iff1,2). Entire functions of order greater than or equal
to one are much more difficult to treat than those that haverdesgs than one. Therefore we will restrict the
study to the setup of Lemnmia 8.4. As pointed out in the aboveriemve only need the absolute convergence
of the general Dirichlet series to follow the same proof oédten{ 4.1l and obtain the density

__ L
f(x) ngl () e , x#0. (13)
However, we would like to present a different proof, Theoldh which shows that both problems, the expo-
nential and Laplace convolutions, are the head and taileo§#me coin. It is worth remarking that the random
variables corresponding to that case are in the homogerssmosid Wiener chaos (see Jansan [8, chap. 6]),
so our result is a step forward in the study of the densitiesioh an interesting space of random variables; in
particular, this case includes the Lévy area.

12



Theorem 4.4. Under assumptions of Lemral3.4, the probability measur@ corresponding to the charac-
teristic functiony(t) = 1/g(it) is absolutely continuous dR \ {0} with (perhaps defective) density given by
(13).

Proof. Recall the expressions 9¢fz) andg(z) defined in the proof of Lemnia 3.4. Notice that
2a;9'(a7) = ¢'(a;) - (14)

Due to Propositio 211 and Theoréml4dl¢) = 1/g(it) is a characteristic function of a non—-negative random
variable, denoted by, with density

o 1
—a;x
:g — ¢ z>0.
g'(a3)

j=1
Fix = # 0 and proceed heuristically as in Lemmal2.5 using the aforeiorerd Bondesson argument ahdl(14)

to obtain the required expressidn{13). To make the arguamEnirate we need to apply Fubini’s theorem since
fy(z) is an infinite series. It turns out that the absolute convergeof [4) allows us to use Fubini’s result.

4.1 Infinite convolution of exponential and Laplace densigs

For the sake of completeness we will rewrite Rentark 4.2 arebfidnT 4.4 in a way that will extend Lemmas
[2.4 and 2.b. Moreover, we prove that in this setup the remptiensity is continuous i), oo) or R.

Following Wintner, for a sequence of densitids,,, n > 1}, we will say that«° , f,, is a convergent
infinite convolution if the product

[I#®, where ¢, (t) = / ¢ £ (z)dx
n=1 —o0
is uniformly convergent in every fixed finite-interval.

Proposition 4.5. Let {)\ n > 1} be a strictly increasing sequence of positive numbers soahfor some
€ (0,1), 32,51 A" < oo. Thenxo2, Exp(A,) converges to a continuous density [noo) which can be
written as

n+1A o 0 by
T . _ Az
*2 1 Exp(A, ,}EEOZ ) e —;)\Z kH1<1 )\k> e M x>0, (15)
B ki

and
21 Exp(An)(0) = 0.

Proof. We will first point out that the infinite convolution is congemt. To this end we will use a very useful
result from Wintner[[211] that ensures the convergence oittfieite convolution if

Z M, < oo where M, = E[|Exp(A\)]] = / || \p, e_)‘"xl[o’oo)dac .

Clearly M,, = ),! and the condition to guarantee the convergence of the iafgotvolution is fulfilled.
Moreover, if one term of the infinite convolution has a contins density of bounded variation, then so has the
infinite convolution; and the continuous functieff_, Exp(\,) tends, asn — oo, to the infinite convolution

13



uniformly in every bounded range (see Wintrier [22]). It sugf§i to notice thafxp(\1)*Exp(\2) is continuous
and of bounded variation. Hence, for al> 0,

n+1
* 1£Xp( JggDEZ A( )eme

To prove the second equality in (15), let

<15

Theng(z) is an entire function of order less tharand apply Theoremn 4.1 te > 0, and the computations
done in the first part of the proof of that theorem. The valuthefdensity at zero is guarantied by Wintrier| [22]
result about the continuity oR of the density. [

Note that the series in the right hand sidelofl (15) may be gemratr = 0.

Proposition 4.6. Let{\,, n > 1} be a strictly increasing sequence of positive numbers )t -, A2 <
oo. Thenx>2 ; Laplace()\,,) converges to a continuous densityRnwhich can be written as

o0 e (ED)T A ()
*° Laplace(A,)(x) = nILHgoZ Ein) e , reR.

=1

Proof. As in Propositio 4.5, we start by showing that the infinitevemlution is convergent. Jessen and Wintner
show in [9] that if
oo oo
My and Y M
n=1 n=1

are convergent, wherg/}! and M? are the first and second moment Bfiplace(),) respectively, then so
is the infinite convolution. One can check that! = 0 and M2 = ), ? to obtain the convergence of the
infinite convolution. Therefore we can apply Wintner|[22]dlotain the proposition since a Laplace density is
continuous and of finite variation. MW

4.2 Existence of densities

In this section we give three different conditions that gudee that the probability measure corresponding to
h(it)/g(it) is absolutely continuous.

Proposition 4.7. Under the hypotheses of Theoreml 4.14,(if) = 1, then the probability measure correspond-
ing to 1/¢(it) is absolutely continuous and its density is continuous.

This result follows from Propositidn 4.5.

In some cases it is known that the probability measure gooreging toh(it)/g(it) has no atom at zero.
Since that probability measure is concentrated0ono), this suffices for the existence of a density.

Proposition 4.8. Assume the hypothesis of Theofem 4.1 and dengqigh®y/probability measure corresponding
to h(it)/g(it). If u({0}) = 0, theny is absolutely continuous.

The following lemma gives a sufficient condition in order faply a classical criterion for the existence of
a continuous density.

14



Lemma 4.9. Letg(z) and h(z) be two entire functions of order € (0, 1), both with non-zero positive simple
real zeros, and the zeros gfz) different from the zeros 0df(z). Denote byn,(r) (respectivelyn;,(r)) the
number of the zeros @f z) with module less than. Assume the existence of the limits

6 = lim ng—(r) >0 and " = lim n(r)

r—oo 1P r—oco P

/OO 'ZEZ;' dt < oo (16)

Proof. Levin ([13, p. 82, eqn. (2')]) proves thatéf € (0,27) andr — oo then
mr? cos (p(6 — m)) o(rr)

>0,

with & < §. Then

— 00

0y _
log |g(re™)[ = sin(7p) sin(6/2) (37
The analogous holds true farre) with ¢’ instead of.
Split integral [16) into two parts as
00 h(Zt) /oo h(te”/z) /oo h(tez’37r/2)
—=|dt = —|dt ——| dt. 18
/_oo ‘g(it) ‘ 0 ‘g(temﬂ) ‘ " 0 ‘g(teﬁ’”/z) ‘ 49
Due to [17) there isy > 0 andC > 0 such that for > r, we get
/2
}L(L.) = exp{—cos(pm/2)7(6 — &) csc(mp)r? + o(r”)}
g(tei™/2)

= exp{—r"(cos(pm/2)7(6 — &) csc(mp) + o(r?) /r?)} < e .

() im/2 (3]
/ ‘MLJQ)‘dtg/ e " dr <
ro |1 g(tem/?) ro

since the last expression can be reduced to a convergent gamtegral. For the integral ové, ry| there is
a straightforward bound using the same sort of derivatiaesiin Lemma_3]1. The other integral on the right
hand side ofl(18) is bounded in a similar way. W

With the notations of this lemma,

Proposition 4.10. Under the hypothesis of Theoréml4.1, and assume the exastéttre limits

5:Iimn9—(r)>0 and 5’:limnh—m>0,

r—oo 7P r—oo 1P

with &’ < §. Then the probability measure corresponding:{ét)/g(it) has a continuous density.

Hence

5 Examples

We will now see different situations where we can apply thmilte obtained in the previous sections. Most
results are known, but here we get them all using the samaitpah

5.1 Lévyarea

Letp(t) = sech{tT’) be the characteristic function for the Lévy area (see L[@¥4}), where the time component

of the process varies i, T']. Here we seb = 1 andg(z) = cos(zT'), whereg(z) has orden. It is clear that

{£(2k — 1)m/2T, k > 1} and{%(—1)*/T, k > 1} are the poles and the residuesl ¢§(=) respectively, thus

©(t) fulfills Proposition[2.8. Moreovely(z) is even and of exponential type, thus we apply Thedrem 4.4 to

obtain

o) (_1)k+1 —(%_l)ﬂ\x\
- e 2T

flo) =2 —=

k=1
Proposition 4.6 ensures that the density function is captis inR.

x#0.
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5.2 The first hitting time of a Bessel process

The second example is a characteristic function obtairad fr
k(z) = z7V22"2D (v + 1)J,(V22),

where J,(z) is the Bessel function of first kind and order> —1. Consider0 < v < v < oo and let
h(z) = k(u®z) andg(z) = k(v?z). The probability measure of the corresponding charatierisnction
o(t) = h(it)/g(it) describes the first hitting time of the poinby a Bessel process of ordetthat starts at,
see Kent[[12], and can be expressed as

From the Taylor expansion of

<§>V ZOEDY n!F(n(J:?i 1)dn 2

n>0

we can deduce the order bfz), since the order of an entire function is

i nln(n)
=lmsup ———~,
PR (1 lea)

wherec,, are the coefficients of the Taylor expansion, see Levin [136]p Due to the Stirling formula the
above limit forh(z) andg(z) is 1/2. Denote by{j, », k > 1}the positive zeros in order of magnitude of the

Bessel function/, (z) and bya;, = jfak/(%?) the zeros ofy(z). Finally we can apply Theorem 4.1 to obtain
the density

oo . 1/72{] . P2
f(x) _ ]U,kv U(]‘Vyku/v) 6_ 202 x T > 0 7 (19)
— w1 (k)

where we have used p
14
%JV(Z) = —Jerl(Z) + ;JI,(Z) .
Equation[(I9) is also derived by Borodin and Salmirién [3,8§¥]3Notice that the distribution function is
absolutely continuous if0), co) since the probability distribution gives no mass{fg due to the continuous

paths of the Bessel process.

5.2.1 Exit time from a n—dimensional sphere by a Brownian motion

Let T,, denote the random variable of the total time spent by-atimensional Brownian motion starting @t
inside the spheré™~!(r) of radiusr > 0 andn > 3. Let P, denote the first exit time for a—dimensional
Brownian motion starting &t from the spheres™!(r) for n > 1. Ciesielski and Taylor [4] show the remark-
able equality of the distribution functions @f, and P,,_, for n > 3, and they derive the distribution function
of T,, using methods developed by Kac [10]. They first compute théiea for n = 3 and then make a guess
for the general framework. Finally they compare the resith whe distribution ofP,, which was computed by
Lévy.

We can use Theoreim 4.1 to derive the density functiof,afince Ciesielski and Taylor give its character-
istic function. In fact they establish the following result

2Tny _ (T\/ﬂ)yil — M _& -
Ele*™"] = W (1)1 (rv22) };[1 (1 j,%u) 7
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wherev = (n — 2)/2. This is a particular case of the previous example, whereetvig(k) = 1 andg(z) =
k(r?z). Use the same arguments as before to derive the densitydunct

;2
]V 1,k ——/”_1’kx
e )

Notice thatT,, is absolutely continuous due to Proposition 4.7, and we etyi(8) = 0 to obtain a continuous
density.

5.2.2 The area under a squared Bessel bridge

The characteristic function &, is easily representated when=n + 1/2 forn € N. Lety = 3/2 andr = 1
to obtain the expression

olt) = —L 21
sinh(yv/—2it) -
Revuz and Yor([1B, p. 465] give the Laplace transform of tremamder a squared Bessel process starting at
any point and arriving at zero. It turns out that the aboveattaristic function corresponds to a Bessel process
of order 2 starting and arriving at zero. Such functions appecursively in the literature and many authors
have studied them, for instance [1] and][17].
The factorization of the characteristic function is pardgly easy, and one can check the identity

;_ﬁ 22\

where the residues af/ g(z) are{(—1)*72k?, k > 1}. Finally, the density function can be written as

f( ) Zk_ ( )k—l—l 2120 —m2k%z /2 forz >0
0 forc =0 "~

as stated in_[1]. This characteristic function also coroesis (with a change of parameters) to the square of a
Kolmogorov law. The corresponding distribution functi@n i

dp=1+23 (-DFe™Fe/2 forz >0,
which was obtained by Dugugél[6].

5.3 Inverse Laplace transform

Theta functions and related expressions have proved usefalanipulations of functionals of Brownian mo-
tion. For instance, Borodin and Salminen use the inverséacaegransform of

v sinh(uv/22)
usinh(vy/22)

O<u<w,
which turns out to be

L7 P)y) = -

o0
_ 2k -~ (v—u+2k’v)2
Z we T y>0. (20)

\ /27Ty3/2

sinh(vv/2

vV/2z
k> 1} and{(—1)*+'£2 gin (Lkx) , k > 1}, which are the

Let us considerp(t) = h(it)/g(it), whereg( ) = 2) and similar forh(z ). Standard manipulations

lead to the computation of the sequen¢es. 7 T
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poles and the residues bfz)/g(z) respectively. As pointed out in the previous example, botitfionsh(z)
andg(z) are entire functions of orddr/2 andy(t) satisfies the hypothesis of Proposition|2.1. Notice that the
poles are negative and hence we have to apply a generatizstibheoreni 411 for the negative case, this is
straightforward and we obtain the expression

= k K2e2
fly) = Z(—l)kﬂg sin (%kﬂ') e'nEY y<0.
k=1

Since we consider the Laplace transform we need to changigthefy in the above expression and consider it
in the rangg0, co). After doing that, it turns out that the above series is etuQ) due to Poisson summation
formulae. Moreover, we are able to say that the density fongt(y) is continuous if0, co) due to Proposition

[4.10 sinceny(r) = [”727“] , where[z] stands for the integer part afand similar forn,,(r).

5.4 Heston density function

The authors proved in_[5] that the density function of the tliesnodel isC* and can be expressed as an
infinite convolution of Bessel type densities. We give harether expression in a particular case. In fact the
search for such an expression for the general case was thiegsfaoint for the present paper, thus we believe
it is worth recording it, even though it is only a partial ritsu

The Heston model for the log-spot is driven by the followipgtem of stochastic differential equations

1
dXy = —5Vidt + VVidz,
dVy = a(b— V;) dt + c\/V, dW (1)

wherea, b andc are real positive constants. The procesdésand Z are two standard correlated Brownian
motions such thatZ, W), = pt for somep € [—1,1]. For the particular case of interest we 8eb = c? and
consider the volatility process to start atl. Then the complex moment generating function of log—spot is

E[ert] _ ez(mofpct/Q)ea _ 62(10*P0t/2)
cosh(P(z)) + “5f5 sinh(P(z)) 9(2)

wherex is the initial point for the procesX and P(z) = \/(a — cpz)? + c2(z — 22). The terme*(@o—rct/2)

is merely a decentralisation term, while the functigr) is an entire function of ordelr/2 with all zeros being
real (seel[b]). The functiog(z) has negative zeros fgr = —1, while for p = 1 anda > c all zeros are
positive. In any case we can apply Theorfen] 4.1 to obtain aressgjpn of the density function as a series of
exponential type densities. Obviously, the zerog(ef) must be computed numerically.
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