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A VOLUMETRIC PENROSE INEQUALITY FOR

CONFORMALLY FLAT MANIFOLDS

FERNANDO SCHWARTZ

Abstract. We consider asymptotically flat Riemannian manifolds with non-
negative scalar curvature that are conformal to R

n \ Ω, n ≥ 3, and so that
their boundary is a minimal hypersurface. (Here, Ω ⊂ R

n is open bounded
with smooth mean-convex boundary.) We prove that the ADM mass of any

such manifold is bounded below by 1
2
(V/βn)

(n−2)/n, where V is the Euclidean
volume of Ω and βn is the volume of the Euclidean unit n-ball. Surprisingly,
we do not require the boundary to be outermost.

1. Introduction

One of the major results in differential geometry is the positive mass inequality,
which asserts that any asymptotically flat Riemannian manifold M with nonneg-
ative scalar curvature has nonnegative ADM mass. Furthermore, the inequality
is rigid, in that the ADM mass is strictly positive unless M is isometric to the
Euclidean space R

n. This inequality was proved in 1979 by Schoen and Yau [13]
for manifolds of dimension n ≤ 7 using minimal surface techniques. Witten [16]
subsequently found a different argument based on spinors and the Dirac operator.
(See also [2] and [11].) Witten’s argument works for any spin manifold M, without
any restrictions on the dimension.

A refinement to the positive mass inequality in the case when black holes are
present is the Riemannian Penrose inequality. It asserts that any asymptotically
flat manifoldM with nonnegative scalar curvature containing an outermost minimal
hypersurface of area A has ADM mass m that satisfies

(RPI) m ≥
1

2

(

A

ωn−1

)
n−2

n−1

,

where ωn−1 is the area of the (n− 1)-sphere S
n−1. This inequality is also rigid, in

that it is strict unless M is isometric to the Riemannian Schwarzschild manifold.1

This inequality was first proved in three dimensions in 1997 by Huisken and Ilma-
nen [9] for the case of a single black hole. In 1999, Bray [3] extended this result,
still in dimension three, to the general case of multiple black holes using a different
technique. Later, Bray and Lee [5] generalized Bray’s proof for dimensions n ≤ 7,
with the extra requirement that M be spin for the rigidity statement.

A special situation arises if we restrict ourselves to the case of conformally flat
manifolds. There, the proof of the positive mass theorem follows from Green’s for-
mula. In view of this, Bray and Iga suggest in [4] that there should be a proof of
the RPI for conformally flat manifolds that uses only properties of superharmonic

1See the beginning of §3 for the precise definition.
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functions in R
n. Moreover, in that work Bray and Iga proved the RPI with sub-

optimal constant c < 1, on manifolds conformal to the flat metric on R
3 minus the

origin. Specifically, they proved that m ≥ c
√

A/16π where A is the infimum of the
areas of all surfaces enclosing the origin.

In this paper we prove what we call a “volumetric” Penrose inequality for con-
formally flat manifolds using elementary techniques. An important point to note
concerning our inequality is that it gives a weaker bound than the RPI in the cases
where the latter is applicable. (See Remark 16 below.) On the other hand, our The-
orem works in all dimensions n ≥ 3. This is particularly interesting in dimensions
8 and above, where no such results (asides from spherically symmetric manifolds)
were known to exist.2

The precise statement of our main theorem is the following.

Theorem 1. Suppose that (Mn, g), n ≥ 3, is an asymptotically flat n-dimensional
manifold with nonnegative scalar curvature which is isometric to (Rn\Ω, u4/(n−2)δij),
where Ω ⊂ R

n is an open bounded set with smooth mean-convex boundary (i.e. hav-
ing positive mean curvature), and u is normalized so that u → 1 towards infinity.
If the boundary of M is a minimal hypersurface, then

(1) m ≥
1

2

(

V

βn

)
n−2

n

,

where m is the ADM mass of (M, g), V is the volume of Ω with respect to the
Euclidean metric, and βn is the volume of the Euclidean unit n-ball.

The requirements that (M, g) be conformally flat and that the boundary of Ω
have positive mean curvature appears to be quite stringent, but not so much from a
topological point of view. For example, the manifolds we constructed in [14], which
are the only known asymptotically flat manifolds with nonnegative scalar curvature
having outermost minimal hypersurfaces which are not topological spheres,3 are all
conformally flat, and their respective Ω’s have mean-convex boundary. Actually,
since we do not require the boundary ofM to be an outermostminimal hypersurface,
there are many topologically-inequivalent examples of manifolds which satisfy the
hypotheses of our theorem. Indeed, from the construction of [14] it follows fairly
easily that one can find examples of scalar flat, asymptotically flat manifolds having
minimal boundary which is, topologically, the boundary of any given handlebody
in R

n. Using appropriate scalings these can be made mean-convex as well.

Remark 2. For the special case of a Schwarzschild metric, the RHS of inequality
(1) differs by a factor of 4 from being optimal.

Remark 3. Our theorem does not require that the boundary of M be outermost, in
contrast with the standard RPI4. This may seem odd at first. Nevertheless, since
a non-outermost minimal hypersurface bounds a domain that is contained in the

2At the time of submission the author found out that Lam, a student of Bray, has proved the
positive mass inequality for graphs of asymptotically flat functions over Rn, and the Riemannian
Penrose inequality for graphs on Rn with convex boundaries, all this for n ≥ 3.

3The outermost minimal hypersurfaces are, topologically, a product of spheres.
4This assumption is necessary in the RPI, for it is well known that counterexamples may be

obtained by taking spherically symmetric metrics with fixed mass and arbitrarily large minimal,
but not outermost, boundary, like in p. 358 of [9].
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domain that the outermost minimal hypersurface bounds, inequality (1) only gives
a weaker bound when applied to a non-outermost minimal boundary compared
to it being applied to the external region of the outermost minimal hypersurface.
Also, notice that we need to impose u → 1 towards infinity to get rid of would-be
counterexamples where the volume of Ω can be made arbitrarily large maintaining
the mass bounded.

Outline of the proof. We first extend a theorem of Bray using Witten’s positive
mass theorem and obtain a lower bound for the ADM mass of (M, g) in terms of
the capacity of its boundary. We then focus on finding an estimate for the capacity
of the boundary. It turns out that, in the conformally flat case, this can be done
using a spherical symmetrization trick, so long as we can find appropriate bounds
for the conformal factor.

We should mention that Bray and Miao also exploit the relationship between
mass and capacity in [6], but their estimates go in the opposite direction. In their
beautiful work they find upper bunds for the capacity of surfaces in terms of the
Hawking mass, all this inside asymptotically flat three dimensional manifolds with
nonnegative scalar curvature. The proof of their main theorem relies on the mono-
tonicity of the Hawking mass along inverse mean curvature flow; this is known to
work only in dimension three. Their result was inspired by an earlier result of Bray
and Neves [7], where similar techniques were used for computing Yamabe invariants.

Acknowledgments. This work was mostly carried out while visiting the IMPA
in Rio de Janeiro, Brazil. I would like to thank the University of Tennessee’s
Professional Development Award for providing me with partial support for the
trip. I would like to thank the IMPA for their hospitality, and Fernando Codá
Marques for some useful conversations. I would like to thank Hugh Bray for his
useful comments after proofreading a first draft. In particular, for pointing out a
missing step in the original version. Finally, I would like to thank Jeff Jauregui for
pointing out the redundancy of one argument inside the original proof of Lemma
11.

2. Preliminaries

We begin by recalling some classical facts about spherical symmetrization in R
n.

Definition 4. Let u be a function in W 1,p(Rn). Its spherical symmetrization,
u∗(x) ≡ u∗(|x|), is the unique radially symmetric function on R

n which is decreasing
on |x|, and so that the Lebesgue measure of the super-level sets of u∗ equals the
Lebesgue measure of the super-level sets of u. More precisely, u∗ is defined as
the unique decreasing spherically symmetric function on R

n so that µ{u ≥ K} =
µ{u∗ ≥ K} for all K ∈ R.

The following result is a classical theorem in analysis which can be traced back
to a principle used by Pólya and Szegö [12]. (See also [15], [8].)

Symmetrization Theorem ([12]). Spherical symmetrization preserves Lp norms
and decreases W 1,p norms.

We need the above result for a calculation inside the proof of the main theorem.
We now introduce the notion of ADM mass and capacity of asymptotically flat
manifolds, and give some results of Bray and Witten concerning these quantities.
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Definition 5. Let n ≥ 3. A Riemannian manifold (Mn, g) is said to be asymp-
totically flat if there is a compact set K ⊂ M such that M \K is diffeomorphic to
R

n \B1(0), and in this coordinate chart the metric gij satisfies

gij = δij +O(|x|−p), gij,k = O(|x|−p−1), gij,kl = O(|x|−p−2), Rg = O(|x|−q),

for some p > (n−2)/2 and some q > n, where the commas denote partial derivatives
in the coordinate chart, and Rg is the scalar curvature of g.

For an asymptotically flat manifold (M, g), it is well known that the limit

m(g) = lim
r→∞

1

2(n− 1)ωn−1

∫

Sr

(gij,i − gii,j)νjdA

exists, where ωn−1 is the area of the standard unit (n− 1)-sphere, Sr is the coordi-
nate sphere of radius r, ν is its outward unit normal, and dA is the Euclidean area
element on Sr .

Definition 6. The quantity m = m(g) from above is called the ADM mass of
(Mn, g).

This notion of mass was first considered by Arnowitt, Deser, and Misner in [1].
Later, Bartnik showed that the ADM mass is a Riemannian invariant, independent
of choice of asymptotically flat coordinates, cf. Section 4 of [2].

Definition 7. The capacity of the boundary Σ of a complete, asymptotically flat
manifold (Mn, g) is

C(Σ, g) = inf

{

1

ωn−1

∫

M

|∇ϕ|2dV

}

,

where the infimum is taken over all smooth 0 ≤ ϕ(x) ≤ 1 which go to zero at
infinity and equal to one on the boundary Σ.

Remark 8. The above definition of capacity differs slightly from the standard def-
inition of capacity. We ask that the functions considered in the infimum satisfy
the extra hypothesis 0 ≤ ϕ(x) ≤ 1, which is required for the proof of Lemma 13.
Nevertheless, this extra assumption does not affect the outcome of the infimum,
since with or without it the infimum is attained by a positive harmonic function no
greater than one. (Cf. equation (86) of [3].)

The following theorem of Bray is central to our purposes since it establishes a
relationship between mass and capacity.

Bray’s Theorem ([3]). Let (Mn, g), n ≥ 3 be an asymptotically flat manifold
which is spin or has dimension less than 8, and so that it has nonnegative scalar
curvature and minimal boundary Σ. Let m be its ADM mass. Then

m ≥
1

2
C(Σ, g),

with equality if and only if (Mn, g) is a Riemannian Schwarzschild manifold5 outside
its outermost minimal hypersurface Σ.

5For the precise definition of the Riemannian Schwarzschild manifold see the beginning of
Section 3.



A VOLUMETRIC PENROSE INEQUALITY 5

Remark 9. Bray’s original version of the above theorem, which is Theorem 9 of
[3], does not include the case of M being spin, but for our purposes this is a
natural assumption. It is easy to see that a slight modification of Bray’s proof,
using Witten’s positive mass theorem (included below for completeness) whenever
necessary, gives a proof of the above statement.

Witten’s Positive Mass Theorem ([16]). Let (Mn, g), n ≥ 3 be an asymp-
totically flat spin manifold with nonnegative scalar curvature which has multiple
asymptotically flat ends and total mass m in a chosen end. Then

m ≥ 0,

with equality if and only if (Mn, g) is isometric to (Rn, δij).

Finally, we cite a quick fact about spin geometry that we will use in the proof of
the main theorem. This may be found e.g. in Michelsohn and Lawson’s book [10].

Lemma 10 ([10]). Let M be diffeomorphic to R
n \ Ω, where Ω is an open subset

of Rn with smooth boundary. Then M is spin.

3. Proof of Theorem 1

Throughout this section we will be using three different metrics:

(i) the Euclidean metric δij on R
n,

(ii) the conformally flay metric of (M, g) given by g = u4/(n−2)δij , where u > 0
is a smooth function defined on R

n \ Ω,
(iii) the Riemannian Schwarzschild metric on R

n minus the origin:

s =
(

1 +
m

2
|x|2−n

)4/(n−2)

δij ,

where |x| is the Euclidean norm of x, and m will be determined later.

Standard quantities depending on the metric, like covariant derivatives, volume
forms, norms and so on, will be denoted by, respectively,

(i) ∇0, dV0, | · |0,
(ii) ∇g, dVg, | · |g,
(iii) ∇s, dVs, | · |s.

We begin by proving an estimate for the conformal factor u, which is of inde-
pendent interest. (Here is where we need that the boundary of Ω be mean-convex.)

Lemma 11. Suppose that (Mn, g) is an asymptotically flat n-dimensional manifold
with nonnegative scalar curvature which is isometric to (Rn \Ω, u4/(n−2)δij), where
∅ 6= Ω ⊂ R

n is an open bounded set with smooth mean-convex boundary. Assume
that the boundary of M is minimal, and that u is normalized so that u → 1 towards
infinity. Then u ≥ 1 on M .

Proof. Recall that the transformation law for the scalar curvature under conformal

changes of the metric is given by Rg = 4(n−1)
n−2 u−(n+2)/(n−2)(−∆0 + n−2

4(n−1)R0)u,

where ∆0 is the Euclidean Laplacian and R0 is the Euclidean scalar curvature,
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namely R0 ≡ 0. Since we assume that Rg ≥ 0, it follows that u is superharmonic
onM . Therefore, u achieves its minimum value at either infinity or at the boundary
∂Ω. At infinity u goes to one. We now show that at the boundary it does not achieve
its minimum, and so it must be everywhere greater or equal than one.
Claim. u does not achieve its minimum on the boundary of M .
From hypothesis, the boundary of M is a minimal hypersurface. This is, the mean
curvature of the boundary of M is zero with respect to the metric g = u4/(n−2)δij .
Now, the transformation law for the mean curvature under the conformal change of

the metric g = u4/(n−2)δij is given by hg = 2
n−2u

−n/(n−2)(∂ν +
(n−2)

2 h0)u, where h0

is the Euclidean mean curvature and ν is the outward-pointing normal. Since we
have assumed that the boundary of Ω is mean convex, i.e. that h0 > 0, it follows
that ∂νu < 0 on the boundary of Ω. Thus, u may not achieve its minimum on the
boundary of M . This proves the claim and the Lemma follows. �

We now bring spherical symmetrization into the picture. Suppose that 0 ≤ ϕ ≤ 1
is a smooth function on R

n\Ω which is exactly 1 on the boundary ∂Ω and converges
to 0 at infinity. We may extend this function to a function ϕ̃ defined on all of Rn,
given by

ϕ̃ =

{

1 in Ω,
ϕ outside Ω.

(Notice that ϕ̃ is Lipschitz.) Now consider (ϕ̃)∗, the spherical symmetrization of
ϕ̃, which is defined on all of Rn. (See Definition 4.)

Definition 12. Let ϕ be as above, and let V be the Euclidean volume of Ω. We
define ϕ∗ to be the restriction of (ϕ̃)∗ to R

n \BR(0), where R = R(V ) is the radius
of the Euclidean ball of volume V , namely R = (V/βn)

1/n.

Lemma 13. Let ϕ be as above. Then
∫

M

|∇0ϕ|
2
0dV0 ≥

∫

Rn\BR(0)

|∇0ϕ
∗|20dV0.

Proof. Recall that M = R
n \ Ω. Since ϕ̃ is Lipschitz and is constant inside Ω, it

follows that
∫

Rn\Ω
|∇0ϕ|20dV0 =

∫

Rn |∇0ϕ̃|20dV0. From the Symmetrization Theorem

applied to ϕ̃, we obtain that
∫

Rn |∇0ϕ̃|20dV0 ≥
∫

Rn |∇0(ϕ̃)
∗|20dV0. But since 0 ≤ ϕ̃ ≤

1 is constant and equal to one on Ω, it follows that (ϕ̃)∗ is also constant and equal
to one on the ball BR(0), where R = (V/βn)

1/n and V is the Euclidean volume of
Ω. This way,

∫

Rn |∇0(ϕ̃)
∗|20dV0 =

∫

Rn\BR(0)
|∇0ϕ

∗|20dV0. Putting this inequalities

together gives a proof of the lemma. �

Lemma 14. Let g = u4/(n−2)δij. We have that

(i) |∇gϕ|2g = u−4/(n−2)|∇0ϕ|20,

(ii) dVg = u2n/(n−2)dV0.

Proof. Straightforward calculation. �

We now prove the main proposition in this section.

Proposition 15. Let (M, g) be as in Theorem 1 and consider a smooth function
0 ≤ ϕ ≤ 1 on M so that ϕ = 1 on ∂M and ϕ → 0 towards infinity. Then

∫

M

|∇gϕ|
2
gdVg ≥

1

4

∫

Rn\BR(0)

|∇sϕ
∗|2sdVs,
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where R = (V/βn)
1/n, V is the Euclidean volume of Ω, and s is the Schwarzschild

metric of mass m = 2Rn−2.

Proof. Using Lemma 14 we obtain
∫

M

|∇gϕ|
2
gdVg =

∫

M

u−4/(n−2)|∇0ϕ|
2
0u

2n/(n−2)dV0 =

∫

M

u2|∇0ϕ|
2
0dV0

≥(inf
M

u2)

∫

M

|∇0ϕ|
2
0dV0,

but u ≥ 1 by Lemma 11; this together with Lemma 13 gives

≥

∫

M

|∇0ϕ|
2
0dV0 ≥

∫

Rn\BR

|∇0ϕ
∗|20dV0.

Now, the Schwarzschild metric of mass m = 2Rn−2 has its unique minimal hy-
persurface at the coordinate sphere of radius R. Also, the Schwarzschild conformal
factor us = 1 + m

2 |x|
2−n is bounded between 1 and 2 outside the minimal sphere.

(It is exactly equal to 2 on the minimal sphere, and decreases to 1 towards infinity.)
This, together with Lemmas 13 and 14 gives
∫

Rn\BR

|∇0ϕ
∗|20dV0 =

∫

Rn\BR

u
4

n−2

s |∇sϕ
∗|2su

−2n

n−2

s dVs =

∫

Rn\BR

u−2
s |∇sϕ

∗|2sdVs

≥
1

4

∫

Rn\BR

|∇sϕ
∗|2sdVs.

This ends the proof of the proposition. �

Proof of Theorem 1. M is spin from Lemma 10. Thus, we may apply Bray’s The-
orem and obtain that m(g) ≥ 1

2C(Σ, g). From Proposition 15 it follows that

C(Σ, g) ≥ 1
4C(SR, s) where SR is the Euclidean (n − 1)-sphere of radius R in-

side R
n, and s is the Schwarzschild metric like in the proof above. We deduce that

m(g) ≥ 1
8C(SR, s).

On the other hand, the rigidity statement of Bray’s Theorem gives the explicit
value of C(SR, s), namely that m(s) = 1

2C(SR, s) = 2Rn−2 = 2(V/βn)
(n−2)/n. From

this it follows that

m(g) ≥
1

2

(

V

βn

)
n−2

n

,

as desired. �

Remark 16. We now check that the volumetric Penrose inequality is weaker than
the RPI. Let A0, Ag denote the area of the boundary of M with respect to the
Euclidean metric δij and the metric g, respectively. Also let V denote the volume
of Ω with respect to the Euclidean metric as before. From Lemma 11, it follows
that Ag > A0, since u > 1 on the boundary. This way,

1

2

(

V

βn

)

n−2

n

=

(

V

A
n

n−1

0

)

n−2

n

(

ω
n

n−1

n−1

βn

)

n−2

n

1

2

(

A0

ωn−1

)

n−2

n−1

<
[

I(Ω)
n−2

n

] 1

2

(

Ag

ωn−1

)

n−2

n−1

,
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where I(Ω) is the isoperimetric ratio of Ω given by I(Ω) =

(

V

A
n

n−1

0

)

(

βn

ω
n

n−1

n−1

)−1

.

Clearly I(Ω) ≤ 1, so it follows that the volumetric Penrose inequality gives a strictly
weaker lower bound for the mass compared to the RPI, provided the latter holds.
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[7] Hubert L. Bray and André Neves, Classification of prime 3-manifolds with Yamabe invariant

greater than RP
3, Ann. of Math. (2) 159 (2004), no. 2, 407–424. MR2052359

[8] Keijo Hildén, Symmetrization of functions in Sobolev spaces and the isoperimetric inequality,
Manuscripta Math. 18 (1976), no. 3, 215–235. MR0409773 (53 #13525)

[9] Gerhard Huisken and Tom Ilmanen, The inverse mean curvature flow and the Riemann-

ian Penrose inequality, J. Differential Geom. 59 (2001), no. 3, 353–437. MR1916951
(2003h:53091)

[10] H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical
Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR1031992 (91g:53001)

[11] Thomas Parker and Clifford Henry Taubes, On Witten’s proof of the positive energy theorem,
Comm. Math. Phys. 84 (1982), no. 2, 223–238. MR661134 (83m:83020)
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