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SMOOTH NUMBERS IN SHORT INTERVALS

K. SOUNDARARAJAN

Abstract. Assume the Riemann Hypothesis. For every ǫ > 0 we show that there
is a constant C(ǫ) such that for all large x, the interval [x, x+ C(ǫ)

√

x] contains
an integer all of whose prime factors are less than xǫ.

A natural number n is called y-smooth if all its prime factors are below y. We let
S(y) denote the set of y-smooth numbers, and let Ψ(x, y) denote the number of such

integers below x. If we write y = x
1
u then it is known that Ψ(x, y) ∼ ρ(u)x where

ρ(u) denotes the Dickman function defined by ρ(u) = 1 for 0 ≤ u ≤ 1 and for u ≥ 1
is defined as the unique continuous solution to the differential-difference equation
uρ′(u) = −ρ(u − 1). This asymptotic formula was published first by Dickman [3] for
fixed values of u and as x → ∞; recently Soundararajan [14] has pointed out that
such an asymptotic formula may be found in Ramanujan’s unpublished papers. Later
work has established asymptotic formulae for Ψ(x, y) uniformly for u in a wide range;
see for example the surveys [5] and [9].

In this note we are concerned with the existence of smooth numbers in short inter-
vals. For a wide range of the variables x, y, and z, it is expected that

Ψ(x+ z, y)−Ψ(x, y) ≍ z

x
Ψ(x, y).

It is also of interest to establish the existence of smooth numbers in such short inter-
vals, even if one is not able to exhibit a positive proportion of such numbers. One
motivation for this problem is the analysis of Lenstra’s elliptic curve factorization al-
gorithm [11] (and see also [13]) where one wishes to find integers in [x, x+4

√
x] which

are exp(
√
log x log log x) smooth.

Regarding this problem, an important advance was made by Balog [1] who showed

that for any fixed ǫ > 0 and x large, the interval [x, x+x
1
2+ǫ] contains many xǫ-smooth

integers. Harman [7] has obtained a strengthening of this result, allowing ǫ to be a
function of x. The problem for intervals of length of size

√
x has proved resistant, and

here Harman [8] has established that the interval [x, x +
√
x] contains integers that

are x
1

4
√

e -smooth. If one expands the interval a little to consider [x, x+C
√
x] for some

constant C > 0, then recently Matomäki [12], advancing an approach of Croot [2],

has shown that such intervals (for a suitably large value of C) contain x
1

5
√

e
+ǫ
-smooth

numbers.
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One may wonder if the Riemann Hypothesis is of use in this problem. Assuming RH,

Xuan [15] has shown that intervals [x, x + x
1
2 (log x)1+ǫ] contain xǫ-smooth integers.

Recently Ganguly and Pal [4] have noted that if, in addition to RH, one assumes a
strong conjectural estimate for πS(t) (which is the argument of ζ(1/2 + it)), then

intervals [x, x+ x
1
2 (log x)

1
2+ǫ] contain xǫ-smooth numbers. We improve upon Xuan’s

work by establishing the following theorem, which unfortunately is still not strong
enough to be applicable to the analysis of Lenstra’s algorithm.

Theorem. Assume the Riemann Hypothesis. Let x be large and suppose that x ≥
y ≥ exp(5

√
log x log log x), and write y = x

1
u . There is an absolute constant B such

that with z = Bu
√
x/ρ(u/2) we have

Ψ(x+ z, y)−Ψ(x, y) ≫ǫ zx
−ǫ.

By using estimates for divisor functions in short intervals we can obtain a better
lower bound for the number of smooth integers in short intervals, but our methods
would not give a positive proportion. Our Theorem sheds no light on y-smooth integers
with y smaller than exp(

√
log x log log x), and it would be interesting to devise alter-

native approaches in this regime. Our Theorem is also likely to be very far from the
truth about smooth numbers in short intervals. For example, one would expect that
for every ǫ > 0 there exists a constant C(ǫ) such that every interval [x, x+C(ǫ) log x]
contains an xǫ-smooth number. This would be analogous to Cramér’s conjecture on
the distribution of prime numbers, and note that a similarly large gulf exists between
what can be established about primes on RH and the expected truth. As with primes,
one can say more about the existence of smooth numbers in almost all short intervals;
this problem has been considered by Hafner [6] but his work remains unpublished.

We now turn to the proof of our Theorem. Let the parameters x, y, z and u be as
in the Theorem, and define δ by xe2δ = x+ z. Let

M(s) =
∑

√
xy−1/3≤n≤

√
xy−1/4

n∈S(y)

1

ns
.

Our proof of the Theorem is based upon considering

I =
1

2πi

∫ c+i∞

c−i∞

−ζ′

ζ
(s)M(s)2xs (e

δs − 1)2

s2
ds

where c = 1 + 1
log x .

By shifting contours to the left if ξ > 1 and to the right if ξ ≤ 1 we may see that

1

2πi

∫ c+i∞

c−i∞

ξs
ds

s2
=

{

log ξ if ξ ≥ 1

0 if 0 < ξ ≤ 1.

Therefore

1

2πi

∫ c+i∞

c−i∞

ξs
(eδs − 1)2

s2
ds =

{

min(log(e2δξ), log(1/ξ)) if e−2δ ≤ ξ ≤ 1

0 otherwise.
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Hence

I =
∑

x≤n≤xe2δ

∑

n=rm1m2
m1,m2∈S(y)

√
xy−1/3≤m1,m2≤

√
xy−1/4

Λ(r)min
(

log
e2δx

n
, log

n

x

)

.

Note that r = n/(m1m2) is at most y, and so the integers n counted in the RHS
above are all y-smooth. Moreover the number of ways of writing n as rm1m2 is at
most d3(n) ≪ xǫ. Therefore we conclude that

(1) I ≪ δxǫ(Ψ(x+ z, y)−Ψ(x, y)).

We shall now derive a lower bound for I which will prove the Theorem. We move
the line of integration in the definition of I to the line Re(s) = − 1

2 . We encounter

poles at s = 1 and at the non-trivial zeros ρ = 1
2 + iγ of ζ(s). Thus we find that I

equals
(2)

x(eδ−1)2M(1)2−
∑

ρ

M(ρ)2xρ
(eδρ − 1

ρ

)2

− 1

2πi

∫ − 1
2+i∞

− 1
2−i∞

ζ′

ζ
(s)M(s)2xs (e

δs − 1)2

s2
ds.

Using the functional equation for ζ(s) and Stirling’s formula, we obtain that | ζ
′

ζ (− 1
2+

it)| ≪ log(2 + |t|). Since (eδs − 1)2/s2 ≪ min(δ2, 1/|s|2) for all complex s with
− 1

2 ≤ Re (s) ≤ 2, we find that the integral appearing in (2) is bounded by

≪ x− 1
2

∫ ∞

−∞

|M(− 1
2 + it)|2 log(2 + |t|)min

(

δ2,
1

1/4 + t2

)

dt.

We now split the interval (−∞,∞) into the sets I0 = {|t| ≤ 1/δ}, and Ij = {2j−1/δ ≤
|t| ≤ 2j/δ} for j ∈ N. By appealing to a standard mean-value theorem for Dirichlet
polynomials (see for example Theorem 9.1 of [10]) we find that the contribution from
t ∈ I0 is

≪ x− 1
2 δ2 log(1/δ)

∫

I0

|M(− 1
2 + it)|2dt

≪ x− 1
2 δ2 log x

(

√
x

y
1
4

+
1

δ

)

∑

n∈S(y)

√
x/y

1
3 ≤n≤

√
x/y

1
4

n

≪ δ2 log x

√
x

y
1
2

(

√
x

y
1
4

+
1

δ

)

M(1).

Similarly we find that for j ≥ 1 the contribution from the interval Ij is

≪ jδ2 log x)

2j

√
x√
y

(

√
x

y
1
4

+
1

δ

)

M(1).

We conclude that the integral in (2) is bounded by

(3) ≪ δ2 log x

√
x√
y

(

√
x

y
1
4

+
1

δ

)

M(1).
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Now we turn to the sum over zeros in (2). This sum is bounded by

≪ x
1
2

∑

γ

|M(12 + iγ)|2 min
(

δ2,
1

1/4 + γ2

)

.

To estimate this, we decompose the sum into cases depending on whether γ ∈ Ij with
Ij as earlier. We shall prove that the contribution from the zeros in Ij for any j ≥ 0
is

(4) ≪
√
x
j + 1

2j
δ2 log(1/δ)

(

√
x

y
1
4

+
1

δ

)

M(1).

Summing over all j, it then follows that the sum over zeros in (2) is

(5) ≪
√
xδ2 log(1/δ)

(

√
x

y
1
4

+
1

δ

)

M(1).

Note that the contribution in (3) is dominated by that in (5). Thus, combining (2),
(3) and (5) we conclude that

I ≥ xδ2M(1)2 −A
√
xδ2 log x

(

√
x

y
1
4

+
1

δ

)

M(1),

for an appropriate absolute constant A. Since ρ(u/2) = u−u/2(1+o(1), in our range

of δ and y we have that 1/δ ≥ √
x/y

1
4 . Moreover, using the asymptotic formula for

smooth numbers, we see that M(1) ≥ ρ(u/2)(log y)/24. Choosing B suitably in terms
of A, from the above remarks we find that I ≥ xδ2M(1)2/2, and by (1) the Theorem
follows.

It remains lastly to justify the bound (4). We treat the case j = 0, the other
cases being similar. The proof is entirely standard and we sketch the details quickly;
indeed we could obtain asymptotic formulae for such sums but we do not need this.
Let ξ(s) = s(s− 1)π−s/2Γ(s/2)ζ(s) denote Riemann’s ξ-function which is entire, and
whose zeros are the non-trivial zeros of the ζ(s). We consider, with c = 1 + 1/ logx,

J :=
1

2πi

∫

(c)

ξ′

ξ
(s)M(s)M(1 − s)

(eδ(s−1/2) − e−δ(s−1/2)

(s− 1/2)

)2

ds.

We now move the line of integration to Re(s) = 1−c. There are poles at the non-trivial
zeros of ζ(s) and these contribute

∑

γ

|M(1/2 + iγ)|2
(2 sin(δγ)

γ

)2

.

To handle the integral on the line Re(s) = 1 − c we use the functional equation
ξ′/ξ(s) = −ξ′/ξ(1− s) and then make a change of variable w = 1− s. In this manner
we recognize the integral on Re(s) = 1− c as being −J . Thus we find that

2J =
∑

γ

|M(1/2 + iγ)|2
(2 sin(δγ)

γ

)2

≫ δ2
∑

|γ|≤1/δ

|M(1/2 + iγ)|2.

We may therefore focus on bounding J .
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Note that

ξ′

ξ
(s) =

(1

s
+

1

s− 1
− log

√
π +

1

2

Γ′

Γ
(s/2)

)

+
ζ′

ζ
(s),

and accordingly write J = J1 + J2. To estimate J2, we expand the Dirichlet series for
ζ′/ζ(s), M(s) and M(1− s) and exchange the summations and integration. Thus

J2 = −
∞
∑

n=1

Λ(n)
∑

m1,m2∈S(y)

√
x/y1/3≤m1,m2≤

√
x/y

1
4

1

m2

1

2πi

∫

(c)

( m2

nm1

)s(eδ(s−1/2) − e−δ(s−1/2)

(s− 1/2)

)2

ds.

By shifting contours appropriately, we find that

1

2πi

∫

(c)

ξs
(eδ(s−1/2) − e−δ(s−1/2)

(s− 1/2)

)2

ds =

{√
ξ(2δ − | log ξ|) if e−2δ ≤ ξ ≤ e2δ

0 otherwise.

Sincem1 andm2 are below
√
x/y

1
4 , if nm1 6= m2 then m2/nm1 lies outside the interval

(e−2δ, e2δ). Thus

J2 = −2δ
∑

m2∈S(y)
√

x/y1/3≤m2≤
√

x/y1/4

1

m2

∑

nm1=m2√
x/y1/3≤m1≤√

x/y1/4

Λ(n) < 0.

Thus J ≤ J1, and we are reduced to estimating J1.
To estimate J1 we move the line of integration to the line Re(s) = 1/2. We en-

counter a pole at s = 1 whose residue is 4M(0)M(1)(eδ/2 − e−δ/2)2. Using Stirling’s
formula we find that the remaining integral on the Re(s) = 1/2 line is

≪
∫ ∞

−∞

|M(1/2 + it)|2 log(2 + |t|)
( sin(δt)

t

)2

dt.

Splitting this integral into the intervals Ij as above, and appealing to the mean value
theorem for Dirichlet polynomials we conclude that this quantity is

≪ δ2 log x
(

√
x

y
1
4

+
1

δ

)

M(1).

Since M(0) ≤ √
x/y

1
4 we conclude that

J ≤ J1 ≪ δ2 log x
(

√
x

y
1
4

+
1

δ

)

M(1).

This proves (5) for the region I0, and as noted before the other cases follow similarly.
Our proof of the Theorem is now complete.
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