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LIMIT SETS OF RELATIVELY HYPERBOLIC GROUPS

WEN-YUAN YANG

Abstract. In this paper, we prove a limit set intersection theorem in rela-
tively hyperbolic groups. We also show that a nonparabolic relatively quasicon-
vex subgroup cannot contain a proper conjugate of itself. Several well-known
results on limit sets of geometrically finite Kleinian groups are derived in rel-
atively hyperbolic groups. Lastly, we establish the dynamical quasiconvexity
for undistorted subgroups of finitely generated groups with nontrivial Floyd
boundary.

1. Introduction

The purpose of this paper is to establish a limit set intersection theorem in rel-
atively hyperbolic groups. Following Anderson [3], a limit set intersection theorem
for convergence groups describes the limit set Λ(H ∩J) in terms of Λ(H) and Λ(J),
where H , J are subgroups of a convergence group G. Ideally, we expect such a
theorem has the following form

Λ(H) ∩ Λ(J) = Λ(H ∩ J) ∪ E

where E is an exceptional set consisting of specific parabolic points of Λ(H) and
Λ(J).

Such a limit set intersection theorem has been investigated in several different
groups. In 1992, Susskind-Swarup [22] showed that the above decomposition of
limit sets holds for pair of geometrically finite Kleinian subgroups. In [1], [2] and [3],
using techniques specific to 3 manifolds, Anderson carried out a systematic study
of the intersection of two finitely generated subgroups of 3 dimensional Kleinian
groups and proved that the limit set intersection theorem holds in this context.

In 1987, Gromov introduced relatively hyperbolic groups as generalizations of
many naturally occurred groups, for example, word hyperbolic groups and geo-
metrically finite Kleinian groups, etc. In word hyperbolic groups, the above limit
set intersection theorem has appeared in the work of Gitik-Mitra-Rips-Sageev [14],
where the exceptional set E is proven to be empty. In this paper, we generalize
these results in relatively hyperbolic groups as follows.

Theorem 1.1. Let H, J be two relatively quasiconvex subgroups of a relatively

hyperbolic group G. Then

Λ(H) ∩ Λ(J) = Λ(H ∩ J)
⊔
E
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where the exceptional set E consists of parabolic fixed points of Λ(H) and Λ(J),
whose stabilizer subgroups in H and J have finite intersection. Equivalently, the

set E comprises the limit points isolated in Λ(H) ∩ Λ(J).

Remark 1.2. In [7], Dahmani previously proved Theorem 1.1 for two fully quasi-
convex subgroups, where the exceptional set E is empty.

One of its corollaries is the following well-known result, which is usually proved
using geometrical methods, see for example, by Hruska [15] and independently by
Martinez-Pedroza [19].

Corollary 1.3. Let H, J be two relatively quasiconvex subgroups of a relatively

hyperbolic group G. Then H ∩ J is relatively quasiconvex.

We also study the conjugates of relatively quasiconvex subgroups and generalize
a theorem of Mihalik-Towle [18] in the context of relatively hyperbolic groups.

Theorem 1.4. Let H be relatively quasiconvex in a relatively hyperbolic group G
and |Λ(H)| ≥ 2. Then for any g ∈ G \H, gHg−1 ⊆ H implies that gHg−1 = H.

In this paper, we take a dynamical approach to study relatively quasionvex sub-
groups, which is the main ingredient to establish the above results. This dynamical
quasiconvexity was introduced by Bowditch [4] and recently proved by Gerasimov-
Potyagailo [12] to be equivalent to relative quasiconvexity.

In the final section, we define dynamical quasiconvexity for subgroups of gen-
eral convergence groups and in particular study this property in finitely generated
groups with nontrivial Floyd boundary. Floyd boundary was introduced by Floyd
[9] to compactify the Cayley graph of finitely generated groups, and later Karls-
son [17] proved that G acts on its Floyd boundary as a convergence group when
the Floyd boundary is nontrivial. Our last result is to establish the dynamical
quasiconvexity of undistorted subgroups under this convergence action.

Theorem 1.5. If H is a undistorted subgroup of a finitely generated group G with

nontrivial Floyd boundary, then H is dynamical quasiconvex.

Remark 1.6. The class of groups with nontrivial Floyd boundary includes non-
elementary finitely-generated relatively hyperbolic groups [11].

Lastly let us mention a connection of Theorem 1.5 with the following conjecture
due to Olshanskii-Osin-Sapir [20].

Conjecture 1.7. Suppose that a finitely generated group G has a nontrivial Floyd

boundary. Is G hyperbolic relative to a collection of proper subgroups?

We remark that Hruska proved that undistorted subgroups of relatively hyper-
bolic groups are relatively quasiconvex [15, Theorem 1.5] and thus dynamical qua-
siconvex by Gerasimov-Potyagailo [12]. Therefore one can thought of Theorem 1.5
as another positive evidence towards the above conjecture.

The paper is organized as follows. In Section 2, we introduce the definition of
relatively hyperbolicity and dynamical quasiconvexity. In particular, using dynam-
ical quasiconvexity, several well-known results on limit sets of geometrically finite
Kleinian groups and word hyperbolic groups are derived in the context of relative
hyperbolicity. In Section 3, we study the intersection of conical limit points and
bounded parabolic points of relatively quasiconvex subgroups respectively, and then
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conclude with the proof of Theorem 1.1. In Section 4, we prove that a nonparabolic
relatively quasiconvex subgroups cannot contain a proper conjugate of itself. In the
final Section, we give a proof of Theorem 1.5 and restate several corollaries estab-
lished in previous Sections in the setting of finitely generated groups with nontrivial
Floyd boundary.

Acknowledgment. The author would like to sincerely thank Prof. Leonid Potyagailo
for many helpful comments and inspired discussions during the course of this work.
The author also thanks G. Hruska for pointing out several inaccuracies of references.

2. Preliminary results

Throughout the paper, G is a finitely generated group with a finite collection of
subgroups P = {P1, P2, ..., Pn}. Let M be a compact metrizable space containing
at least three points.

A convergence group action is an action of a group G on M such that induced
action of G on the space ΘM of distinct unordered triples of points of M is properly
discontinuous.

Suppose G has a convergence group action on M . Then M is partitioned into
a limit set Λ(G) and discontinuous domain M \ Λ(G). The limit set Λ(G) of G
is the set of limit points, where a limit point is an accumulation point of some
G−orbit in M . An element g ∈ G is elliptic if it has finite order. An element
g ∈ G is parabolic if it has infinite order and fixes exactly one point of M . An
element g ∈ G is loxodromic if it has infinite order and fixes exactly two points of
M . An infinite subgroup P ⊂ G is a parabolic subgroup if it contains no loxodromic
element. A parabolic subgroup P has a unique fixed point in M , called a parabolic

point. The stabilizer of a parabolic point is always a maximal parabolic group. A
parabolic point p with stabilizer Gp := StabG(p) is bounded if Gp acts cocompactly
on M \ {p}. A point z ∈ M is a conical limit point if there exists a sequence (gi)
in G and distinct points a, b ∈ M such that gi(z) → a , while for all q ∈ M \ {z}
we have gi(q) → b.

Before discussing relative hyperbolicity, we recall the following well-known result
on general convergence groups.
Lemma 2.1. [23, Theorem 3.A] In a convergence group, a conical limit point can

not be parabolic.

In the literature, there are several definitions of relative hyperbolicty (see Farb
[8], Bowditch [4] and Osin [21]). These different definitions are now proven to
be equivalent(see Hruska [15] for a complete account) and provide convenient and
complement viewpoints to study this class of groups. For the sake of the purpose
of this paper, we use the following dynamical formulation of relatively hyperbolic
groups.

Definition 2.2. A convergence group action of G on M is geometrically finite if
every point of M is either a conical limit point or a bounded parabolic point. In
addition if P is a set of representatives of the conjugacy classes of maximal parabolic
subgroups, then we say the pair (G, P) is relatively hyperbolic.

Remark 2.3. In this paper, we consider a finitely generated relatively hyperbolic
group. By the work of Drutu-Sapir [6], Osin [21] and Gerasimov [10], maximal
parabolic subgroups are quasiconvex and finitely generated. So in the definition of
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relative hyperbolicity, we do not need impose the ”finitely generated” condition on
maximal parabolic subgroups as usually do in Bowditch [4].

From now on, unless explicitly stated, G is always assumed to be relatively
hyperbolic untill the end of Section 4.

The following dynamical convexity was introduced by Bowditch and was proven
to be equivalent to the geometric quasiconvexity in word hyperbolic groups [5].

Definition 2.4. A subgroup H ⊂ G is dynamically quasiconvex if the following
set

{gH ∈ G/H : gΛ(H) ∩K 6= ∅ and gΛ(H) ∩ L 6= ∅}

is finite, whenever K and L are disjoint closed subsets of M .

Recently, Gerasimov-Potyagailo [12] proved that dynamical quasiconvexity coin-
cides with relatively quasiconvexity in relatively hyperbolic groups, which answers
a question of Osin in his book [21].

Theorem 2.5. [12] Every subgroup H of G is dynamically quasiconvex if and only

if it is relatively quasiconvex.

In this paper, the dynamical quasiconvexity is pretty helpful when one deals
with limit sets of relatively quasiconvex subgroups. Now let’s first draw some
direct consequences of dynamical quasiconvexity.

Lemma 2.6. Let H be relatively quasiconvex in G and |Λ(H)| ≥ 2. Then for any

subgroup H ⊂ J ⊂ G such that Λ(H) = Λ(J), we have H is of finite index in J .
In particular, J is relatively quasiconvex.

Proof. Since |Λ(H)| ≥ 2, we can pick two distinct points x and y from Λ(H).
Applying the dynamical quasiconvexity of H , we have each coset of H in J belongs
to the following finite set

{gH ∈ G/H : gΛ(H) ∩ {x} 6= ∅ and gΛ(H) ∩ {y} 6= ∅},

using Λ(H) = Λ(J). Thus H is of finite index in K.
Since H is relatively quasiconvex and of finite index in J , it is easy to see that

the following wanted set in the definition of dynamical quasiconvexity

{gJ ∈ G/J : gΛ(J) ∩ {x} 6= ∅ and gΛ(J) ∩ {y} 6= ∅}

is finite and therefore it follows that J is also relatively quasiconvex. �

Corollary 2.7. Let H, J be relatively quasiconvex in G and Λ(H) = Λ(J). If

|Λ(H)| ≥ 2, then H and J are commensurable.

Proof. Taking L as the stabilizer of common limit sets of H and J , we obtain that
H and J are of finite index in L using Lemma 2.6. It thus follows that H ∩ J is of
finite index in both H and J . �

Recall that the commensurator of H in G is defined as the subgroup of G,
consisting of all g ∈ G such that H ∩gHg−1 has finite index in both H and gHg−1.

Corollary 2.8. Let H be relatively quasiconvex in G and |Λ(H)| ≥ 2. Then H
is of finite index in its commensurator. In particular, H is of finite index in its

normalizer.
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Proof. Observe that the commensurater of H has the same limit set as Λ(H). The
conclusion now follows from Lemma 2.6. �

Remark 2.9. Corollary 2.8 has been proved using different method in Hruska-Wise
[16]. We remark the hypothesis on the cardinality of Λ(H) is necessary for the
above lemma and corollaries, as it is easy to get counterexamples when we take H
as parabolic subgroups.

3. Limit Sets of Intersections

In this section, we establish the limit set intersection theorem in the context of
relatively hyperbolic groups, generalizing the results in geometrically finite Kleinian
groups and word hyperbolic groups. For references on this topic, please see Ander-
son [1] [2] [3], Gitik-Mitra-Rips-Sageev [14] and Susskind-Swarup [22].
Proposition 3.1. Let H be relatively quasiconvex in G. Suppose J < G is infinite

and let z ∈ Λ(H)∩Λ(J) be a conical limit point of J . Then z ∈ Λ(H ∩ J) and z is

a conical limit point of H ∩ J .

Proof. Let z ∈ Λ(K) ∩ Λ(J) be a conical limit point of J . Then there exists a
sequence {jn} in J and distinct points a, b ∈ Λ(J) such that jn(z) → a , while for
all q ∈ Λ(J) \ {z} we have jn(q) → b. By the convergence property of {jn}, we also
have that jn(q) → b for all q ∈ M \{z}. In particular, we can choose q to be a limit
point in Λ(H) \ {z}. Here we use the fact |Λ(H)| ≥ 2, which follows from Lemma
2.1.

Take the closed neighborhoods U and V of a and b respectively, such that U∩V =
∅. After passage to a subsequence of {jn}, we can assume jn(z) ∈ U and jn(q) ∈ V
for all n. This implies that jnH belongs to the following set for all n,

{gH ∈ G/H : gΛ(H) ∩ U 6= ∅ and gΛ(H) ∩ V 6= ∅}

By the dynamical quasiconvexity of H in G, the above set is finite. Thus {jnH} is a
finite set of cosets. By taking further a subsequence of {jn}, we suppose jnH = j1H
for all n. We can write jn = j1hn for each n, where hn ∈ H . Then j−1

1 jn = hn

implies that H ∩ J is nontrivial and infinite.
It suffices now to prove that z is a conical limit point of H ∩ J . By the

convergence property of {jn}, it follows that hn(z) = j−1
1 jn(z) → j−1

1 (a) and
hn(q) = j−1

1 jn(q) → j−1
1 (b) for all q ∈ M \ {z}. Thus z is a conical limit point of

H ∩ J . �

We now study how bounded parabolic points intersect. Compared to conical
points, the intersection of bounded parabolic points raises some complicated be-
haviour.

Proposition 3.2. Let H, J be infinite subgroups of a countable convergence group

G. If z ∈ Λ(H) ∩ Λ(J) be a bounded parabolic point of H and J , then z is either

a bounded parabolic point of H ∩ J , or an isolated point in Λ(H) ∩ Λ(J) and does

not lie in Λ(H ∩ J).

Proof. Since z is bounded parabolic of both H and J , there are compact subsets
K ⊂ Λ(H) \ z and L ⊂ Λ(J) \ z, such that HzK = Λ(H) \ z and JzL = Λ(J) \ z.
Here Hz and Jz are stabilizers of z in H and J , respectively. Let P = Hz ∩ Jz .

We claim that there exists a compact subset C ⊂ M \z such that Λ(H ∩J)\z ⊂
PC.
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Note first that Λ(H∩J)\z ⊂ (Λ(H)∩Λ(J))\z = HzK∩JzL. Therefore it suffices
to show that there exists a compact subset C ⊂ M \ z such that HzK ∩JzL ⊂ PC.
Since G is countable, we formulate the following countable set

(1) A = {hnK ∩ jnL : (hn, jn) ∈ (Hz \ P )× (Jz \ P );hnK ∩ jnL 6= ∅}.

We remark that it is possible that one set hK may have nontrivial intersections
with two more sets j1L and j2L, but we count (h, j1) and (h, j2) differently in the
above set A. Note that HzK ∩ JzL ⊂ ∪A.

Define the set B = {j−1
n hn : j−1

n hnK ∩ L 6= ∅} and we will show that B is finite.
Suppose not. By the convergence property, the infinite set {j−1

n hn} contains an
infinite subsequence {j−1

ni
hni

}, which converges locally compactly to b on M \ a,

for a, b ∈ M . Since j−1
n hn are parabolic elements in G, we have a = b by using

Lemma 2.5 in Bowditch [5]. Furthermore, it follows that a = b = z, since z is the
unique fixed point of j−1

n hn. Observing that K ⊂ M \ z and L ⊂ M \ z, and using
j−1
ni

hni
K ∩ L 6= ∅, we can conclude that the subsequence {j−1

ni
hni

} is a finite set.
This is impossible since we assumed B is an infinite set.

Since B is a finite set, say for example, {j−1
1 h1, ..., j

−1
r hr}. Without loss of

generality, we first consider the elements in {j−1
n hn} of the form j−1

n hn = j−1
1 h1.

Then jnj
−1
1 = hnh

−1
1 ∈ Hz ∩ Jz = P , and we can write jn = pnj1 and hn = pnh1

for some pn ∈ P . Thus it follows that hnK ∩ jnL = pn(h1K ∩ j1L) for each
j−1
n hn = j−1

1 h1.
We can do the rewrite process similarly for other elements in {j−1

n hn}, and finally

we obtain HzK ∩ JzL ⊂ ∪A ⊂ PC, where C is defined as
r⋃

i=1

(hiK ∩ jiL). The

claim is proved.
Since there exists a compact subset C ⊂ M such that the following holds

(2) Λ(H ∩ J) \ z ⊂ (Λ(H) ∩ Λ(J)) \ z ⊂ PC,

the following two cases are examined to complete the proof of proposition,

P is finite: Since the righthand of (2) is a compact set, there exists an open
neighborhood of z disjoint with Λ(H) ∩ Λ(J). Thus it follows that z is an
isolated point of Λ(H) ∩ Λ(J) and does not lie in Λ(H ∩ J).

P is infinite: P acts cocompactly on Λ(H ∩ J) \ z and thus z is a bounded
parabolic point of H ∩ J .

�

Summarizing the above results, we can now conclude with the proof of Theorem
1.1

Proof of Theorem 1.1. The limit set of relatively quasiconvex subgroup consists of
conical limit points and bounded parabolic points (See (QC-1) definition of rela-
tively quasiconvexity in Hruska [15]). Thus the above decomposition of Λ(H)∩Λ(J)
follows from Propositions 3.1 and 3.2. �

Remark 3.3. In the word hyperbolic group(i.e.: without nontrivial peripheral sub-
groups), the exceptional set E is empty. Thus limit sets of two relatively quasi-
convex subgroups intersect at least in two points once they intersects. But in the
relative case, it is possible that their limit sets are intersecting at only one (neces-
sarily parabolic) point. Here we just remind you of parabolic subgroups < z + 1 >
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and < z + i > in 3 dimensional Kleinian group, which have a common parabolic
point, but have trivial group intersection.

4. Proper Conjugates of Relatively Quasiconvex Subgroups

The aim of this section is to show that nonparabolic relatively quasiconvex sub-
groups cannot contain a proper conjugate of itself, which generalizes a theorem of
Mihalik-Towle [18] in relatively hyperbolic groups.

According to [14], a relatively quasiconvex subgroup H is said to be maximal

in its limit set if H = stab(Λ(H)). Note that Lemma 2.6 shows any nonparabolic
relatively quasiconvex subgroup is of finite index in the stabilizer of its limit set.
Lemma 4.1. Let H be relatively quasiconvex in G and suppose H is maximal in

its limit set. Then for any g ∈ G \H, gΛ(H) ⊆ Λ(H).

Proof. If |Λ(H)| = 1, then H is the maximal parabolic subgroup. In this case, the
conclusion is trivial. We consider now the case |Λ(H)| ≥ 2. By way of contradiction,
we suppose gΛ(H) ⊆ Λ(H).

Take two distinct points x and y from Λ(H). Since gΛ(H) ⊆ Λ(H), we have
gn(x) ∈ Λ(H) and gn(y) ∈ Λ(H) for each n ∈ N. Therefore we have the cosets
g−nH belong to following set

{gH ∈ G/H : gΛ(H) ∩ {x} 6= ∅ and gΛ(H) ∩ {x} 6= ∅}.

By using the dynamical quasiconvexity of H , we obtain the set {g−nH} is finite.
Thus we can obtain two different integers m and n such that g−mH = g−nH , and
thus gn−m ∈ H . Then Λ(H) = gn−mΛ(H) ⊆ gΛ(H) ⊆ Λ(H). Hence Λ(H) =
gΛ(H), which is impossible since H is maximal in its limit set Λ(H). �

Remark 4.2. Lemma 4.1 generalizes Lemma 2.10 in Gitik-Mitra-Rips-Sageev [14].

We now prove Theorem 1.4.

Proof of Theorem 1.4. For any g ∈ G \H such that gHg−1 ⊆ H , by Lemma 4.1, it
follows that g belongs to the stabilizer K in G of Λ(H). By Lemma 2.6, we obtain
that H is of finite index in K. So gn belongs to H for some n. Thus we have
H = gnHg−n < gHg−1 < H , which finishes the proof. �

5. Undistorted Subgroups of Groups with Nontrivial Floyd

Boundary

In this section, we define the dynamical quasiconvexity in general convergence
groups and establish the dynamical quasiconvexity for undistorted subgroups of
finitely generated groups with nontrivial Floyd boundary. Let’s first introduce the
dynamical quasiconvexity in the convergence group.
Definition 5.1. A subgroup H of a convergence group G is dynamically quasicon-

vex if the following set

{gH ∈ G/H : gΛ(H) ∩K 6= ∅ and gΛ(H) ∩ L 6= ∅}

is finite, whenever K and L are disjoint closed subsets of M .

In the following, we consider a finitely generated group G with a fixed finite
generating set S, and denote by Ca(G,S) the corresponding constructed Cayley
graph with respect to S. Note that Ca(G,S) is a connected graph, which naturally
induces a word metric d on G by setting the length of each edge to be 1. A rectifiable
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path p with endpoints denoted by p−, p+ in Ca(G,S), whose length is denoted by
l(p), is called ǫ-quasigeodesic if for any subpath q of p, we have l(q) < ǫd(q−, q+)+ǫ.

Recall that a (c-)quasi-isometric map φ : X → Y between two metric spaces X
and Y is a map such that:

1

c
dX(x, y)− c ≤ dY (φ(x), φ(y)) ≤ cdX(x, y) + c

where dX , dY denote the metrics of X and Y respectively.

Definition 5.2. A finitely generated subgroupH ofG is undistorted if the inclusion
of H into G is a quasi-isometry with respect to the word metrics determined by
finite generating sets.

Remark 5.3. It is well-known that the undistortedness of subgroups is independent
of the choices of finite generating sets. For definiteness, we will fix a finite gener-
ating set T of H and without loss of generality, assume that T ⊂ S. Note that
a geodesic segment of Ca(H,T ) is sent by the quasi-isometry to a quasigeodesic
segment Ca(G,S) with same endpoints.

A related notion is the quasiconvexity of subgroups which requires subgroups
to be uniformly quasiconvex subsets of Caylay graph of ambient groups. Thus the
quasiconvexity of subgroups depends on the choice of finite generating systems of
ambient groups. Note that a quasiconvex subgroup is undistorted but the converse
is not generally true. Especially in word hyperbolic groups the quasiconvexity of
subgroups is equivalent to their undistortedness.

We now briefly discuss the Floyd boundary of a finitely generated group. In
[9], Floyd introduced such a boundary for any finitely generated group G, which is
obtained by rescaling the length of each edge e of Ca(G,S) by a conformal factor
F (e), for example F (e) = d(1, e)−2, and then taking the Cauchy metric completion
G. Denote by ρ the complete metric on G. Floyd boundary ∂(G) is defined as G\G
and depends on the choice of conformal factor F . With proper choice of conformal
factor F , the Floyd boundary of a group G is a quasi-isometry invariant.

If ∂(G) consists of 0, 1 or 2 points then it is said to be trivial. Otherwise it is
uncountable and is nontrivial. The class of groups with nontrivial Floyd boundary
includes non-elementary relatively hyperbolic groups [11], groups with infinitely
many ends, and many other examples. For more details on Floyd boundary we
refer to [9] and [17].

Recall that if the Floyd boundary of a finitely generated group G is nontrivial,
then G acts on G and thus ∂(G) as a convergence group [17]. In the sequel, we
will consider this convergence action of G on its Floyd boundary and limit sets of
subgroups on ∂(G).

The following lemma shows that the Floyd length of a far (quasi)geodesic in
Ca(G,S) is small. The original version was stated in [17] for geodesics, but its
proof works for general quasigeodesic of Cayley graph.

Lemma 5.4. [17] Given ǫ > 0, there is a function Θǫ: N → R such that Θǫ(r) → 0
as r → ∞ and having the following property. Let z, w be two points in G and let

γ[z, w] be an ǫ-quasigeodesic segment between z and w of Ca(G,S). Then

ρ(z, w) ≤ Θǫ(d(1, γ[z, w]))

where d(1, γ[z, w]) is the distance from the identity to the ǫ-quasigeodesic segment

γ[z, w].
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The following Lemma roughly says that any two limit points of a undistorted
subgroup H can be connected by a quasigeodesic line lying H .

Lemma 5.5. If H is undistorted in G, then for any two distinct points p, q ∈ Λ(H),
there exists an ǫ0-quasigeodesic line γ between p and q in Ca(G,S) such that all

vertices of γ are elements of H. The constant ǫ0 depends on H and G.

Proof. Since p and q are limit points of H , there exists two sequences {hn} and
{h′

n} of H such that hn → p and h′

n → q. Let δ = d(p, q)/3.
By continuity, we can assume for all n, hn ∈ B(p, δ) and h′

n ∈ B(q, δ), after
passage to subsequences of {hn} and {h′

n} respectively. Here B(p, δ) and B(q, δ)
are respectively open metric balls centered at p and q of G. It then follows by the
triangle inequality that ρ(hn, h

′

n) > d(p, q)/3 for all n.
Taking geodesic segments γn of Cayley graph Ca(H,T ) with endpoints hn and

h′

n. By the undistortedness of H , any geodesic segment of Cayley graph Ca(H,T )
is ǫ0-quasigeodesic in Ca(G,S) for some constant ǫ0 depending on H . Thus γn are
ǫ0-quasigeodesic segments of Ca(G,S). Note that the endpoints hn, h

′

n of γn has at
least a distance δ. By Lemma 5.4, quasigeodesic segments γn intersect a compact
ball B centered at identity in Ca(G,S).

Thus using a diagonal argument based on γn, we can obtain an ǫ0-quasigeodesic
line which are connecting p and q, such that all vertices are elements of H . �

Remark 5.6. In contrast with hyperbolic groups, two (quasi)geodesic segments in
Ca(G,S) with same endpoints may not be uniformly Hausdorff distance bounded.
Thus we could not guarantee that any (quasi)geodesic between p and q satisfies the
statement of Lemma 5.5.

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. It suffices to establish the conclusion with the assumption
|Λ(H)| ≥ 2. We are going to bound the following set

{gH ∈ G/H : gΛ(H) ∩ L 6= ∅ and gΛ(H) ∩K 6= ∅},

whenever K and L are disjoint closed subsets of ∂(G).
Suppose we have a sequence of distinct cosets gnH such that gnΛ(H) ∩K 6= ∅

and gnΛ(H) ∩ L 6= ∅. Let an ∈ gnΛ(H) ∩K and bn ∈ gnΛ(H) ∩ L. Using Lemma
5.5, we can obtain ǫ0-quasigeodesics γn between an and bn such that all of their
vertices are elements of gnH .

Note that {an, bn} ∈ K × L and K × L is compact in ∂(G) × ∂(G). Thus we
have a uniform constant µ depending on K and L, such that ρ(an, bn) ≥ µ for all
n.

By Lemma 5.4, we have a closed ball B(R) at the identity with sufficiently large
radius R in Ca(G,S), such that any (ǫ0-quasi) geodesic line connecting an and bn
intersect nontrivially with B(R). Here R can be computed by µ and the function
Θǫ0 provided by Lemma 5.4. Thus there exist points cn ∈ γn such that the following
holds

cn ∈ γn ∩B(R) 6= ∅ for all n.

We now have d(1, cn) < R for every n. Observe that translated ǫ0-quasigeodesics
g−1
n (γn) end at g−1

n (an), g
−1
n (bn) ∈ Λ(H), and all of their vertices are elements of H .

Therefore it follows that for each n, there exists hn ∈ H such that d(g−1
n (cn), hn) <
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1 and thus d(g−1
n , hn) < R + 1 for all n. Since G acts properly discontinuously

on Ca(G,S), we have gn(hn) = g1(h1) for all n, after passage to a subsequence of
{gnhn}.

This is a contradiction to the choice of {gnH}, which is a sequence of different
cosets of H in G. �

Observe that many results in Section 2, 3 and 4 are proved only using dynamical
quasiconvexity of involved relatively quasiconvex subgroups. Thus using Theorem
1.5, we are able to restate Lemma 2.6(and its Corollaries 2.7, 2.8), Proposition
3.1, Lemma 4.1 and Theorem 4.3 in the context of finitely generated groups with
nontrivial Floyd boundary. In favor of application to group theory, we only restate
the following corollaries.

Corollary 5.7. Let H be undistorted in G and |Λ(H)| ≥ 2. Then H is of finite

index in its commensurator. In particular, H is of finite index in its normalizer.

Corollary 5.8. Let H be undistorted in G and |Λ(H)| ≥ 2. Then for any g ∈ G\H,

gHg−1 ⊆ H implies that gHg−1 = H.
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