ON CRITICAL POINTS OF BLASCHKE PRODUCTS

S. FAVOROV AND L. GOLINSKII

Abstract

We obtain an upper bound for the derivative of a Blaschke product, whose zeros lie in a certain Stolz-type region. We show that the derivative belongs to the space of analytic functions in the unit disk, introduced recently in [6]. As an outcome, we obtain a Blaschke-type condition for critical points of such Blaschke products.

1. Introduction

Given a sequence $\left\{z_{n}\right\} \subset \mathbb{D}$ subject to the Blaschke condition

$$
\begin{equation*}
\alpha:=\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty, \tag{1}
\end{equation*}
$$

let

$$
B(z)=\prod_{n=1}^{\infty} b_{n}(z), \quad b_{n}(z)=\frac{\bar{z}_{n}}{\left|z_{n}\right|} \frac{z_{n}-z}{1-\bar{z}_{n} z}
$$

be a Blaschke product with the zero set $Z(B)=\left\{z_{n}\right\}$. With no loss of generality we will assume that $B(0) \neq 0$.

One of the central problems with Blaschke products is that of the membership of their derivatives in classical function spaces, $B^{\prime} \in X$. There is a vast literature on the problem, starting from investigations of P. Ahern and his collaborators [1, 2, 3, 4] and D. Protas [14] in 1970s, up to quite recent results of the Spanish school [8, 9, 10], see also [12, 15]. The above mentioned spaces X are primarily the Hardy spaces H^{p}, the Bergman spaces A^{p}, the Banach envelopes of the Hardy spaces B^{p} etc. Recall the definition of the Bergman spaces $A^{p}, p>0$:

$$
A^{p}=\left\{f \in \mathcal{A}(\mathbb{D}): \quad \int_{\mathbb{D}}|f(z)|^{p} d x d y<\infty\right\}, \quad z=x+i y .
$$

In this paper we will add to the list some new spaces $X=\mathcal{A}(E, \rho)$ of analytic functions in the unit disk, introduced recently in [6]. Given a closed set $E=\bar{E} \subset \mathbb{T}$ and $\rho>0$, we say that an analytic function f belongs to $\mathcal{A}(E, \rho)$ if

$$
|f(z)| \leq C_{1} \exp \left(\frac{C_{2}}{d^{\rho}(z, E)}\right), \quad d(z, E)=\operatorname{dist}(z, E)
$$

[^0]is the distance from $z \in \mathbb{D}$ to $E, C_{1,2}$ are positive constants.
The simplest and most general result drops out immediately from the Schwarz-Pick lemma for functions g from the unit ball of H^{∞} :
$$
\left|g^{\prime}(z)\right| \leq \frac{1-|g(z)|^{2}}{1-|z|^{2}}
$$
and states, that $g^{\prime} \in A^{p}$ for all $0<p<1$. The result is sharp: there exists a Blaschke product B such that $B^{\prime} \notin A^{1}$ (W. Rudin).

To proceed further, one should impose some additional restrictions either on absolute values $\left|z_{n}\right|$, stronger than (1), or on location, distribution of arguments of zeros z_{n} etc. For instance, a typical result of the first type is due to Protas [14]:

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)^{r}<\infty, \quad 0<r<\frac{1}{2} \quad \Rightarrow \quad B^{\prime} \in H^{1-r}
$$

and $\frac{1}{2}$ is sharp.
We are more interested in the second direction, related to the location of zeros. A typical assumption here is that $Z(B)$ belongs to certain regions inside the unit disk.

Let $t \in \mathbb{T}, \gamma \geq 1$. Following [5, 3, 10] we introduce regions

$$
\begin{equation*}
R(t, \gamma, K):=\left\{\lambda \in \mathbb{D}:|t-\lambda|^{\gamma} \leq K(1-|\lambda|)\right\}, \quad K \geq 1 . \tag{2}
\end{equation*}
$$

For $\gamma=1, K>1$ this is the standard Stolz angle. When $\gamma>1$ the region touches the circle \mathbb{T} at the vertex t with the power degree of tangency. The following result claims that B^{\prime} belongs to H^{p} or A^{p} as soon as $Z(B) \subset$ $R(t, 1, K)$.

Theorem A. Let $Z(B) \subset R(t, 1, K)$. Then
(1) $B^{\prime} \in H^{p}, p<\frac{1}{2}$, and $\frac{1}{2}$ is sharp;
(2) $B^{\prime} \in A^{p}, p<\frac{3}{2}$, and $\frac{3}{2}$ is sharp.

The first statement is proved in [9, Theorem 2.3], for the second one see $[9,8]$. For related results in the case $Z(B) \subset R(t, \gamma, K)$ with $\gamma>1$, see [10, Section 3].

We study the same problem for more general Stolz-type regions.
A function ϕ on the right half-line will be called a model function, if it is nonnegative, continuous and increasing, and

$$
\begin{equation*}
\phi(x) \leq C x, \quad x \geq 0, \quad C=C(\phi)>0 . \tag{3}
\end{equation*}
$$

We define a Stolz angle associated with a model function ϕ with the vertex at $t \in \mathbb{T}$ as

$$
\begin{equation*}
\mathcal{S}_{\phi}(t, K)=\mathcal{S}(t, K):=\{\lambda \in \mathbb{D}: \phi(|t-\lambda|) \leq K(1-|\lambda|)\}, \quad K>0 . \tag{4}
\end{equation*}
$$

Since $|t-\lambda| \leq 2$ for $t, \lambda \in \overline{\mathbb{D}}$, it is clear that regions (2) are of the form (4) for an appropriate ϕ. Precisely, one can put $\phi(x)=x^{\gamma}$ for $0 \leq x \leq 2$, and
$\phi(x)=2^{\gamma-1} x$ for $x \geq 2$. Next, given a closed set $E=\bar{E} \subset \mathbb{T}$ we define a Stolz region, associated with a model function ϕ and the set E, as

$$
\mathcal{S}(E, K):=\{\lambda \in \mathbb{D}: \phi(d(\lambda, E)) \leq K(1-|\lambda|)\}=\bigcup_{t \in E} \mathcal{S}(t, K) .
$$

Here is our main result.
Theorem 1. Let B be a Blaschke product such that $Z(B) \subset \mathcal{S}(E, K)$. Then

$$
\begin{equation*}
\left|B^{\prime}(z)\right| \leq 2(2 C+K)^{2} \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right) \phi^{-2}\left(\frac{d(z, E)}{6}\right) . \tag{5}
\end{equation*}
$$

For the standard Stolz angle and $E=\{t\}$ we take $\phi(x)=x$, so

$$
\left|B^{\prime}(z)\right| \leq \frac{C_{3}}{|t-z|^{2}},
$$

and part (1) in Theorem A follows. Similarly, for the region $R(t, \gamma, K)$, $\gamma>1$, (5) implies

$$
\left|B^{\prime}(z)\right| \leq \frac{C_{4}}{|t-z|^{2 \gamma}}
$$

and we come to the following result (cf. [10, Remark 1]).
Corollary 2. If $Z(B) \subset R(t, \gamma, K), \gamma>1$, then $B^{\prime} \in H^{p}$ for all $p<1 / 2 \gamma$.
We are particularly interested in the model function $\phi(x)=\exp \left\{-x^{-\rho}\right\}$, $\rho>0$. In this case (5) says that $B^{\prime} \in \mathcal{A}(E, \rho)$.

Denote $Z\left(B^{\prime}\right)=\left\{z_{n}^{\prime}\right\}$ the zero set of B^{\prime}. Each result of the form $B^{\prime} \in X$ provides some information about the critical points of B (zeros of B^{\prime}), as long as the information about zero sets of functions from X is available. The most general condition applied to an arbitrary Blaschke product arises from the fact that $B^{\prime} \in A^{p}, p<1$, so (cf. [11, Theorem 4.7])

$$
\sum_{n=1}^{\infty} \frac{1-\left|z_{n}^{\prime}\right|}{\left(\log \frac{1}{1-\left|z_{n}^{\prime}\right|}\right)^{1+\varepsilon}}<\infty, \quad \forall \varepsilon>0
$$

On the other hand there are Blaschke products B such that $\sum 1-\left|z_{n}^{\prime}\right|=\infty$ (see, e.g., [13]).

A Blaschke-type condition for zeros of functions from $\mathcal{A}(E, \rho)$ is given in a recent paper [6]. To present its main result we define, following P. Ahern and D. Clark [4, p.113], the type $\beta(E)$ of a closed subset E of the unit circle as

$$
\beta(E):=\sup \left\{\beta \in \mathbb{R}:\left|E_{x}\right|=O\left(x^{\beta}\right), x \rightarrow 0\right\},
$$

where

$$
E_{x}:=\{t \in \mathbb{T}: d(t, E)<x\}, \quad x>0,
$$

is an x-neighborhood of $E,\left|E_{x}\right|$ its normalized Lebesgue measure. For the equivalent definition and properties of the type see also $[6,7]$.

Theorem 3. Given a closed set $E \subset \mathbb{T}$ and a Blaschke product B, assume that $Z(B) \subset \mathcal{S}_{\phi}(E, K), \phi(x)=\exp \left\{-x^{-\rho}\right\}, \rho>0$. Then

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}^{\prime}\right|\right) d^{(\rho-\beta(E)+\varepsilon)_{+}}\left(z_{n}^{\prime}, E\right)<\infty, \quad \forall \varepsilon>0
$$

$\beta(E)$ is the type of $E,(a)_{+}=\max (a, 0)$.
It is clear that $\beta(E)=1$ for each finite set E.
Corollary 4. Let $Z(B) \subset \mathcal{S}_{\phi}(t, K)$ with the same ϕ. Then

$$
\sum_{n=1}^{\infty}\left(1-\left|z_{n}^{\prime}\right|\right)\left|t-z_{n}^{\prime}\right|^{(\rho-1+\varepsilon)_{+}}<\infty, \quad \forall \varepsilon>0
$$

The authors thank the referee for a number of comments that improved the paper write-up.

2. Main Results

A model function ϕ is nonnegative and increasing, so for all $x, y, u \geq 0$

$$
\begin{equation*}
\phi\left(\frac{x+y+u}{3}\right) \leq \phi(x)+\phi(y)+\phi(u) \tag{6}
\end{equation*}
$$

We begin with the following result, which is similar to Vinogradov's lemma from [16].
Lemma 5. Let $z \in \overline{\mathbb{D}}, t \in \mathbb{T}$ and $\lambda \in \mathcal{S}(t, K)$. Then

$$
\begin{equation*}
\frac{1}{|1-\bar{\lambda} z|} \phi\left(\frac{|t-z| \lambda|\mid}{3}\right) \leq 2 C+K \tag{7}
\end{equation*}
$$

Proof. With no loss of generality we assume that $t=1$. Since

$$
\begin{aligned}
|1-z| \lambda|\mid & =|1-\bar{\lambda} z+z(\bar{\lambda}-|\lambda|)| \leq|1-\bar{\lambda} z|+|\bar{\lambda}-|\lambda|| \\
& \leq|1-\bar{\lambda} z|+(1-|\lambda|)+|1-\lambda|
\end{aligned}
$$

then by (6)

$$
\phi\left(\frac{|1-z| \lambda|\mid}{3}\right) \leq \phi(|1-\bar{\lambda} z|)+\phi(1-|\lambda|)+\phi(|1-\lambda|)
$$

So

$$
\frac{1}{|1-\bar{\lambda} z|} \phi\left(\frac{|1-z| \lambda|\mid}{3}\right) \leq A_{1}+A_{2}+A_{3}
$$

By (3), for the first two terms we have

$$
A_{1}=\frac{\phi(|1-\bar{\lambda} z|)}{|1-\bar{\lambda} z|} \leq C, \quad A_{2} \leq \frac{\phi(1-|\lambda|)}{1-|\lambda|} \leq C
$$

As for the third one,

$$
A_{3} \leq \frac{\phi(|1-\lambda|)}{1-|\lambda|} \leq K
$$

according to the assumption $\lambda \in \mathcal{S}(1, K)$. The proof is complete.

Our main result gives a bound for the derivative B^{\prime} in the case when the zero set $Z=Z(B) \subset \mathcal{S}(E, K)$.
Proof of Theorem 1. Denote $Z(t):=Z \bigcap \mathcal{S}(t, K), t \in E$. Then there is an at most countable set $\left\{t_{k}\right\}_{k=1}^{\omega}, \omega \leq \infty, t_{k} \in E$, so that $z_{k} \in Z\left(t_{k}\right)$, and $Z=\bigcup_{k} Z\left(t_{k}\right)$. It is clear that there is a disjoint decomposition

$$
Z=\bigcup_{k} Z_{k}, \quad Z_{k} \neq \emptyset, \quad Z_{k} \subset Z\left(t_{k}\right), \quad Z_{j} \bigcap Z_{k}=\emptyset, \quad j \neq k
$$

Let us label the set Z in such a way that

$$
Z=\left\{z_{k j}\right\}, \quad k=1,2, \ldots, \omega, \quad j=1,2, \ldots \omega_{k}, \quad\left\{z_{k j}\right\}_{j=1}^{\omega_{k}} \subset Z_{k}
$$

We proceed with the expression

$$
B^{\prime}(z)=\sum_{j=1}^{\infty} b_{n}^{\prime}(z) B_{n}(z), \quad B_{n}(z)=\frac{B(z)}{b_{n}(z)}
$$

so

$$
\left|B^{\prime}(z)\right| \leq \sum_{n=1}^{\infty} \frac{1-\left|z_{n}\right|^{2}}{\left|1-\bar{z}_{n} z\right|^{2}}\left|B_{n}(z)\right| \leq \sum_{n=1}^{\infty} \frac{1-\left|z_{n}\right|^{2}}{\left|1-\bar{z}_{n} z\right|^{2}}=\sum_{k=1}^{\omega} \sum_{j=1}^{\omega_{k}} \frac{1-\left|z_{k j}\right|^{2}}{\left|1-\bar{z}_{k j} z\right|^{2}}
$$

Note that $|t-z| \leq 2|t-z| \lambda| |$ for all $z, \lambda \in \mathbb{D}$ and $t \in \mathbb{T}$. Indeed,

$$
|t-z| \lambda||\geq 1-|z \lambda| \geq 1-|\lambda|
$$

and

$$
|t-z| \leq|t-z| \lambda| |+|z|(1-|\lambda|) \leq 2|t-z| \lambda| |
$$

as claimed. Hence

$$
\phi\left(\frac{|t-z|}{6}\right) \leq \phi\left(\frac{|t-z| \lambda| |}{3}\right)
$$

and by (7)

$$
\begin{aligned}
\phi^{2}\left(\frac{d(z, E)}{6}\right)\left|B^{\prime}(z)\right| & \leq \sum_{k=1}^{\omega} \sum_{j=1}^{\omega_{k}} \frac{1-\left|z_{k j}\right|^{2}}{\left|1-\bar{z}_{k j} z\right|^{2}} \phi^{2}\left(\frac{\left|t_{k}-z\right|}{6}\right) \\
& \leq \sum_{k=1}^{\omega} \sum_{j=1}^{\omega_{k}} \frac{1-\left|z_{k j}\right|^{2}}{\left|1-\bar{z}_{k j} z\right|^{2}} \phi^{2}\left(\frac{\left|t_{k}-z\right| z_{k j}| |}{3}\right) \\
& \leq 2(2 C+K)^{2} \sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)
\end{aligned}
$$

which is (5). The proof is complete.
Theorem 3 is a direct consequence of Theorem 1 and [6, Theorem 3].

References

[1] P. Ahern, The mean modulus of the derivateve of an inner function, Indiana Univ. Math. J., 28 (1979), 311-347.
[2] P. Ahern, The Poisson integral of a singular measure, Can. J. Math. 35 (1983), 735-749.
[3] P. Ahern and D. Clark, On inner functions with H^{p} derivatives, Michigan Math. J., 21 (1974), 115-127.
[4] P. Ahern and D. Clark, On inner functions with B^{p} derivatives, Michigan Math. J., 23 (1976), 107-118.
[5] G. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canad. J. Math., 14 (1962), 334-348.
[6] S. Favorov and L. Golinskii, A Blaschke-type condition for analytic and subharmonic functions and application to contraction operators, Amer. Math. Soc. Transl., 226 (2) (2009), 37-47.
[7] S. Favorov and L. Golinskii, Blaschke-type conditions for analytic functions in the unit disk: inverse problems and local analogs, preprint arXive:1007.3020v1 [math CV] 18 Jul 2010.
[8] D. Girela and J. Peláes, On the membership in Bergman spaces of the derivative of A Blaschke product with zeros in a Stolz domain, Canad. Math. Bull., 49 (3) (2006), 381-388.
[9] D. Girela, J. Peláes, and D. Vucotić, Integrability of the derivative of a Blaschke product, Proc. Edinburgh Math. Soc., 50 (2007), 673-687.
[10] D. Girela, J. Peláes, and D. Vucotić, Interpolating Blaschke products: Stolz and tangential approach regions, Constr. Approx., 27 (2008), 203-216.
[11] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces. Graduate Texts in Mathematics, vol. 199. Springer-Verlag, New York, 2000.
[12] J. Mashreghi and M. Shabankhah, Integral means of the logarithmic derivative of Blaschke products, Comp. Meth. Func. Theory, 9 (2) (2009), 421-433.
[13] Ch. Pommerenke, On the Green's function of Fuchsian groups, Ann. Acad. Sci. Fenn., 2 (1976), 409-427.
[14] D. Protas, Blaschke products with derivative in H^{p} and B^{p}, Michigan Math. J., 20 (1973), 393-396.
[15] D. Protas, Blaschke products with derivatives in function spaces, preprint arXive:1001.5098v2 [math.CV] 10 Jun 2010.
[16] S. A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and some related spaces, Zap. Nauchn. Semin. POMI, 222 (1994), 45-77. (Russian)

Mathematical School, Kharkov National University, 4 Svobody sq., Kharkov 61077, Ukraine

E-mail address: Sergey.Ju.Favorov@univer.kharkov.ua
Mathematics Division, Institute for Low Temperature Physics and Engineering, 47 Lenin ave., Kharkov 61103, Ukraine

E-mail address: leonid.golinskii@gmail.com

[^0]: Date: November 16, 2010.
 1991 Mathematics Subject Classification. Primary: 30D50; Secondary: 31A05, 47B10.

