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Abstract

We show that if a Finsler space is conformally automorphic to a Riemannian space
and the automorphism is positively homogeneous with respect to tangent vectors, then
the indicatrix of the Finsler space is a space of constant curvature. In this case, the
Finslerian two-vector angle can explicitly be found, which gives rise to simple and explicit
representation for the connection preserving the angle in the indicatrix-homogeneous case.
The connection is metrical and the Finsler space is obtainable from the Riemannian space
by means of the parallel deformation. Since also the transitivity of covariant derivative
holds, in such Finsler spaces the metrical non-linear angle-preserving connection is the
respective export of the metrical linear Riemannian connection. From the commutators
of covariant derivatives the associated curvature tensor is found. In case of the FS-space,
the explicit example of the conformally automorphic transformation can be developed,
which entails the explicit connection coefficients and the metric function of the Finsleroid
type.
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1. Motivation and description

In any dimension N ≥ 3 the Finsler metric function F geometrizes the tangent bundle
TM over the base manifold M such that at each point x ∈ M the tangent space TxM
is endowed with the curvature tensor constructed from the respective Finslerian metric
tensor g{x}(y) by means of the conventional rule of the Riemannian geometry considering
y to be the variable argument. There arises the Riemannian space R{x} = {g{x}(y), TxM}
supported by the point x ∈ M such that TxM plays the role of the base manifold for the
space. In the Riemannian limit of the Finsler space, the spaces R{x} are Euclidean spaces,
so that the tensor g{x}(y) is independent of y. The conformally flat structure of the spaces
R{x} can naturally be taken to treat as the next level of generality of the Finsler space.
Can the metrical connection preserving the two-vector angle be introduced on that level?

The deformation of the Riemannian space to the Finsler space proves to be convenient
invention to apply. Namely, in the particular case when the Riemannian space can be
deformated to the Finsler space characterized by the conformally flat structure of the
spaces R{x} the positive and clear answer to the above question can be arrived at.

Given an N -dimensional Riemannian space RN = (M,S), where S denotes the
Riemannian metric function, one may endeavor to obtain a Finsler space FN = (M,F )
by applying an appropriate deformation C of the space RN . The notation F stands for
the Finsler metric function. The base manifold M is keeping the same for both the spaces,
RN and FN .

We assume that the transformation C is restrictive, in the sense that no point x ∈ M
is shifted under the transformation, so that in each tangent space TxM the deformation
maps tangent vectors y ∈ TxM into the tangent vectors of the same TxM :

y = C(x, ȳ), y, ȳ ∈ TxM. (1.1)

In general, this transformation is non-linear with respect to ȳ. Non-singularity and suffi-
cient smoothness are always implied.

We may evidence in the Riemannian space RN the metrical linear Riemannian con-

nection RL, which in terms of local coordinates {xi} introduced in M is given by

RL = {Lm
j , L

m
ij} : Lm

j = −amijy
i, Lm

ij = amij, (1.2)

with amij = amij(x) standing for the Christoffel symbols constructed from the Riemannian
metric tensor amn(x) of the space RN . The indices i, j, ... are specified on the range
(1, . . . , N). The respective covariant derivative ∇ can be introduced in the natural way,
namely by means of the definition (4.18) which uses the operator

dRiem
i =

∂

∂xi
+ Lk

i
∂

∂yk
, (1.3)

to act on tensors considered on the tangent bundle underlined the space RN . In the space,
the scalar product 〈y1, y2〉Riem

{x} = amn(x)y
m
1 y

n
2 of two vectors y1, y2 supported by a fixed

point x ∈ M is linear with respect to each vector, which gives rise to the profound meaning
of the connection (1.2) to preserve the product under the entailed parallel transports of
the entered vectors along curves running on M .

In the Finsler space, the scalar product is essentially non-linear object with respect
to the entered vectors, so that we may hope to meet similar preservation property in the
Finslerian domains if only we apply the connection which is non-linear, in the sense that
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the involved connection coefficients depend on tangent vectors y in non-linear way. With
this hope, we need the metrical non-linear Finsler connection FN , such that

FN = {Nm
j, D

m
ij} : Nm

j = Nm
j(x, y), Dm

ij = Dm
ij(x, y). (1.4)

The adjective “metrical” means that the action of the entailed covariant derivative D on
the Finsler metric function, and also on the Finsler metric tensor, yields identically zero.
The coefficients Nm

j and Dm
ij are assumed to be positively homogeneous regarding the

dependence on vectors y, respectively of degree 1 and degree 0.
Accordingly, the most important object what should be lifted from the Riemannian to

Finslerian space is the two-vector angle, to be denoted by α{x}(y1, y2), where y1, y2 ∈ TxM.
Like to the Riemannian geometry proper, the underlined idea is to measure the angle by
means of length of the respective geodesic arcs evidenced on the indicatrix.

The Finsler space endows the vector pair y1, y2 with the scalar product

〈y1, y2〉{x} = F (x, y1)F (x, y2)α{x}(y1, y2)

on analogy of the Riemannian geometry.
The non-linear deformation

FN = C · RL (1.5)

of the Riemannian connection may exist to yield the Finsler connection FN which pre-
serves the Finslerian two-vector angle α{x}(y1, y2) under the associated parallel transports
of the vectors y1, y2.

In the theory of Finsler spaces, the key objects, the connection included, were in-
troduced and studied on the basis of various convenient sets of axioms (see [1-5] and
references therein). Regarding the significance of the angle notion, the important farther
step was made in [6] were in processes of studying implications of the two-vector angle
defined by area, the theorem was proved which states that a diffeomorphism between two
Finsler spaces is an isometry iff it keeps the angle. This Tamássy’s theorem substantiates
the idea to develop the Finsler connection from the Finsler two-vector angle, possibly on
the analogy of the Riemannian geometry.

To meet new methods of applications, the interesting chain of linear connections was
introduced and studied in [3]. It was emphasized that in the Riemannian geometry we
have naturally the metrical and linear connection. We depart from this connection to
develop the Finsler connection.

Namely, we shall confine our attention to the case when the space FN is obtainable
from the space RN by means of the conformal automorphism, according to the definition
(2.1) of Section 2. We shall also assume that under the used transformations the Finslerian
indicatrix IF{x} ∈ TxM and the Riemannian sphere S{x} ∈ TxM are in correspondence
(according to (2.2)).

Additionally, we subject the C-transformations to the condition of positive homo-
geneity with respect to tangent vectors y, denoting the degree of homogeneity by H . We
call the H the degree of conformal automorphism.

Remarkably, such Finsler spaces of dimensions N ≥ 3 can be characterized by the
condition that the indicatrix is a space of constant curvature (see Proposition 2.1). The

indicatrix curvature value CInd. is the square of the degree of conformal automorphism,

that is,
CInd. ≡ H2 (1.6)
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(indicated in (2.3)). The condition has been realized, the Finslerian two-vector angle
α{x}(y1, y2) proves to be a factor of the angle αRiem

{x} (y1, y2) operative traditionally in the
Riemannian space, namely the simple equality

α{x}(y1, y2) =
1

H(x)
αRiem
{x} (y1, y2) (1.7)

(see (2.31)-(2.32)) is obtained.
The equality

S(x, ȳ) = (F (x, y))H (1.8)

(see (2.10)) is arisen, which validates the indicatrix correspondence principle (2.2).
We set forth the conventional requirement of preservation of the Finsler metric func-

tion F (x, y), namely
diF = 0 (1.9)

with

di =
∂

∂xi
+Nk

i(x, y)
∂

∂yk
. (1.10)

With the definition
Dyn := dyn −Nn

j(x, y)dx
j (1.11)

of covariant displacement of the tangent vector, the parallel transport of the vector means
the vanishing

Dyn = 0. (1.12)

We apply this observation to the two-vector angle α{x}(y1, y2): the coefficients
Nk

i(x, y) fulfill the angle preservation equation

diα{x}(y1, y2) = 0, y1, y2 ∈ TxM (1.13)

under the parallel displacements of the entered vectors y1 and y2, if the involved operator
di is taken to read

di =
∂

∂xi
+Nk

i(x, y1)
∂

∂yk1
+Nk

i(x, y2)
∂

∂yk2
. (1.14)

The Nk
i(x, y) thus appeared can naturally be interpreted as the coefficients of the non-

linear connection produced by angle.
In this way we fulfill the canonical geometrical principle: the angle α{x}(y1, y2) formed

by two vectors y1 and y2 is left unchanged under the parallel displacements of the vectors

y1 and y2, namely Dα
def
= (dxi)diα = 0, for diα = 0.

In general the indicatrix curvature value CInd. may depend on the points x ∈ M . We
say that the space FN is indicatrix-homogeneous, if the value is a constant. In view of the
result CInd. ≡ H2 (indicated in (2.3)), such spaces can be characterized by the condition
that the degree H of conformal automorphism is independent of x.

It proves that in the indicatrix-homogeneous case of the studied space FN the equa-

tions (1.13)–(1.14) can explicitly be solved for the coefficients Nk
i (see Proposition 2.2 and

Note placed thereafter in Section 2).
From the obtained coefficients Nk

m given by (2.36), the entailed coefficients

Nk
mn =

∂Nk
m

∂yn
, Nk

mnj =
∂Nk

mn

∂yj
(1.15)
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can straightforwardly be evaluated (Section 3). Let us use the coefficients to construct the
covariant derivative Dmgnj of the Finsler metric tensor gnj = gnj(x, y) of the considered
space FN , namely

Dmgnj := dmgnj +Nk
mjgkn +Nk

mngkj, (1.16)

where dm is given by (1.10). It proves that the covariant derivative introduced by (1.16)
with the coefficients Nk

m given by (2.36) possesses the property

Dmgnj = 0 (1.17)

in the indicatrix-homogeneous case. The property can be verified by straightforward
substitutions which result in the vanishing

ykN
k
mnj = 0 (1.18)

(see Proposition 3.1).
It is amazing but the fact that the last vanishing is an implication of the identity

ykCknj = 0 shown by the Cartan tensor Cknj = (1/2)∂gkn/∂y
j. Indeed, additional evalu-

ation leads to the result
Nk

mnj = −DmC
k
nj (1.19)

in the indicatrix-homogeneous case (see Proposition 3.2), where

DmC
k
nj := dmC

k
nj −Nk

mtC
t
nj +N t

mnC
k
tj +N t

mjC
k
nt. (1.20)

The coefficients Nkmnj = gkhN
h
mnj can be written as

Nkmnj = −DmCknj (1.21)

and, therefore, they are symmetric with respect to the subscripts k, n, j.
Thus, with the identification

Dk
in(x, y) = −Nk

in(x, y), (1.22)

in the Finsler space FN of the indicatrix-homogeneous type (that is, when H = const) the
metrical angle-preserving connection (1.4) is given by the coefficients {Nk

i , D
k
in} found

explicitly. Recollecting the assumed homogeneity of the coefficients, from (1.22) we infer
the equality

Dk
imy

m = −Nk
i. (1.23)

Realizing the C-transformation locally by yi = yi(x, t) with tn ≡ ȳn (see (2.11)) and
applying the Riemannian operator

dRiem
i =

∂

∂xi
− akiht

h ∂

∂tk

(cf. (1.3)) to the field yi(x, t), it is possible to conclude that

Nn
i = dRiem

i yn (1.24)

(see (2.47)). This representation of the coefficients Nn
i possesses a clear geometrical and

tensorial meaning and is alternative (and equivalent) to the representation (2.36). The
derivation of the representation (1.24) uses the formula (1.23).
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According to Proposition 2.3, the Finsler space FN of the indicatrix-homogeneous
type is obtained from the Riemannian space RN by means of the parallel deformation.

Since also the transitivity of covariant derivative holds, namely Dnt
i = 0 (see (2.39)),

and gkh = Cm
k Cn

hamn (see (2.25)), we should conclude that in the Finsler space FN of the
indicatrix-homogeneous type the metrical angle-preserving connection is the C-export of
the metrical linear Riemannian connection (1.2) applied conventionally in the background
Riemannian space RN .

In Section 4 we perform the attentive comparison between the commutators of the in-
volved Finsler covariant derivative D and the commutators of the underlined Riemannian
covariant derivative ∇, assuming H = const. By this method, we derive the associated
curvature tensor ρk

n
ij. The skew-symmetry ρmnij = −ρnmij = −ρmnji holds. The co-

variant derivative Dl of the tensor fulfills the cyclic identity, completely similar to the
Riemannian case in which the cyclic identity is valid for the derivative ∇lak

n
ij of the

Riemannian curvature tensor ak
n
ij . The tensor Mn

ij = −ykρk
n
ij proves to be transitive

to the Riemannian tensor −ynt t
hah

t
ij, namely the equality Mn

ij = −ynt t
hah

t
ij holds. The

very tensor ρk
n
ij is not transitive to the Riemannian precursor ah

m
ij , instead the more

general equality

ρk
n
ij = −(1−H)

1

F
(lkδ

n
m − lngmk)M

m
ij + ynmah

m
ijt

h
k

is obtained. We observe that the difference between the curvature tensor ρk
n
ij and the

transitive term ynmah
m

ijt
h
k is proportional to (1−H). Squaring the tensor yields the sum

ρknijρknij = aknijaknij +
2

S2

(
1

H2
− 1

)
tlal

nijthahnij ,

which is the FN -extension of the Riemannian term aknijaknij. The difference ρknijρknij −
aknijaknij is proportional to (H−2 − 1).

In Section 5 we develop an explicit and attractive particular case, namely we present
the explicit example (5.27) of the conformally automorphic transformation (2.1), special-
izing the Finsler space to be the FS-space. The space is endowed with the Finsler metric
function F which is constructed from a Riemannian metric function S =

√
aij(x)yiyj and

an 1-form b = bi(x)y
i according to the functional dependence

F (x, y) = Φ (x; b, S, y) , (1.25)

where Φ is a sufficiently smooth scalar function. In step-by-step way, we derive the
coefficients Nm

i specified by (2.36), obtaining the explicit representation (5.72)–(5.75).
It proves that the suitability of the proposed transformation (5.27) imposes the se-
vere restriction on the Finsler metric function, namely the function must be of the
Finsleroid type (described in [7]). In the restricted case which implies independence
of the function Φ (x; b, S, y) of x, assuming also that the Riemannian norm of the 1-form
b is a constant, the obtained coefficients Nm

i straightforwardly entail the vanishing set
DnF = Dnyj = Dngij = 0 (see (5.96)-(5.98)), together with the angle preservation (1.13).
Simplifying coefficients Nm

i culminates in the representation (5.102). The initial trans-
formation (5.27) reduces to (5.106), for it proves possible to find explicitly the involved
functions ̺ and µ.

In Conclusions, Section 6, we emphasize several important ideas.
In Appendices A-E we present the explicit evaluations which are required to verify

the validity of the formulated propositions.
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2. Main observations

Below, any dimension N ≥ 3 is allowable.

Let M be an N -dimensional C∞ differentiable manifold, TxM denote the tangent
space to M at a point x ∈ M , and y ∈ TxM\0 mean tangent vectors. Suppose we are
given on the tangent bundle TM a Riemannian metric S. Denote by RN = (M,S) the
obtained N -dimensional Riemannian space. Let additionally a Finsler metric function F
be introduced on this TM , yielding a Finsler space FN = (M,F ). We shall study the
Finsler space FN specified according to the following definition.

INPUT DEFINITION. The space FN is conformally automorphic to the Riemannian
space RN :

FN = C · RN (2.1)

such that in each tangent space TxM the C-automorphism transforms conformally the
metric produced by the Finsler metric to the Euclidean metric entailed by the Riemannian
metric. It is assumed that the applied C-transformations do not influence any point x ∈ M
of the base manifold M and that they are invertible. It is also natural to require that the
C-transformations send unit vectors to unit vectors:

IF{x} = C · S{x}. (2.2)

Additionally, we subject the C-transformations to the condition of positive homogeneity
with respect to tangent vectors y, denoting the degree of homogeneity by H . We call the
H the degree of conformal automorphism.

The existence of such spaces is explained by the following proposition.

Proposition 2.1. A Finsler space is of the claimed type FN if and only if the

indicatrix of the Finsler space is a space of constant curvature. Denoting the indicatrix

curvature value by CInd., the equality

CInd. ≡ H2, H > 0, (2.3)

is obtained. The relevant conformal multiplier is given by p2 with

p =
1

H
F 1−H . (2.4)

The proposition is of the local meaning in both the base manifold and the tangent
space. The validity of the proposition can be verified by simple straightforward evaluations
(which are presented in Appendix A).

The value CInd. may vary from point to point of the manifold M , so that in general
H = H(x).

We take CInd. > 0. Extension of the proposition to negative value of CInd. would be
a straightforward task.

On every punctured tangent space TxM \0, the Finsler metric function F is assumed
to be positive, and also positively homogeneous of degree 1:

F (x, ky) = kF (x, y), k > 0, ∀y. (2.5)
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Therefore, the conformal factor p2 =
(
F 1−H/H

)2
possesses this kind of homogeneity with

degree 2(1 − H). For a given function F we can construct the covariant tangent vector
ŷ = {yi} and the Finslerian metric tensor {gij} in the ordinary way:

yi :=
1

2

∂F 2

∂yi
, gij :=

1

2

∂2F 2

∂yi∂yj
=

∂yi
∂yj

.

The contravariant tensor {gij} defined by the reciprocity conditions gijg
jk = δki , where δ

stands for the Kronecker symbol.
Let the C-transformation (2.1) be assigned locally by means of the differentiable

functions
ȳm = ȳm(x, y), (2.6)

subject to the required homogeneity

ȳm(x, ky) = kH ȳm(x, y), k > 0, ∀y. (2.7)

This entails the identity
ȳmk y

k = Hȳm, (2.8)

where ȳmk = ∂ȳm/∂yk. Fulfilling the conformal automorphism (2.1) means locally

gmn(x, y) = cij(x, ȳ)ȳ
i
mȳ

j
n, cij = p2aij(x). (2.9)

Contracting the gmn by ymyn and noting the involved homogeneity together with the
value (2.4) of p, we get the equality

S(x, ȳ) = (F (x, y))H , (2.10)

where S =
√
amn(x)ȳmȳn.

Denote by
yi = yi(x, t), tn ≡ ȳn, (2.11)

the inverse transformation, so that

yi(x, kt) = k1/Hyi(x, t), k > 0, ∀t, (2.12)

and

yint
n =

1

H
yi, (2.13)

where yin = ∂yi/∂tn. The inverse to (2.9) reads:

gkhy
k
my

h
n = cmn. (2.14)

The following useful relations can readily be arrived at:

ymy
m
n =

F 2

HS2
tn ≡ 1

H
F 2(1−H)tn, tn = anht

h, (2.15)

and

ymy
m
nlt

l
j + gmjy

m
n = 2

(
1

H
− 1

)
F−2Hyjtn +

1

H
F 2(1−H)anht

h
j ,
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where tlj = ȳlj, y
m
nl = ∂ymn /∂yl. Alternatively,

tht
h
n =

HS2

F 2
yn ≡ HF 2(H−1)yn (2.16)

and
tht

h
nuy

u
i + ahit

h
n = 2(H − 1)F−2tiyn +HF 2(H−1)gnuy

u
i , (2.17)

where thnu = ∂thn/∂y
u. We may also write

tht
h
ni +H2F 2(H−1)gni = 2(H − 1)F−2HF 2(H−1)yiyn +HF 2(H−1)gni,

or

tht
h
ni = H(1−H)F 2(H−1)(gni − 2lnli). (2.18)

From (2.14) it follows that gnmy
m
i = p2tjnaij .

Differentiating (2.9) with respect to yk yields the following representation for the
Cartan tensor Cmnk = (1/2)∂gmn/∂y

k:

2Cmnk = (1−H)
2

F
lkgmn + p2(timkt

j
n + timt

j
nk)aij. (2.19)

Contracting this tensor by yn results in the equality

p2timkt
jaij =

(
1

H
− 1

)
(hkm − lklm), (2.20)

where the vanishing Cmnky
n = 0 and the homogeneity identity (2.8) have been taken into

account.

Symmetry of the tensor Cmnk demands

(1−H)
2

F
(lkgmn − lmgkn) + p2(timt

j
nk − tikt

j
nm)aij = 0, (2.21)

so that we may alternatively write

Cmnk = (1−H)
1

F
(lkgmn + lngmk − lmgnk) + p2timt

j
nkaij. (2.22)

Contracting the last tensor by gnk yields

2Cm = (1−H)
2

F
lm + gnkp2(tinkt

j
m + tint

j
mk)aij ≡ 2Cmnkg

nk,

from which it ensues that

2Cm = (1−H)
2

F
lm + 2gnkp2tinkt

j
maij + gnkp2(tint

j
mk − timt

j
nk)aij ,

or

2Cm = (1−H)
2

F
lm + 2gnkp2tinkt

j
maij − (1−H)gnk

2

F
(lmgnk − lngmk)aij .
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It is also convenient to use the representation

FCm = −(N − 2)(1−H)lm + Fgnkp2tinkt
j
maij. (2.23)

The space FN is obtainable from the Riemannian spaceRN by means of the deforma-
tion (1.1) which, owing to (2.2) and (2.9), can be presented by the conformal deformation

tensor

Cm
k := pȳmk , (2.24)

so that
gkh = Cm

k Cn
hamn. (2.25)

The zero-degree homogeneity

Cm
n (x, ky) = Cm

n (x, y), k > 0, ∀y, (2.26)

holds, together with
Cm
n yn = F 1−H ȳm. (2.27)

The indicatrix correspondence (2.2) is a direct implication of the equality S = FH

(see (2.10)). We may apply the considered transformation (2.6) to the unit vectors:

l = C · L : li = yi(x, L); L = C−1 · l : Li = ti(x, l), (2.28)

where li = yi/F (x, y) and Li = ti/S(x, t) are components of the respective Finslerian and
Riemannian unit vectors, which possess the properties F (x, l) = 1 and S(x, L) = 1. We
have Lm = tm(x, l). On the other hand, from (2.4) and (2.9) it just follows that

gmn(x, l) =
1

H2
aij(x)t

i
m(x, l)t

j
n(x, l), (2.29)

so that under the transformation (2.28) we have

gmn(x, l)dl
mdln =

1

H2
aij(x)dL

idLj . (2.30)

No support vector enters the right-hand part in the previous equality (2.30). There-
fore, any two nonzero tangent vectors y1, y2 ∈ TxM in a fixed tangent space TxM form
the FN -space angle

α{x}(y1, y2) =
1

H(x)
arccosλ, (2.31)

where the scalar

λ =
amn(x)t

m
1 t

n
2

S1S2
, with tm1 = tm(x, y1) and tm2 = tm(x, y2), (2.32)

is of the entire Riemannian meaning in the space RN ; the notation

S1 =
√
amn(x)t

m
1 t

n
1 , S2 =

√
amn(x)t

m
2 t

n
2

has been used.
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From (2.32) it follows that

∂λ

∂xi
=

amn,it
m
1 t

n
2

S1S2

+
1

S1S2

amn

(
∂tm1
∂xi

tn2 + tm1
∂tn2
∂xi

)

− 1

2
λ

[
1

S1S1

(
amn,it

m
1 t

n
1 + 2amn

∂tm1
∂xi

tn1

)
+

1

S2S2

(
amn,it

m
2 t

n
2 + 2amn

∂tm2
∂xi

tn2

)]
, (2.33)

where amn,i = ∂amn/∂x
i, and

∂λ

∂yk1
=

[
amnt

n
2

S1S2
− amnt

n
1

S1S1
λ

]
tm1k,

∂λ

∂yk2
=

[
amnt

n
1

S2S1
− amnt

n
2

S2S2
λ

]
tm2k. (2.34)

Let the coefficients Nk
i be subjected to the equation

diλ = 0, (2.35)

where di is the operator (1.10).
It is possible to establish the validity of the following proposition.

Proposition 2.2. When diF = 0 and H = const, the equation (2.35) can be solved

for the coefficients Nm
n, yielding

Nm
n = −ymi

(
∂ti

∂xn
+ aiknt

k

)
. (2.36)

See Appendix B.

In (2.36), the aikn = aikn(x) are the Christoffel symbols

aikn =
1

2
aih
(∂ahk
∂xn

+
∂ahn
∂xk

− ∂akn
∂xh

)
(2.37)

of the Riemannian space RN .

Note. When H = const, from (2.31) it just follows that the angle α{x}(y1, y2) fulfills
the vanishing which is completely similar to (2.35), namely the vanishing (1.13) claimed
in Section 1.

With the covariant derivative

Dnt
i := dnt

i + aiknt
k (2.38)

the representation (2.36) can be interpreted as the manifestation of the transitivity

Dnt
i = 0 (2.39)

of the connection under the conformal automorphism (2.1).
By differentiating (2.39) with respect to ym we may conclude that the covariant

derivative
Dnt

i
m := dnt

i
m −Dh

nmt
i
h + ainlt

l
m, Dh

nm = −Nh
nm, (2.40)
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vanishes identically:
Dnt

i
m = 0. (2.41)

Since ynk t
k
j = δnj , the previous identity can be transformed to

dRiem
i ynk +Dn

isy
s
k − ahiky

n
h = 0, (2.42)

which can be interpreted as the covatiant derivative vanishing:

Diy
n
k = 0. (2.43)

This formula entails
Diy

n = 0 (2.44)

(because of (2.39)), where
Diy

n := dRiem
i yn +Dn

isy
s. (2.45)

Here, yn mean the functions yn(x, t) introduced by (2.11). We have used the Riemannian
operator

dRiem
i =

∂

∂xi
+ Lk

i
∂

∂tk
, Lk

i = −akiht
h (2.46)

(cf. (1.3)).
Since Dn

isy
s = −Nn

i, from (2.44)-(2.45) we may conclude that the representation

Nn
i = dRiem

i yn ≡ ∂yn(x, t)

∂xi
+ ynhL

h
i (2.47)

is valid which is alternative to (2.36).
Let us verify (2.42). We have

0 = ynk

(
∂tkj
∂xi

+Nh
it
k
hj −Dh

ijt
k
h + akilt

l
j

)

= −tkj

(
∂ynk
∂xi

+ ynkh
∂th

∂xi

)
+ ynk

(
Nh

it
k
hj −Dh

ijt
k
h + akilt

l
j

)
.

Contracting this by yjm yields

0 =
∂ynm
∂xi

+ ynmh

∂th

∂xi
− yjmy

n
kN

h
it
k
hj +Dn

ijy
j
m − ynka

k
im.

Take Nh
i from (2.36):

0 =
∂ynm
∂xi

+ ynmh

∂th

∂xi
+ yjmy

n
ky

h
l t

k
hj

(
∂tl

∂xi
+ aljit

j

)
+Dn

ijy
j
m − ynka

k
im.

This vanishing is tantamount to the considered (2.42), for yjmy
n
ky

h
l t

k
hj = −ynml.

Owing to the equalities (2.4), (2.24), and (2.43), we are entitled to formulate the
following proposition.

Proposition 2.3. When diF = 0 and H = const, the deformation tensor (2.24) is
parallel

DnCm
k = 0, (2.48)
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where

DnCm
k = dnCm

k −Dh
nkCm

h + amnlCl
k. (2.49)

With these observations, it is possible to develop a direct method to induce the
connection in the Finsler space FN from the metrical linear Riemannian connection (1.2)
meaningful in the background Riemannian space RN .

The coefficients Nk
i(x, y) can also be obtained by means of the transitivity map

{Nk
i} = C · {Lk

i}. (2.50)

Indeed, with an arbitrary differentiable scalar w(x, y), we can apply the transforma-
tion {yi = yi(x, t), tn ≡ ȳn} indicated in (2.11) and consider the C-transform

W (x, t) = w(x, y), which entails
∂W

∂tn
= ykn

∂w

∂yk
, (2.51)

thereafter postulating that the C-transformation is covariantly transitive, namely
(

∂

∂xi
+Nk

i(x, y)
∂

∂yk

)
w(x, y) =

(
∂

∂xi
+ Lk

i(x, t)
∂

∂tk

)
W (x, t). (2.52)

Since the field w is arbitrary, the last equality is fulfilled if and only if

Nk
i = dRiem

i yk ≡ ∂yk(x, t)

∂xi
+ ykhL

h
i. (2.53)

This is the representation which is required to realize the map (2.50). We have again
arrived at the coefficients (2.47).

With the knowledge of the coefficients Nk
i(x, y), we can use the formulas (2.40)

and (2.41) to express the Finslerian connection coefficients Dh
nm through the Rieman-

nian Christoffel symbols ainl. Thus we have induced the connection in the Finsler space
FN from the metrical linear Riemannian connection (1.2) meaningful in the background
Riemannian space RN .

It can readily be noted that the transitivity property (2.52) can straightforwardly be
extended to scalars dependent on two vectors. Namely, if

W (x, t1, t2) = w(x, y1, y2), (2.54)

then
(

∂

∂xi
+Nk

1i

∂

∂yk1
+Nk

2i

∂

∂yk2

)
w(x, y1, y2) =

(
∂

∂xi
+ Lk

1i

∂

∂tk1
+ Lk

2i

∂

∂tk2

)
W (x, t1, t2), (2.55)

where Nk
1i = Nk

i(x, y1), N
k
2i = Nk

i(x, y2), L
k
1i = Lk

i(x, t1), L
k
2i = Lk

i(x, t2).

3. Properties of connection coefficients

The derivative coefficients (1.15) can straightforwardly be evaluated from (2.36). We
obtain explicitly

Nk
mn = −ykslt

l
nT

s
m−yksT

s
n,m with T s

m =
∂ts

∂xm
+asmht

h, T s
n,m =

∂tsn
∂xm

+asmht
h
n, (3.1)
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which entails the contractions

ykN
k
mn = −

(
2

(
1

H
− 1

)
F−2Hynts +

1

H
F 2(1−H)asht

h
n − glny

l
s

)
T s
m − F 2

HS2
tsT

s
n,m (3.2)

and

ykN
k
mn + glnN

l
m = −

(
2

(
1

H
− 1

)
F−2Hynts +

1

H
F 2(1−H)asht

h
n

)
T s
m − F 2

HS2
tsT

s
n,m,

together with
ykN

k
mni + gkiN

k
mn + glnN

l
mi + 2ClniN

l
m

= −
(

1

H
− 1

)
2F−2H

[
(gni − 2Hlnli)ts + (ynaslt

l
i + yiaslt

l
n)
]
T s
m − 1

H
F 2(1−H)asht

h
niT

s
m

−
(
2

(
1

H
− 1

)
F−2Hynts +

1

H
F 2(1−H)asht

h
n

)
T s
i,m

−
(
2

(
1

H
− 1

)
F−2Hyits +

1

H
F 2(1−H)asht

h
i

)
T s
n,m − 1

H
F 2(1−H)ts

(
∂tsni
∂xm

+ asmht
h
ni

)
.

(3.3)

The attentive calculation of the entered terms (carried out in Appendix C) leads to the
following remarkable result.

Proposition 3.1. If the coefficients Nk
m are taking according to Proposition 2.2,

then the vanishing ykN
k
mnj = 0 holds identically.

In performing involved calculation it is necessary to note that in view of (2.15) and
(2.36), we can write

dmF =
∂F

∂xm
+Nk

n
∂F

∂yk
=

∂F

∂xm
+Nk

nlk =
∂F

∂xm
− 1

FH
F 2(1−H)tsT

s
m

so that, because of dmF = 0, the equality

∂F

∂xm
=

1

FH
F 2(1−H)tsT

s
m (3.4)

is valid.
It is also possible to evaluate the covariant derivative DmC

k
nj (see (1.20)), using the

equality dmghn = −N t
mhgtn − N t

mngth entailed by the metricity (1.16). This way leads
to the following result.

Proposition 3.2. The representation Nk
mnj = −DmC

k
nj is valid, whenever dmF =

0 and H = const.

Proof of this proposition can be arrived at during a long chain of straightforward
substitutions (see Appendix D).
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4. Entailed curvature tensor

Throughout the present section we assume that H = const. Given a tensor wn
k =

wn
k(x, y) of the tensorial type (1,1), commuting the covariant derivative

Diw
n
k := diw

n
k +Dn

ihw
h
k −Dh

ikw
n
h (4.1)

yields the equality

[DiDj −DjDi]w
n
k = Mh

ij
∂wn

k

∂yh
−Ek

h
ijw

n
h + Eh

n
ijw

h
k (4.2)

with the tensors
Mn

ij := diN
n
j − djN

n
i (4.3)

and
Ek

n
ij := diD

n
jk − djD

n
ik +Dm

jkD
n
im −Dm

ikD
n
jm. (4.4)

When the choice Dk
in = −Nk

in is made (cf. (1.23)), the tensor (4.3) can be written
in the form

Mn
ij =

∂Nn
j

∂xi
− ∂Nn

i

∂xj
−Nh

iD
n
jh +Nh

jD
n
ih. (4.5)

By applying the commutation rule (4.2) to the particular choices {F, yn, yk, gnk} and
noting the vanishing {DiF = Diy

n = Diyk = Dignk = 0}, we obtain the identities

ynM
n
ij = 0, ykEk

n
ij = −Mn

ij, ynEk
n
ij = Mkij , (4.6)

and

Emnij + Enmij = 2CmnhM
h
ij with Cmnh =

1

2

∂gmn

∂yh
. (4.7)

Differentiating (4.5) with respect to yk and using the equality N j
i = −Dj

iky
k yield

Ek
n
ij = −∂Mn

ij

∂yk
. (4.8)

The cyclic identity

DkM
n
ij +DjM

n
ki +DiM

n
jk = 0 (4.9)

is valid, where

DkM
n
ij = dkM

n
ij +Dn

ktM
t
ij − askiM

n
sj − askjM

n
is. (4.10)

It proves pertinent to replace in the commutator (4.2) the partial derivative ∂wn
k/∂y

h

by the definition

Shw
n
k :=

∂wn
k

∂yh
+ Cn

hkw
h
k − Cm

hkw
n
m (4.11)

which has the meaning of the covariant derivative in the tangent space supported by the
point x ∈ M . In particular,

Shgnk :=
∂gnk
∂yh

− Cm
hngmk − Cm

hkgnm = 0.
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With the curvature tensor

ρk
n
ij := Ek

n
ij −Mh

ijC
n
hk, (4.12)

the commutator (4.2) takes on the form

(DiDj −DjDi)w
n
k = Mh

ijShw
n
k − ρk

h
ijw

n
h + ρh

n
ijw

h
k. (4.13)

We denote ρknij = gmnρk
m

ij. The skew-symmetry

ρmnij = −ρnmij (4.14)

holds (cf. (4.7)). The tensor obeys also the cyclic identity

Dlρk
n
ij +Djρk

n
li +Diρk

n
jl = 0, (4.15)

where

Dlρk
n
ij = dlρk

n
ij +Dn

ltρk
t
ij −Dt

lkρt
n
ij − asliρk

n
sj − asljρk

n
is.

Let us realize the action of the C-transformation (2.1)-(2.2) on tensors by the help
of the transitivity rule, that is,

{wn
m(x, y)} = C · {W n

m(x, t)} : wn
m = ynht

j
mW

h
j, (4.16)

where W n
m is a tensor of type (1,1). The metrical linear connection RL introduced by

(1.2) may be used to define the covariant derivative ∇ inRN according to the conventional
rule:

∇iW
n
m =

∂W n
m

∂xi
+ Lk

i
∂W n

m

∂tk
+ Ln

hiW
h
m − Lh

miW
n
h, (4.17)

which can be written shortly with the help of the operator dRiem
i defined by (1.3), namely

∇iW
n
m = dRiem

i W n
m + Ln

hiW
h
m − Lh

miW
n
h. (4.18)

We have
∇iS = 0, ∇iy

j = 0, ∇iamn = 0. (4.19)

Due to the nullifications Diy
n
h = 0 and Dit

j = 0 (see (2.39) and (2.43)), we have the
transitivity property

Diw
n
m = ynht

j
m∇iW

h
j (4.20)

for the covariant derivatives.
In the commutator

[∇i∇j −∇j∇i]W
n
k = −ymam

h
ij
∂W n

k

∂yh
− ak

h
ijW

n
h + ah

n
ijW

h
k (4.21)

the associated Riemannian curvature tensor is constructed in the ordinary way

an
i
km =

∂ainm
∂xk

− ∂aink
∂xm

+ aunma
i
uk − aunka

i
um. (4.22)

With the ordinary Riemannian covariant derivative

∇kah
t
ij =

∂ah
t
ij

∂xk
+ atkuah

u
ij − aukhau

t
ij − aukiah

t
uj − aukjah

t
iu, (4.23)
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the cyclic identity
∇kam

n
ij +∇jam

n
ki +∇iam

n
jk = 0 (4.24)

holds.
Under these conditions, by comparing the Finslerian commutator (4.13) with the

Riemannian precursor (4.21), we obtain

Mn
ij = −ynt t

hah
t
ij (4.25)

and

Ek
n
ij = ynht

h
kmM

m
ij + ynmah

m
ijt

h
k , (4.26)

together with

ρk
n
ij =

(
ynht

h
km − Cn

mk

)
Mm

ij + ynmah
m

ijt
h
k .

Inserting here the tensor Cn
mk taken from (2.22) and noting the vanishing lmM

m
ij = 0

(see (4.6)), we get

ρk
n
ij =

(
ynht

h
km − (1−H)

1

F
(lkδ

n
m + lngmk)− p2tlmt

h
rkalhg

nr

)
Mm

ij + ynmah
m

ijt
h
k .

Let us lower here the index n and use the equality gnmy
m
i = p2tjnaij (ensued from

(2.14)). This yields

ρknij =

(
p2tlnt

h
kmalh − (1−H)

1

F
(lkgmn + lngmk)− p2tlmt

h
nkalh

)
Mm

ij + p2amlt
l
nah

m
ijt

h
k .

Next, we use here the skew-symmetry relation (2.21), obtaining

ρknij =

(
(1−H)

2

F
(lngmk − lmgkn)− (1−H)

1

F
(lkgmn + lngmk)

)
Mm

ij + p2amlt
l
nah

m
ijt

h
k ,

or

ρknij = −(1−H)
1

F
(lkMnij − lnMkij) + p2ahlijt

h
kt

l
n, (4.27)

where ahlij = alrah
r
ij . Finally, we return the index n to the upper position, arriving at

ρk
n
ij = −(1 −H)

1

F
(lkδ

n
m − lngmk)M

m
ij + ynmah

m
ijt

h
k . (4.28)

The totally contravariant representation

ρknij = gpkamianjρp
n
mn

reads

ρknij = −(1 −H)
1

F
(lkMnij − lnMkij) +

1

p2
ykhy

n
r a

hrij , (4.29)

where ahrij = ahlamianjal
r
mn and Mmij = ahianjMm

hn.
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Similarly, we can conclude from (4.25) that the tensor

Mnij = gnmM
m

ij

reads
Mnij = −p2thtmn ahmij . (4.30)

Squaring yields

MnijMnij = p2tlal
nijthahnij . (4.31)

From the representations (4.27) and (4.30) it follows directly that the cyclic identities
(4.9) and (4.15) are consequences of the Riemannian cyclic identity (4.24), for DlF =
Dllk = Dlt

h
k = Dlp = Dlt

m = 0.
Now we square the ρ-tensor:

ρknijρknij = (1−H)2
2

F 2
MnijMnij − 2(1−H)

1

F
(lkMnij − lnMkij)p2ahlijt

h
kt

l
n + aknijaknij

= (1−H)2
2

F 2
MnijMnij − 2(1−H)H

1

F 2
p2(ahlijt

htlnM
nij − ahlijt

h
kt

lMkij) + aknijaknij,

or

ρknijρknij = (1−H)2
2p2

F 2
tlal

nijthahnij+2(1−H)
Hp2

F 2
(ahlijt

htrar
lij−ahlijt

ltrar
hij)+aknijaknij,

which is

ρknijρknij = aknijaknij +
2

S2

(
1

H2
− 1

)
tlal

nijthahnij . (4.32)

Because of the transitivity (4.20), from (4.25) it follows that

DlM
n
ij = −ynt t

h∇lah
t
ij . (4.33)

From (4.28) we can conclude that

Dlρk
n
ij = (1−H)

1

F
(lkδ

n
m − lngmk)y

m
t t

h∇lah
t
ij + ynmt

h
k∇lah

m
ij . (4.34)

It is also convenient to use the representation

ρknij = Tkn
hmahmij , (4.35)

where

Tkn
hm = p2

[
1

2
(thkt

m
n − tmk t

h
n) + (1−H)

1

F 2
(ykt

htmn − ynt
htmk )

]
. (4.36)

Since

DlTkn
hm = 0, (4.37)

we have the relation
Dlρknij = Tkn

hm∇lahmij . (4.38)
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5. FS-space example of the space FN

Let us also assume that the manifold M admits a non–vanishing 1-form b = b(x, y)
and denote by

c = ||b||Riemannian (5.1)

the respective Riemannian norm value, assuming

0 < c < 1. (5.2)

With respect to natural local coordinates xi we have the local representations

aij(x)bi(x)bj(x) = c2(x), b = bi(x)y
i. (5.3)

The reciprocity ainanj = δij is assumed, where δij stands for the Kronecker symbol. The
covariant index of the vector bi will be raised by means of the Riemannian rule bi = aijbj ,
which inverse reads bi = aijb

j .

We shall use also the normalized vectors

b̃i =
1

c
bi, b̃i =

1

c
bi = aij b̃j , amnb̃mb̃n = 1. (5.4)

We get
aijy

iyj − b2 > 0 (5.5)

and may conveniently use the variable

q :=
√

aijyiyj − b2. (5.6)

Obviously, the inequality

q2 ≥ 1− c2

c2
b2 (5.7)

is valid.
We also introduce the tensor

rij(x) := aij(x)− bi(x)bj(x) (5.8)

to have the representation
q =

√
rijyiyj. (5.9)

The equalities
rijb

j = (1− c2)bi, rinr
nj = rji − (1− c2)bjbi (5.10)

hold.
In evaluations it is convenient to use the variables

ui := aijy
j, vi := yi − bbi, vm := um − bbm = rmny

n ≡ amnv
n. (5.11)

We have

rij =
∂vi
∂yj

,
∂b

∂yi
= bi,

∂q

∂yi
=

vi
q
, vib

i = vibi = (1− c2)b, (5.12)

and
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uiv
i = viy

i = q2, rinv
n = vi − (1− c2)bbi, vkv

k = q2 − (1− c2)b2. (5.13)

With the variable
w =

q

b
, b > 0, (5.14)

we obtain
∂w

∂yi
=

qei
b2

, ei = −bi +
b

q2
vi, (5.15)

and yiei = 0.
The Finsler metric function F of the FS-space is given by (1.25). When b > 0, we can

conveniently use the generating metric function V = V (x, w) to have the representation

F = bV (x, w). (5.16)

The unit vector lm = ∂F/∂ym is given by

lm = bmV + wemV
′, V ′ =

∂V

∂w
. (5.17)

It proves convenient to use the quantities

τ =
wV

V ′
, (5.18)

q̃ =

√

q2 +

(
1− 1

c2

)
b2, (5.19)

and

w̃ =
q̃

b
, b > 0. (5.20)

There are the useful equalities

τ = τ̃ =
w̃V

Ṽ ′
, Ṽ = V, Ṽ ′ =

∂Ṽ

∂w̃
, bmlm = c2V

(
1− w̃2

τ

)
.

We say that the FS-space is special, if ∂Ṽ /∂xn = 0, that is when

Ṽ = Ṽ (w̃). (5.21)

Take two differentiable scalar functions

C = C(x), C1 = C1(x), C > 0, C > |C1|, (5.22)

and construct the scalars

H =
√

C2 − (C1)2 (5.23)

and

k̆ =

√
C − C1

C + C1
. (5.24)

Let a positive function µ = µ(x, y) be specified according to
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√
µ =

H

2k̆

[
1 + k̆2 + (1− k̆2) cos ̺

]
, (5.25)

where ̺ = ̺(x, y) is an input scalar. We can write

√
µ = C + C1 cos ̺. (5.26)

Consider the transformation tm = tm(x, y) with

tm =

[
im sin ̺+

1

2k̆
[1− k̆2 + (1 + k̆2) cos ̺]̃bm

]
H√
µ
FH , (5.27)

where

im =

(
ym − 1

c2
bbm
)

1

q̃
. (5.28)

We have
bmi

m = 0, amni
min = 1, amny

min = q̃, (5.29)

and

b∗ =
1

2k̆

[
1− k̆2 + (1 + k̆2) cos ̺

] H√
µ
S, (5.30)

where

S =
√
amntmtn, b∗ = tmb̆m, b̆m = b̃m, b̆m = b̃m. (5.31)

We get also the equality

b∗ = (C1 + C cos ̺)
1√
µ
S. (5.32)

The functions (5.27) obviously fulfill the H-degree homogeneity condition (2.7). The
validity of the equality S = FH (see (2.10)) can readily be verified.

The property
tm(x, b(x)) ∼ bm(x) (5.33)

holds.
The following useful equalities can readily be obtained:

cos ̺ = −(1− k̆2)S − (1 + k̆2)b∗

(1 + k̆2)S − (1− k̆2)b∗
,

√
µ =

2Hk̆S

(1 + k̆2)S − (1− k̆2)b∗
, (5.34)

cos ̺ = −
√
µ

2Hk̆S
[(1− k̆2)S − (1 + k̆2)b∗],

and

sin2 ̺ = 4k̆2 S2 − (b∗)2
[
(1 + k̆2)S − (1− k̆2)b∗

]2 ,
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together with
sin2 ̺

µ
=

1

H2

S2 − (b∗)2

S2
. (5.35)

Differentiating (5.28) yields

∂im

∂yk
=

(
δmk − 1

c2
bkb

m

)
1

bw̃
− 1

b
bki

m − 1

b

w2

w̃2
imek, (5.36)

which entails

yk
∂im

∂yk
= 0, bk

∂im

∂yk
= 0, inanm

∂im

∂yk
= 0, bm

∂im

∂yk
= 0, ynanm

∂im

∂yk
= 0.

(5.37)

We can use the relations

bk =
b

F
lk − w2 1

τ
ek, w̃ik = w2ek + w̃2bk = w2ek + w̃2

(
b

F
lk − w2 1

τ
ek

)
,

so that

ik −
1

F
bw̃lk =

w2

w̃

(
1− w̃2

τ

)
ek,

where ik = akni
n.

We have also

amh
∂im

∂yk
=

(
ahk −

1

c2
bkbh

)
1

bw̃
− 1

b
bkih −

1

b

w2

w̃2
ihek,

which entails

amh
∂im

∂yk
=

(
ahk −

1

c2
bkbh − ikih

)
1

bw̃
. (5.38)

With these observations, from (5.27) we find that the derivative coefficients tmk =
∂tm/∂yk can be given by

1

H
tmk =

[
cos ̺im − 1

2k̆
(1 + k̆2) sin ̺b̆m

]
̺′
w

b
ek
FH

√
µ
+sin ̺

∂im

∂yk
FH

√
µ
+

1

F
lkt

m− 1

H
√
µ

∂
√
µ

∂yk
tm.

Since

∂
√
µ

∂yk
= −H

2k̆
(1− k̆2) sin ̺ ̺′

w

b
ek,

we obtain the explicit representation

1

H

√
µtmk =

[
cos ̺im − 1

2k̆
(1 + k̆2) sin ̺b̆m

]
̺′
w

b
ekF

H

+ sin ̺
∂im

∂yk
FH +

[√
µ
1

F
lk +

1

2k̆
(1− k̆2) sin ̺ ̺′

w

b
ek

]
tm. (5.39)

The identity tmk y
k = Htm can readily be verified.
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We can straightforwardly evaluate the contraction amnt
m
k t

n
h, which leads to the ex-

pression which is a linear combination of gkh, ekeh, lklh, and eklh + ehlk. To obtain the
conformal result, the terms lklh are to be canceled, which proves possible if and only if
the function µ is taken to be

µ =
1

w̃2
τ sin2 ̺, (5.40)

which entails

w̃2

τ
=

1

H2

S2 − (b∗)2

S2
(5.41)

(see (5.35)). With the choice of µ according to (5.40), using the representation (5.39)
leads straightforwardly to the equality

1

H2
amnt

m
k t

n
h =

1

τ

w̃2

sin2 ̺

(
∂̺

∂w

)2
w2

b2
ekehF

2H

+
1

τ
F 2H

(
−τ − w(τ ′ − w)

τ
+ 1− w2

w̃2

)
w2ekeh

1

b2
+ F 2(H−1)gkh (5.42)

(see Appendix E).

Subjecting the ̺ to the equation

∂̺

∂w̃
=

1

w̃

√
τ̃ − w̃(τ̃ ′ − w̃)

τ̃
sin ̺, (5.43)

where τ̃ ′ = ∂τ/∂w̃, is necessary and sufficient to reduce the right-hand part in (5.42) to
the conformal representation, namely we obtain simply

1

H2
amnt

m
k t

n
h = F 2(H−1)gkh. (5.44)

Comparing the last representation with the formulas (2.1), (2.4), and (2.9) makes us
conclude that the following assertion is valid.

Proposition 5.1. With choosing the function µ to be given by (5.40) and subjecting

the function ̺ to the equation (5.43), the transformation tm = tm(x, y) introduced by (5.27)
fulfills the conformal automorphism (2.1)-(2.2).

From (5.28) it follows that

1

b
ym =

√
τ

HS
(tm − b∗b̆m) +

1

c2
bm,

so that we can write (5.27) to read

tm − b∗b̆m =
HFH

√
τ

[
1

b
ym − 1

c2
bm
]
.

On the other hand, using the equality S = FH in (5.41) yields
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S2 − (b∗)2 =
H2F 2H

τ
w̃2. (5.45)

Thus, it is valid that

1

w̃

(
1

b
ym − 1

c2
bm
)

=
1√

S2 − (b∗)2

(
tm − b∗b̆m

)
. (5.46)

Let us evaluate the explicit form of the respective coefficients Nm
n proposed by

(2.36). Accordingly, we assume diF = 0 and H = const. Since S = FH , we have diS = 0.
From (2.38)–(2.39) it follows that dit

n = −aniht
h.

Also, dib
∗ = di(t

mb̃m) = −amiht
hb̃m + tm(∇ib̃m + arimb̃r) = tm∇ib̃m, so that

1√
S2 − (b∗)2

dib
∗ =

[
1

w̃

(
1

b
ym − 1

c2
bm
)
+

1√
S2 − (b∗)2

b∗b̆m

]
∇ib̃m.

Henceforth, we assume c = const. In this case bm∇ibm = 0, and therefore

1√
S2 − (b∗)2

dib
∗ =

1

w̃

1

b
ym∇ib̃m.

Under these conditions, applying the operator di to (5.46) yields

− 1

w̃2
diw̃

(
1

b
ym − 1

c2
bm
)
+

1

w̃

(
1

b
diy

m − 1

b2
ymdib−

1

c2
(∇ib

m − amihb
h)

)

= b∗dib
∗ 1

(S2 − (b∗)2)
√
S2 − (b∗)2

(
tm − b∗b̆m

)

+
1√

S2 − (b∗)2

(
dit

m − (dib
∗)b̆m − b∗(∇ib̆

m − amihb̃
h)
)
,

or

−
[
1

w̃
diw̃ +

1

S2 − (b∗)2
b∗dib

∗

](
1

b
ym − 1

c2
bm
)
+

1

b
diy

m − 1

b2
ymdib−

1

c2
(∇ib

m − amihb
h)

=
w̃√

S2 − (b∗)2

(
−amih

(
b∗b̆h +

HFH

√
τ

(
1

b
yh − 1

c2
bh
))

− b∗(∇ib̆
m − amihb̃

h)

)
−1

b
(yh∇ib̆h)b̆

m.

Using the new variable

W =
b∗

S
, (5.47)

we have

cos ̺ = −1− k̆2 − (1 + k̆2)W

1 + k̆2 − (1− k̆2)W
(5.48)
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and

sin2 ̺ = 4k̆2 1−W 2

[
1 + k̆2 − (1− k̆2)W

]2 , (5.49)

which entails

∂cos ̺

∂W
= 4k̆2 1

[
1 + k̆2 − (1− k̆2)W

]2 . (5.50)

In the equality
1

w̃

∂w̃

∂W
=

1

sin ̺

∂̺

∂W
P

we use (5.49) and (5.50), obtaining

1

w̃

∂w̃

∂W
= − 1

1−W 2
P,

where the notation

P =

√
τ̃

τ̃ − w̃(τ̃ ′ − w̃)

has been used.
Therefore, in the special case (see (5.21)) of the FS-space, we have

diw̃ =
∂w̃

∂W
diW = − w̃

1−W 2
PdiW = − w̃

1 −W 2
P
1

S
dib

∗

and can write

1

S
(dib

∗)
1

1−W 2
(P −W )

(
1

b
ym − 1

c2
bm
)
+

1

b
diy

m − 1

b2
ymdib−

1

c2
∇ib

m

=
w̃√

S2 − (b∗)2

(
−amih

HFH

√
τ

1

b
yh − b∗∇ib̆

m

)
− 1

b
(yh∇ib̆h)b̆

m

and

diy
m = − 1

S
(dib

∗)
1

1−W 2
(P −W )

(
ym − 1

c2
bbm
)
+

1

b
ymdib+

1

c2
b∇ib

m

+
w̃√

S2 − (b∗)2

(
−amih

HFH

√
τ

yh − bb∗∇ib̆
m

)
− (yh∇ib̆h)b̆

m.

Taking into account the equality

dib = −bw̃

τ
diw̃

which is valid in the special case of the FS-space, we obtain

diy
m = − 1

S
(dib

∗)
1

1−W 2
(P −W )

(
ym − 1

c2
bbm
)
+

w̃2

τ

1

S
(dib

∗)
1

1−W 2
Pym
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+

√
τ

HFH

(
−amih

HFH

√
τ

yh − bb∗∇ib̆
m

)
− (yh∇ib̆h)b̆

m +
1

c2
b∇ib

m

= − 1

bw̃
yh∇ib̆h

1√
1−W 2

(P −W )

(
ym − 1

c2
bbm
)

+
w̃2

τ

1

bw̃
yh∇ib̆h

1√
1−W 2

Pym − b

√
τ

H
W∇ib̆

m − (yh∇ib̆h)b̆
m +

1

c2
b∇ib

m − amihy
h.

Here,

1−W 2 = H2 w̃
2

τ
.

Therefore,

diy
m = − 1

bw̃
yh∇ib̆h

1

H

√
τ

w̃
(P −W )

(
ym − 1

c2
bbm
)
+

w̃2

τ

1

bw̃
yh∇ib̆h

1

H

√
τ

w̃
Pym

− b

√
τ

H
W∇ib̆

m − (yh∇ib̆h)b̆
m +

1

c2
b∇ib

m − amihy
h. (5.51)

Noting the equality
Nm

i = diy
m (5.52)

leads to

Nm
i =

1

H

1

bw̃
(yh∇ib̃h)Fαm − 1

H

√
τ −H2w̃2 bβ̃m

i − (yh∇ib̃h)̃b
m + b̃∇ib̃

m − amihy
h, (5.53)

where

Fαm =
w̃√

τ̃ − w̃(τ̃ ′ − w̃)

[
ym − τ

w̃2

(
ym − b̃̃bm

)]
(5.54)

and

β̃m
i = ∇ib̃

m − 1

b2w̃2
(yh∇ib̃h)

(
ym − b̃̃bm

)
, (5.55)

which can also be written in the form

Nm
i =

1

H

1

q̃
(yh∇ib̃h)Fαm − 1

H

√
B −H2q̃2 β̃m

i − (yh∇ib̃h)̃b
m + b̃∇ib̃

m − amihy
h, (5.56)

with

Fαm =
w̃√

τ̃ − w̃(τ̃ ′ − w̃)

[
ym − B

q̃2

(
ym − b̃̃bm

)]
, (5.57)
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β̃m
i = ∇ib̃

m − 1

q̃2
(yh∇ib̃h)

(
ym − b̃̃bm

)
, (5.58)

and
B = b2τ. (5.59)

Thus we have

Proposition 5.2. If in the special case of the FS-space with c = const the trans-

formation (5.27) results in the conformally automorphic space, then the coefficients (2.36)
can explicitly be given by means of the representation (5.56)-(5.59).

It is easy to verify that

αmlm = 0, β̃m
i bm = 0, β̃m

i lm = 0, β̃m
i αm = 0. (5.60)

By contracting (5.56) we find

lmN
m

i = −(yh∇ibh)

(
1− 1 + w2

τ

)
V − lma

m
ihy

h. (5.61)

From this result it follows that

∂F

∂xk
+ lmN

m
k = 0. (5.62)

Indeed, denoting
sk := ym∇kbm, (5.63)

we get
∂q

∂xk
= − b

q
(sk + ymbha

h
mk) +

1

q
ymyn

∂amn

∂xk
(5.64)

and
∂w

∂xk
= −1

q
(sk + ymbha

h
mk)−

q

b2
(sk + ymbha

h
mk) +

1

bq
ymyn

∂amn

∂xk
,

or
∂w

∂xk
= − 1

b2q
S2(sk + ymbha

h
mk) +

1

bq
ymyn

∂amn

∂xk
. (5.65)

The equality

w̃
∂w̃

∂xk
= w

∂w

∂xk
(5.66)

can appropriately be used.

In the special case F = bṼ (w̃) (see (5.21)) of the FS-space we have

∂F

∂xk
=

(
Ṽ − 1

bq
S2w

w̃
Ṽ ′

)
sk +

(
Ṽ − 1

bq
S2w

w̃
Ṽ ′

)
ymbha

h
mk +

1

q

w

w̃
Ṽ ′ymyn

∂amn

∂xk
,

or

∂F

∂xk
=

(
Ṽ − S2

b2
1

w̃
Ṽ ′

)
sk +

(
Ṽ − S2

b2
1

w̃
Ṽ ′

)
ymbha

h
mk +

1

bw̃
Ṽ ′ymyn

∂amn

∂xk
. (5.67)
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In terms of the function τ̃ , we can write

∂F

∂xk
= Ṽ

(
1− 1 + w2

τ̃

)
sk + Ṽ

(
1− 1 + w2

τ̃

)
ymbha

h
mk +

Ṽ

bτ̃
ymyn

∂amn

∂xk
. (5.68)

With this equality the validity of the vanishing (5.62) can readily be verified.
The following proposition is valid.

Proposition 5.3. The transformation (5.27) entails the conformal automorphism

(2.1) iff
τ = C̆2 + 2C̆

√
1−H2 w̃ + w̃2. (5.69)

It follows that
τ̃ − w̃(τ̃ ′ − w̃) = C̆2.

In these formulas, C̆ is an integration scalar C̆ = C̆(x). It can readily be seen
that when |C̆| 6= 1, the entailed Finsler metric function F can vanish at various values
of tangent vectors y. To agree with the condition that F vanishes only at zero-vectors
y = 0, we admit strictly the values C̆ = 1 and C̆ = −1. In this case we can write the
above τ as follows:

τ = 1 + gw̃ + w̃2, −2 < g < 2. (5.70)

Generally, the g may depend on x. We obtain

B −H2q̃2 =

(
b+

1

2
gq̃

)2

. (5.71)

In this case the coefficients (5.56) take on the form

Nm
i =

1

h

1

q̃
Fmms̃i −

1

h

(
b+

1

2
gq̃

)
β̃m
i − b̃ms̃i + b̃∇ib̃

m − amihy
h, (5.72)

with

mm =
1

q̃F

[
q̃2b̃m − (b+ gq̃)

(
ym − b̃̃bm

)]
≡ 1

q̃F

[
B2b̃m − (b+ gq̃) ym

]
, (5.73)

β̃m
i = ∇ib̃

m − 1

q̃2

(
ym − b̃̃bm

)
s̃i, (5.74)

mm = αm, and
s̃i = yh∇ib̃h. (5.75)

Note. We used the input representation F = bV (x, w) (see (5.16)) at b > 0. All the
performed calculations can be repeated word-for-word in the negative case b < 0. The
above representation (5.72)-(5.75) obtained for the coefficients Nm

i embraces both the
cases b > 0 and b < 0.

The last three terms in (5.72) are linear with respect to the tangent vectors y.
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The function τ given by (5.70) represents the FFPD
g -Finsleroid space described in

the paper [7]. To comply with the representations used in [7], we should replace the
notation H by the notation h:

h =

√
1− g2

4
. (5.76)

The g plays the role of the characteristic parameter. The FFPD
g -Finsleroid metric function

K is given as it follows:

K =
√
B J, with J = e−

1

2
gχ, (5.77)

where

χ =
1

h

(
− arctan

G

2
+arctan

L

hb

)
, if b ≥ 0; χ =

1

h

(
π− arctan

G

2
+arctan

L

hb

)
, if b ≤ 0,

(5.78)
with the function L = q̃ + (g/2)b fulfilling the identity

L2 + h2b2 = B. (5.79)

B is the function given by (5.71):

B = b2 + gbq̃ + q̃2; (5.80)

G = g/h. The definition range

0 ≤ χ ≤ 1

h
π

is of value to describe all the tangent space. The normalization in (5.78) is such that

χ
∣∣
y=b

= 0. (5.81)

The quantity χ can conveniently be written as

χ =
1

h
f (5.82)

with the function

f = arccos
A(x, y)√
B(x, y)

, A = b+
1

2
gq̃, (5.83)

ranging as follows:
0 ≤ f ≤ π. (5.84)

The function K is the solution for the equation (5.70).
The Finsleroid-axis vector bi relates to the value f = 0, and the opposed vector −bi

relates to the value f = π:

f = 0 ∼ y = b; f = π ∼ y = −b. (5.85)

The normalization is such that
K(x, b(x)) = 1 (5.86)

(notice that q̃ = 0 at yi = bi). The positive (not absolute) homogeneity holds: K(x, γy) =
γK(x, y) for any γ > 0 and all admissible (x, y).
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The entailed components yi := (1/2)∂K2/∂yi of the covariant tangent vector ŷ =
{yi} can be found in the simple form

yi = (ui + gq̃bi)J
2, (5.87)

where ui = aijy
j.

Under these conditions, we obtain the FFPD
g -Finsleroid space

FFPD
g := {M ; aij(x); bi(x); g(x); K(x, y)}. (5.88)

Definition. Within any tangent space TxM , the metric function K(x, y) produces
the FFPD

g -Finsleroid

FFPD
g; {x} := {y ∈ FFPD

g; {x} : y ∈ TxM,K(x, y) ≤ 1}. (5.89)

Definition. The FFPD
g -Indicatrix IFPD

g; {x} ⊂ TxM is the boundary of the FFPD
g -

Finsleroid, that is,

IFPD
g {x} := {y ∈ IFPD

g {x} : y ∈ TxM,K(x, y) = 1}. (5.90)

Definition. The scalar g(x) is called the Finsleroid charge. The 1-form b = bi(x)y
i

is called the Finsleroid–axis 1-form.

It can readily be seen that

det(gij) =

(
K2

B

)N

det(aij) > 0, AiAi =
N2g2

4
,

where Ai = KCi.

Note. The representation (5.72)-(5.75) obtained for the coefficients Nm
i coincides

exactly with the representation (6.53) of [7]. Considering the vector Ci = gmnCimn, the
equality

mm =
Cm

√
gkhCkCh

(5.91)

holds exactly with the vector mm given by the representation (5.73) (which is equivalent
to the representation (A.46) proposed in [7]).

Let us verify Proposition 5.3. With the variable W = b∗/S (see (5.47)) we can write
the equation (5.43) as follows:

1

sin ̺

∂̺

∂W

∂W

∂w̃
w̃ =

√
τ̃ − w̃(τ̃ ′ − w̃)

τ̃
. (5.92)

Let us introduce the function j by means of the equality

τ = jw̃2. (5.93)

We obtain [τ̃ − w̃(τ̃ ′ − w̃)]/τ̃ = [1− j − w̃j̃′]/j and
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(
1

sin2 ̺

∂cos ̺

∂W

)2(
∂W

∂w̃
w̃

)2

=
1

j
− 1− 1

j

∂j

∂W

∂W

∂w̃
w̃. (5.94)

Using (5.49) and (5.50) together with

j = H2 1

1−W 2
(5.95)

(see (5.41)), we can write the equation (5.94) in the form

(
1

1−W 2

∂W

∂w̃
w̃

)2

+ 2W

(
1

1−W 2

∂W

∂w̃
w̃

)
=

1

H2
(1−W 2)− 1,

which can conveniently be written as follows:

(
1

1−W 2

∂W

∂w̃
w̃ +W

)2

=

(
1

H2
− 1

)
(1−W 2).

It proves convenient to go over to the variable W 2:

(
1

1−W 2

∂W 2

∂w̃
w̃ + 2W 2

)2

= 4

(
1

H2
− 1

)
(1−W 2)W 2.

Since

W 2 = 1− H2w̃2

τ

(see (5.45)), we get


− τ

w̃2

∂
w̃2

τ
∂w̃

w̃ + 2

(
1− H2w̃2

τ

)



2

= 4(1−H2)
w̃2

τ

(
1− H2w̃2

τ

)
,

or
(
w̃τ̃ ′ − 2τ + 2(τ −H2w̃2)

)2
= 4(1−H2)w̃2(τ −H2w̃2).

Simplifying leaves us with the equation

(τ̃ ′ − 2H2w̃)2 = 4(1−H2)(τ −H2w̃2),

which can readily be solved to yield (5.69). Proposition 5.3 is valid.

The coefficients (5.72) show the properties

ukN
k
n = −1

h
gqyj∇nbj − uka

k
njy

j, bkN
k
n =

1

h
(1− h)yj∇nbj − bka

k
njy

j

(where uk = akny
n), and

dnb ≡
∂b

∂xn
+ bkN

k
n =

1

h
yj∇nbj , dnq ≡

∂q

∂xn
+

1

q
vkN

k
n = − 1

hq
(b+ gq)yj∇nbj ,
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together with

dn

(q
b

)
= − 1

b2qh
Byj∇nbj , dnB = − g

qh
Byj∇nbj , dn

B

b2
= −2q + gb

b3qh
Byj∇nbj .

With these formulas it is possible to verify directly the validity of the vanishing

DnK :=
∂K

∂xn
+Nm

nlm = 0, (5.96)

Dnyj :=
∂yj
∂xn

+Nm
ngmj −Dm

njym = 0, (5.97)

and

Dngij :=
∂gij
∂xn

+ 2Nm
nCmji −Dm

njgmi −Dm
nigmj = 0, (5.98)

where Dm
nj = −∂Nm

n/∂y
j.

The identity

lhN
h
i = −K

gq̃

B
(yh∇ib̃h)− lta

t
ihy

h (5.99)

coming from (5.72) is useful to take into account when considering the vanishing (5.96).

The vanishing (5.97) can be obtained directly by differentiating (5.96) with respect to yj.
Using (5.96) and (5.99), we can modify the representation (5.72) by evaluating the

sum

Nm
i + lm

∂K

∂xi
= Nm

i − lmNh
ilh =

gq̃

B
yms̃i + lmlta

t
ihy

h

+
1

h

1

q̃
Kmms̃i −

1

h

(
b+

1

2
gq̃

)
β̃m
i − b̃ms̃i + b̃∇ib̃

m − amihy
h.

We insert here (5.74), getting

Nm
i = −lm

∂K

∂xi
+

gq̃

B
yms̃i +

1

h

1

q̃
Kmms̃i

+

[
b̃− 1

h

(
b+

1

2
gq̃

)]
∇ib̃

m +
1

h

(
b+

1

2
gq̃

)
1

q̃2
s̃i

(
ym − b̃̃bm

)
− b̃ms̃i − hm

t a
t
ijy

j.

Let us introduce the tensor

η̃kn = akn − b̃k b̃n − 1

q̃2
ṽkṽn, ṽk = yk − b̃̃bk. (5.100)

We come to

Nm
i = −lm

∂K

∂xi
+

gq̃

B
yms̃i +

1

h

1

q̃
Kmms̃i

+

[
b̃− 1

h

(
b+

1

2
gq̃

)]
η̃mj∇ib̃j +

[
b̃− 1

h

(
b+

1

2
gq̃

)]
1

q̃2
ṽms̃i
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+
1

h

(
b+

1

2
gq̃

)
1

q̃2
s̃iṽ

m − b̃ms̃i − hm
t a

t
ijy

j.

In this way, with the tensor

Hmj := gmj − lmlj −mmmj , (5.101)

we arrive at the representation

Nm
i = −lm

∂K

∂xi
+

[(
b̃− 1

h

(
b+

g

2
q̃
))

HmjK
2

B
+

(
1

hq̃
− b2 + q̃2

q̃B

)
Kmmyj

]
∇ib̃j−hm

t a
t
ijy

j,

(5.102)
where hm

t = δmt − lmlt and mm is the vector (5.73).
The equality Hmj = (B/K2)η̃mj holds.
In the dimension N = 2 we would have Hmj = 0.
Regarding regularity of the global y-dependence, it should be noted that the FFPD

g -
Finsleroid metric function K given by the formulas (5.76)-(5.80) involves the scalar q̃ =√

r̃mnymyn with r̃mn = amn − b̃mb̃n. Since the 1-form b̃ is of the unit norm ||̃b|| = 1, the
scalar q̃ is zero when y = b or y = −b, that is, in the directions of the north pole or the
south pole of the Finsleroid. The derivatives of K may involve the fraction 1/q̃ which
gives rise to the pole singularities when q̃ = 0. This just happens in the right-hand part
of the representation (5.102) for the coefficients Nm

i.
Therefore, we may apply the coefficients on but the b-slit tangent bundle TbM :=

TM \ 0 \ b \ −b (obtained by deleting out in TM \ 0 all the directions which point along,
or oppose, the directions given rise to by the 1-form b), on which the coefficients Nm

i, as
well as the function K, are smooth of the class C∞ regarding the y-dependence.

On the punctured tangent bundle TM \ 0, the metric function K is smooth globally
of the class C2 and not of the class C3 regarding the y-dependence.

In the case (5.70) the equation (5.43) can readily be solved, yielding

ρ = f, (5.103)

where f is the function which was indicated in (5.83). We obtain

sin ̺ =
hq̃√
B
, cos ̺ =

b+
1

2
gq̃

√
B

. (5.104)

The representation (5.40) entails
µ = h2, (5.105)

so that from (5.26) we may conclude that C1 = 0. The transformation (5.27) reduces to

tm =

[
h(ym − b̃̃bm) +

(
b+

1

2
gq̃

)
b̃m
]
Kh

√
B
. (5.106)

Thus we have

Proposition 5.4. In the FFPD
g -Finsleroid space the transformation (5.106) per-

forms the conformally automorphic transformation. When h = const and c = const, the
coefficients (2.36) can explicitly be given by means of the representation (5.101)-(5.102).



33

In the remainder of the present section, we take c = 1, that is, ||b||Riemannian = 1.
Using (5.73), we can transform (5.106) to the expansion

tm = (T1l
m + T2m

m)
K2

B

Kh−1

√
B

(5.107)

with respect to the frame {lm, mm}, where

T1 = −(1− h)q2 +B +
1

2
gq(b+ gq), T2 =

(
(1− h)b+

1

2
gq

)
q. (5.108)

The tm of (5.106) is equivalent to the ζm of (6.26) of [7]: tm ≡ ζm. The coefficients
(5.102) are equivalent to (6.62) of [7]. Therefore, with the substitution ζm = tm all
the relations among curvature tensors which were established in [7] are applicable to the
approach developed in the present section, including the following:

B

K2
Mnij =

(
(1− h)b+

1

2
gq
)1
h
blan

l
ij −

(
g

2q
vn + (1− h)bn

)
1

h
ytblat

l
ij − atnijy

t

and

B

K2
MnijMnij =

(
1

h

(
(1−h)b+

g

2
q
)
bha

nhij−ah
nijyh

)(
1

h

(
(1−h)b+

g

2
q
)
blan

l
ij−atnijy

t

)
.

If we take λ from (2.32) and the coefficients Nk
i from (5.102), and use the functions

tm = tm(x, y) specified by (5.106), we obtain the vanishing diλ(x, y1, y2) = 0, when h =
const. To verify the statement, it is worth deriving the equality

∂λ

∂yk1
= h2

B1v2k + q21bkA2 − b1A2v1k − v12

(
h2v1k +

(
bk +

1

2
g
1

q1
v1k

)
A1

)

B1

√
B1

√
B2

, (5.109)

together with the counterpart

∂λ

∂yk2
= h2

B2v1k + q22bkA1 − b2A1v2k − v12

(
h2v2k +

(
bk +

1

2
g
1

q2
v2k

)
A2

)

B2

√
B2

√
B1

, (5.110)

where A1 = A(x, y1), A2 = A(x, y2), B1 = B(x, y1), B2 = B(x, y2), q1 = q(x, y1), q2 =
q(x, y2), b1 = b(x, y1), b2 = b(x, y2), together with v1i = rin(x)y

n
1 and v2i = rin(x)y

n
2 .

Plugging these derivatives in diλ(x, y1, y2) results in the claimed vanishing diλ(x, y1, y2) =
0 after attentive couplepage reductions.

It will be noted that

bk
∂λ

∂yk1
= h2 q

2
1A2 − v12A1

B1

√
B1

√
B2

, bk
∂λ

∂yk2
= h2 q

2
2A1 − v12A2

B2

√
B1

√
B2

.

We have also

∂λ

∂g
= −1

2

(
b1q1
B1

+
b2q2
B2

)
λ+

q1A2 + q2A1 − gv12

2
√
B1

√
B2

,
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or
∂λ

∂g
=

1

2
√
B1

√
B2

[
q21A2

B1
σ1 +

q22A1

B2
σ2 − v12

(
A1

B1
σ1 +

A2

B2
σ2

)]
,

where

σ1 =
g

2
A1 + h2q1 ≡ q1 +

g

2
b1, σ2 =

g

2
A2 + h2q2 ≡ q2 +

g

2
b2. (5.111)

There arises the equality

∂λ

∂g
=

1

2h2

[
σ1b

k ∂λ

∂yk1
+ σ2b

k ∂λ

∂yk2

]
≡ 1

h2

[
z1C

k
1

∂λ

∂yk1
+ z2C

k
2

∂λ

∂yk2

]
, (5.112)

where

z1 =
q1K

2
1

NgB1
σ1, z2 =

q2K
2
2

NgB2
σ2.

6. Conclusions

In the two-dimensional approach, N = 2, the general representation for the coef-
ficients Nm

i = Nm
i(x, y) entailing the property of preservation of two-vector angle can

be indicated locally for arbitrary sufficiently smooth Finsler metric function [8,9]. Such
a general possibility can doubtfully be meet in the dimensions N ≥ 3, for in these di-
mensions the two-vector is of complicated nature except for rare particular cases. Such
lucky cases are just proposed by the Finsler spaces which are conformally automorphic
to the Riemannian spaces. The respective two-vector angle is explicit, namely is given by
the simple formulas (1.7) and (2.31)-(2.32). Such Finsler spaces can be characterized by
the constancy of the indicatrix curvature. In each tangent space, the indicatrix curvature
value CInd. = H2 is obtained and the relevant conformal multiplier is given by p2 with
p = (1/H)F 1−H. This p is constructed from the Finsler metric function F . The H is
the degree of conformal automorphism. In the case H = 1 the Finsler space under
consideration reduces to the Riemannian space proper.

In indicatrix-homogeneous case, the required connection coefficients are presented
by the pair {N j

i, D
j
ik}, where Dj

ik = −∂N j
i/∂y

k. The equality N j
i = −Dj

iky
k holds.

In the Riemannian geometry the two-vector angle is αRiem
{x} (y1, y2) = amn(x)y

m
1 y

n
2 /S1S2,

where S1 =
√

amn(x)ym1 y
n
1 and S2 =

√
amn(x)ym2 y

n
2 . Starting with the fundamental prop-

erty of the metrical linear Riemannian connection that the Riemannian angle is preserving
under the parallel displacements of the involved vectors, which in terms of our notation
can be written as

dRiem
i αRiem

{x} (y1, y2) = 0, y1, y2 ∈ TxM,

with

dRiem
i =

∂

∂xi
+ Lk

i(x, y1)
∂

∂yk1
+ Lk

i(x, y2)
∂

∂yk2
,

where Lk
i(x, y1) = −akij(x)y

j
1, L

k
i(x, y2) = −akij(x)y

j
2, and akij are the Riemannian

Christoffel symbols fulfilling the Riemannian Levi-Civita connection, the important ques-
tion can be set forth: Can we have the similar vanishing in the Finsler space? It proves
that the respective extension of the Riemannian equation dRiem

i αRiem = 0 to the equation
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diα = 0 applicable to the Finsler space under consideration can straightforwardly be
solved giving the required coefficients N j

i indicated in (2.36). They admit the remark-
able alternative representation Nn

i = dRiem
i yn (see (1.24)). In this way we obtain the

connection {N j
i, D

j
ik} which is metrical and simultaneously angle-preserving. The key

vanishing ykN
k
mnj = 0 holds fine.

Remarkably, the Finsler connection presented by this pair {N j
i, D

j
ik} is the image

of the metrical linear Riemannian connection under conformally-automorphic transforma-
tions. When going from the considered Finsler space to the underlined Riemannian space,
the covariant derivative behaves transitively and the non-linear deformation which mate-
rializes the conformal automorphism is parallel. In particular, the Riemannian vanishing
dRiem
m S = 0 just entails the Finslerian counterpart dmF = 0.

Also, the involved coefficients Nm
i fulfill the representation Nk

mnj = −DmC
k
nj (see

Proposition 3.2). Just the same representation is valid in the two-dimensional Finsler
spaces (see (2.14) in [8,9]). Is the equation

∂2Nk
m

∂yn∂yj
= −DmC

k
nj

meaningful in other (in any?) Finsler spaces to find the coefficients Nk
m required to

preserve the two-vector angle? The question is addressed to readers.
The curvature tensor ρk

n
ij has been explicated from commutators of arisen covariant

derivatives which is attractive to develop in future the theory of curvature for the Finsler
space FN .

For the FS-space specialized by (1.25) we have got at our disposal the simple exam-
ple of the parallel deformation transformation, namely proposing by (5.27), which entails
the coefficients Nm

i possessing the property of angle preservation. The coefficients are
given explicitly by the representation (5.72)–(5.75), which admits the alternative form
(5.101)-(5.102). The space proves to be of the Finsleroid type, with the Finsleroid charac-
teristic parameter g manifesting the meaning: h =

√
1− (g2/4) is the homogeneity degree

(denoted above by H) of the conformal automorphism. The Finsleroid metric function
K when considered on the b-slit tangent bundle TbM := TM \ 0 \ b \ −b is smooth of
the class C∞ regarding the global y-dependence. The same regularity property is valid
for the coefficients Nm

i given by (5.102).

Appendix A: Proof of Proposition 2.1

Let us verify the validity of Proposition 2.1, starting with the conformal tensor

uij = F 2agij, a = a(x),

and denoting uijk = ∂uij/∂y
k. We get uijk = 2(a/F )F 2alkgij + 2F 2aCijk, where Cijk =

(1/2)∂gij/∂y
k. Constructing the coefficients

Zijk :=
1

2
(ukji + uiki − uijk)

leads to
Zijk =

a

F
F 2a(ligkj + ljgik − lkgij) + F 2aCijk.
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Since the components uij reciprocal to uij are of the form uij = F−2agij, the coefficients
Zm

ij = umhZijh read merely

Zm
ij =

a

F
(liδ

m
j + ljδ

m
i − lmgij) + Cm

ij.

We obtain

∂Zm
ni

∂yj
= − a

F 2
lj(lnδ

m
i + liδ

m
n − lmgni) +

a

F 2
(hijδ

m
n + hnjδ

m
i − hm

j gin − 2lmFCinj) +
∂Cm

ni

∂yj

and
∂Zm

ni

∂yj
− ∂Zm

nj

∂yi
= − a

F 2
[ln(ljδ

m
i − liδ

m
j )− lm(ljgni − lignj)]

+
a

F 2
[(hnjδ

m
i − hniδ

m
j )− (hm

j gin − hm
i gjn)] +

∂Cm
ni

∂yj
− ∂Cm

nj

∂yi
,

so that

∂Zm
ni

∂yj
− ∂Zm

nj

∂yi
=

2a

F 2
(hnjh

m
i − hnih

m
j ) +

∂Cm
ni

∂yj
− ∂Cm

nj

∂yi
.

Also,

Zh
niZ

m
hj − Zh

njZ
m
hi =

a

F

[ a
F
[ln(liδ

m
j − ljδ

m
i ) + lm(ljgni − lignj)] + (liC

m
nj − ljC

m
ni)
]

−
( a

F

)2
(ginδ

m
j − gjnδ

m
i ) +

a

F
(ljC

m
in − liC

m
jn) + Ch

niC
m

hj − Ch
njC

m
hi,

or

Zh
niZ

m
hj − Zh

njZ
m

hi = −
( a

F

)2
(hinh

m
j − hjnh

m
i ) + Ch

niC
m

hj − Ch
njC

m
hi.

The curvature tensor

R̃n
m
ij :=

∂Zm
ni

∂yj
− ∂Zm

nj

∂yi
+ Zh

niZ
m

hj − Zh
njZ

m
hi

is found as follows: F 2R̃n
m

ij = a(a + 2)(hnjh
m
i − hnih

m
j ) + Sn

m
ij , where

Sn
m

ij =

(
∂Cm

ni

∂yj
− ∂Cm

nj

∂yi
+ Ch

niC
m

hj − Ch
njC

m
hi

)
F 2.

In term of the covariant components R̃nmij = umhR̃n
h
ij and Snmij = gmhSn

h
ij, we obtain

F 2R̃nmij = Snmij + a(a + 2)(hnjhmi − hnihmj).

Therefore, if R̃nmij = 0, then
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Snmij = C(hnjhmi − hnihmj), C = −a(a + 2). (A.1)

Since CInd. = 1 − C (see Section 5.8 in [1]), we get CInd. = H2, where H = a + 1. The
proposition is valid.

Appendix B: Proof of Proposition 2.2

Let us verify the validity of Proposition 2.2. From the equation

∂λ

∂xi
+Nk

1i
∂λ

∂yk1
+Nk

2i
∂λ

∂yk2
= 0

we want to find the tensors

nm
1i = tm1kN

k
1i, nm

2i = tm2kN
k
2i. (B.1)

Using (2.33) and (2.34), we obtain

amn,it
m
1 t

n
2

S1S2

− 1

2
λ

[
1

S1S1

amn,it
m
1 t

n
1 +

1

S2S2

amn,it
m
2 t

n
2

]

+

[
amnt

n
2

S1S2
− amnt

n
1

S1S1
λ

](
nm
1i +

∂tm1
∂xi

)
+

[
amnt

n
1

S2S1
− amnt

n
2

S2S2
λ

](
nm
2i +

∂tm2
∂xi

)
= 0,

which can be written in the concise form

1

S1

[
amnt

n
2

S2
− amnt

n
1

S1
λ

]
νm
1i +

1

S2

[
amnt

n
1

S1
− amnt

n
2

S2
λ

]
νm
2i = 0,

where

νm
1i = nm

1i +
∂tm1
∂xi

+ amikt
k
1, νm

2i = nm
2i +

∂tm2
∂xi

+ amikt
k
2,

and amik are the Riemannian Christoffel symbols (2.37).
In this way we come to the equation

(S1S2amnt
n
2 − S2S2amnt

n
1 ) ν

m
1i + (S1S2amnt

n
1 − S1S1amnt

n
2 ) ν

m
2i = 0. (B.2)

Use

diF =
∂F

∂xi
+ lkN

k
i =

∂F

∂xi
+

1

H
F 2(1−H)tmn

m
i,

so that

tmn
m

i = HF 2(H−1)

(
diF − ∂F

∂xi

)
.

From S2 = F 2H it follows that

tm

(
∂tm

∂xi
+ amikt

k

)
= H

1

F
F 2H ∂F

∂xi
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(H = const is implied). We obtain

tmν
m

i = HF 2(H−1)diF, νm
i = nm

i +
∂tm

∂xi
+ amikt

k, nm
i = tmk N

k
i, (B.3)

where the equality tht
h
n = HF 2(H−1)yn (see (2.16)) has been used. When diF = 0, we

have unambiguously tmν
m

i = 0 and the equation (B.2) reduces to

amnt
n
2ν

m
1i + amnt

n
1ν

m
2i = 0. (B.4)

Thus we may conclude that when H = const and diF = 0 is fulfilled, the started
equation diλ = 0 is equivalent to the equation (B.4).

The case νm
i = 0 reads

nm
i = −

(
∂tm

∂xi
+ amikt

k

)
, (B.5)

which is equivalent to (2.36). The examined proposition is valid.

Appendix C: Validity of Proposition 3.1

Let us consider the term

asht
h
niT

s
m + ts

(
∂tsni
∂xm

+ asmht
h
ni

)
=

∂tht
h
ni

∂xm
− tjthni

∂ajh
∂xm

+ asjt
j
nia

s
mht

h + tsa
s
mht

h
ni

=
∂tht

h
ni

∂xm
− tjthni

∂ajh
∂xm

+
1

2
tjni

(
∂ajh
∂xm

+
∂ajm
∂xh

− ∂amh

∂xj

)
th +

1

2
tj
(
∂ajh
∂xm

+
∂ajm
∂xh

− ∂amh

∂xj

)
thni

=
∂tht

h
ni

∂xm
.

We can take tht
h
ni from (2.18). By doing so and introducing the notation P = 1−H , we

transform the representation (3.3) to

ykN
k
mni + 2ClniN

l
m = gki(y

k
slt

l
nT

s
m + yksT

s
n,m) + gkn(y

k
slt

l
iT

s
m + yksT

s
i,m)

−2P

H
F−2H

[
(gni − 2Hlnli)ts + (ynaslt

l
i + yiaslt

l
n)
]
T s
m

−
(
2
P

H
F−2Hynts +

1

H
F 2(1−H)asht

h
n

)
T s
i,m −

(
2
P

H
F−2Hyits +

1

H
F 2(1−H)asht

h
i

)
T s
n,m

−PF 2(1−H) ∂F
2(H−1)(gni − 2lnli)

∂xm
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and take the tensor gki from (2.9), obtaining

ykN
k
mni + 2ClniN

l
m = gkiy

k
slt

l
nT

s
m + gkny

k
slt

l
iT

s
m

−2P

H
F−2H

[
(gni − 2Hlnli)ts + (ynaslt

l
i + yiaslt

l
n)
]
T s
m

−
(
2
P

H
F−2Hynts −

P

H2
F 2(1−H)asht

h
n

)
T s
i,m −

(
2
P

H
F−2Hyits −

P

H2
F 2(1−H)asht

h
i

)
T s
n,m

−PF 2(1−H)

∂

(
1

H2
asut

u
nt

s
i − 2F 2(H−1)lnli

)

∂xm
.

After that, we take into account the formula (3.31) which specifies the object T s
n,m.

This yields
ykN

k
mni + 2ClniN

l
m = gkiy

k
slt

l
nT

s
m + gkny

k
slt

l
iT

s
m

−2P

H
F−2H

[
(gni − 2Hlnli)ts + (ynaslt

l
i + yiaslt

l
n)
]
T s
m

−2
P

H
F−2Hts

[
yn

(
∂tsi
∂xm

+ asmht
h
i

)
+ yi

(
∂tsn
∂xm

+ asmht
h
n

)]
+

1

H2
F 2(1−H)asla

s
mh(t

l
nt

h
i +tlit

h
n)

− P

H2
F 2(1−H)tunt

s
i

∂asu
∂xm

+ 2
P

H2
F 2(1−H)∂F

−2Hthtst
h
nt

s
i

∂xm
.

Here, tht
h
n = HF 2(H−1)yn (see (2.16)).

Noting that

gkiy
k
slt

l
n = p2auvt

u
kt

v
i

∂yks
∂yn

= −p2auvt
v
i t

u
kny

k
s ,

taking Clni from (2.19), and using the vanishing Hyky
k
s − F 2(1−H)ts = 0 (see (2.15)), we

perform simplifications and remain with

ykN
k
mni = 4PF−2HlnlitsT

s
m− 2P

H
F−2H(ynaslt

l
i+ yiaslt

l
n)T

s
m−2

P

H
F−2Htsa

s
mh(ynt

h
i + yit

h
n)

+
1

H2
F 2(1−H)asla

s
mh(t

l
nt

h
i + tlit

h
n)−

P

H2
F 2(1−H)tunt

s
i

∂asu
∂xm

+ 2
P

H2
F 2(1−H)thnt

s
i

∂F−2Hthts
∂xm

.
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Finally, we apply (3.4)
∂F

∂xm
=

F

HS2
tsT

s
m,

take T s
m from (3.1), and notice the vanishing

−2P

H
F−2H(ynt

l
i + yit

l
n)

∂tl
∂xm

+ 2
P

H2
F 2(1−H)thnt

s
iF

−2H ∂thts
∂xm

= 0.

We arrive at

ykN
k
mni = −2P

H
F−2H(ynt

l
i + yit

l
n)

(
−ts

∂asl
∂xm

+ asla
s
mht

h

)
− 2P

H
F−2Htsa

s
ml(ynt

l
i + yit

l
n)

+
P

H2
F 2(1−H)asua

s
mh(t

u
nt

h
i + tui t

h
n)−

P

H2
F 2(1−H)tunt

h
i

∂ahu
∂xm

= 0.

We have verified the validity of Proposition 3.1.

Appendix D: Verifying Proposition 3.2

With the convenient notation

Xk
mn = ykslt

l
na

s
mht

h + yksa
s
mht

h
n − yksa

sutln
∂aul
∂xm

we can write (3.1) in the form

Nk
mn +Xk

mn = −ykslt
l
n

∂ts

∂xm
− yksa

su∂ault
l
n

∂xm
.

Differentiating this equality with respect to yj and using the notation Xk
mnj =

∂Xk
mn/∂y

j, we get

Nk
mnj +Xk

mnj = −(yksljt
l
n + ykslt

l
nj)

∂ts

∂xm
− ykslt

l
n

∂tsj
∂xm

− ykslt
l
ja

su∂ault
l
n

∂xm
− yksa

su
∂yhuZ

l
nj

∂xm
,

where Z l
nj = avlt

v
ht

l
nj and the identity yhut

v
h = δvu has been taken into account. Here, the

equality yksa
suyhu = p2gkh should be used.

This method results in

Nk
mnj +Xk

mnj = −(yksljt
l
n + ykslt

l
nj)

∂ts

∂xm
− ykslt

l
n

∂tsj
∂xm

− ykslt
l
ja

su∂ault
l
n

∂xm

−yksa
suavlt

v
ht

l
nj

∂yhu
∂xm

− p2gkh
∂Z l

nj

∂xm
.
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Since

Chnj = (1−H)
1

F
(ljghn + lnghj − lhgnj) + p2Z l

nj

(see (2.22)), we can write

Nk
mnj +Xk

mnj = −
(

∂

∂yj
∂ykl
∂yn

)
tluy

u
s

∂ts

∂xm
− ykslt

l
n

∂tsj
∂xm

− ykslt
l
ja

su∂ault
l
n

∂xm

−yksa
suavlt

v
ht

l
nj

∂yhu
∂xm

+ gkhavlt
v
ht

l
nj

∂p2

∂xm
− gkh

∂Chnj

∂xm

−(1−H)gkh
1

F 2
(ljghn + lnghj − lhgnj)

∂F

∂xm

+(1−H)gkh
1

F

[(
∂lj
∂xm

ghn +
∂ln
∂xm

ghj −
∂lh
∂xm

gnj

)
+

(
lj
∂ghn
∂xm

+ ln
∂ghj
∂xm

− lh
∂gnj
∂xm

)]
.

Considering the relation

(
∂

∂yj
∂ykl
∂yn

)
tlu =

∂

∂yj

(
tlu
∂ykl
∂yn

)
− ∂ykl

∂yn
tluj = − ∂

∂yj
(
ykl t

l
un

)
− ∂ykl

∂yn
tluj

and noting that ykl = gkhp2alvt
v
h, we obtain the useful equality

(
∂

∂yj
∂ykl
∂yn

)
tlu = − ∂

∂yj
(
gkhp2alvt

v
ht

l
un

)
− ∂ykl

∂yn
tluj.

Along this way we come to

Nk
mnj +Xk

mnj + gkh
∂Chnj

∂yu
yus a

s
mht

h

=

(
∂

∂yj
(
gkhp2alvt

v
ht

l
un

)
+

∂ykl
∂yn

tluj

)
yus

∂ts

∂xm
− ykslt

l
n

∂tsj
∂xm

− ykslt
l
ja

su∂ault
l
n

∂xm

+p2gkhaslt
l
nj

∂tsh
∂xm

+ gkhavlt
v
ht

l
nj

∂p2

∂xm

−(1 −H)gkh
[
1

F 2
(ljghn + lnghj − lhgnj)

∂F

∂xm
− 1

F

(
∂lj
∂xm

ghn +
∂ln
∂xm

ghj −
∂lh
∂xm

gnj

)]

+(1−H)gkh
1

F

(
lj
∂ghn
∂xm

+ ln
∂ghj
∂xm

− lh
∂gnj
∂xm

)
− gkh

∂Chnj

∂yu
yus

∂ts

∂xm
− gkhdmChnj,
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where

dmChnj =
∂Chnj

∂xm
+Nu

m
∂Chnj

∂yu
.

Reducing similar terms yields

Nk
mnj = −gkhdmChnj + Jk

mnj , (D.1)

where

Jk
mnj = −Xk

mnj − gkh
∂Chnj

∂yu
yus a

s
mht

h − ykslt
l
ja

sutln
∂aul
∂xm

+

(
tlun

∂

∂yj
(
gkhp2alvt

v
h

)
+

∂ykl
∂yn

tluj

)
yus

∂ts

∂xm
− ykslt

l
n

∂tsj
∂xm

− ykslt
l
j

∂tsn
∂xm

+p2gkhaslt
l
nj

∂tsh
∂xm

+ gkhavlt
v
ht

l
nj

∂p2

∂xm
− (1−H)gkh

1

F 2
(ljghn + lnghj − lhgnj)

∂F

∂xm

+(1−H)gkh
1

F

[(
∂lj
∂xm

ghn +
∂ln
∂xm

ghj −
∂lh
∂xm

gnj

)
+

(
lj
∂ghn
∂xm

+ ln
∂ghj
∂xm

− lh
∂gnj
∂xm

)]

+(1−H)gkh
1

F 2

[
(ljghn + lnghj − lhgnj)luy

u
s

∂ts

∂xm
− (hjughn + hnughj − hhugnj) y

u
s

∂ts

∂xm

]

− 2(1−H)gkh
1

F
(ljChnu + lnChju − lhCnju) y

u
s

∂ts

∂xm
− gkhtljn

∂

∂yu
(
p2alvt

v
h

)
yus

∂ts

∂xm
. (D.2)

We also find the contraction

N r
mhCrnj = −

[
yrslt

l
h

(
∂ts

∂xm
+ asmht

h

)
+ yrs

(
∂tsh
∂xm

+ asmvt
v
h

)]
Crnj

(see (3.1)), getting

N r
mhCrnj = −Crnjy

r
slt

l
h

∂ts

∂xm
−
[
(1−H)

1

F
(ljgrn + lngrj − lrgnj) + p2tvrt

l
njavl

]
yrs

∂tsh
∂xm

−
(
yrslt

l
ha

s
mht

h + yrsa
s
mvt

v
h

)
Crnj. (D.3)

The indicated relations are sufficient to obtain the representation

Nk
mnj = −DmC

k
nj ≡ −dmC

k
nj +Nk

mtC
t
nj −N t

mnC
k
tj −N t

mjC
k
nt

after performing required substitutions.
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Appendix E: Validity of Proposition 5.1

With (5.39), we get the expression

µ

H2
amnt

m
k t

n
h =

[
1− sin2 ̺+

1

4k̆2
(1 + k̆2)2 sin2 ̺

]
(̺′)2

1

b2
w2ekehF

2H

+ sin2 ̺F 2H

(
ahk −

1

c2
bkbh −

1

w̃2
[w2ek(w

2eh + w̃2bh) + w̃2bk(w
2eh + w̃2bh)]

)(
1

bw̃

)2

+
√
µ
1

F
lk

[√
µ
1

F
lh +

1

2k̆
(1− k̆2) sin ̺ ̺′

w

b
eh

]
F 2H

+
1

2k̆
(1− k̆2) sin ̺ ̺′

w

b
ek

[√
µ
1

F
lh +

1

2k̆
(1− k̆2) sin ̺ ̺′

w

b
eh

]
F 2H

+ sin ̺

[
cos ̺− 1 + k̆2

4k̆2
[1− k̆2 + (1 + k̆2) cos ̺]

]
ek

[
√
µ
1

F
lh +

1− k̆2

2k̆
sin ̺ ̺′

w

b
eh

]
̺′
w

b

H√
µ
F 2H

+ sin ̺

[
cos ̺− 1 + k̆2

4k̆2
[1− k̆2 + (1 + k̆2) cos ̺]

]
eh

[
√
µ
1

F
lk +

1− k̆2

2k̆
sin ̺ ̺′

w

b
ek

]
̺′
w

b

H√
µ
F 2H

which can readily be simplified to read

µ

H2
amnt

m
k t

n
h =

[
1 +

1

2k̆2
(1− k̆2)2 sin2 ̺

]
(̺′)2

1

b2
w2ekehF

2H

+ sin2 ̺F 2H

(
akh − bkbh − w2(eh + bh)(ek + bk) +

(
w2 − w4

w̃2

)
ekeh

)(
1

bw̃

)2

+µ
1

F 2
lklh +

√
µ
1

F

1

2k̆
(1− k̆2) sin ̺ ̺′

w

b
(lkeh + lhek)F

2H

−1− k̆2

4k̆2
sin ̺

[
1 + k̆2 + (1− k̆2) cos ̺

] [√µ

F
(eklh + ehlk) +

1− k̆2

k̆
sin ̺ ̺′

w

b
ekeh

]
w

b

̺′H√
µ
F 2H
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= (̺′)2
w2

b2
ekehF

2H + µ
1

F 2
lklh

+ sin2 ̺F 2H

(
akh − bkbh − w2(eh + bh)(ek + bk) +

(
w2 − w4

w̃2

)
ekeh

)(
1

bw̃

)2

.

We use here the expansion

gkh = lklh +
F 2

b2τ

(
akh − bkbh − w2(eh + bh)(ek + bk) +

τ − w(τ ′ − w)

τ
w2ehek

)

of the involved Finslerian metric tensor and take µ from (5.40) and w̃2/τ from (5.41).
We obtain

1

w̃2
τ sin2 ̺

1

H2
amnt

m
k t

n
h = (̺′)2

w2

b2
ekehF

2H +
1

w̃2
τ sin2 ̺F 2(H−1)gkh

+ sin2 ̺F 2H

(
−τ − w(τ ′ − w)

τ
w2ehek +

(
w2 − w4

w̃2

)
ekeh

)(
1

bw̃

)2

. (E.1)

This representation is obviously equivalent to (5.42).
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