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Abstract

We show that if a Finsler space is conformally automorphic to a Riemannian space
and the automorphism is positively homogeneous with respect to tangent vectors, then
the indicatrix of the Finsler space is a space of constant curvature. In this case, the
Finslerian two-vector angle can explicitly be found, which gives rise to simple and explicit
representation for the connection preserving the angle in the indicatrix-homogeneous case.
The connection is metrical and the Finsler space is obtainable from the Riemannian space
by means of the parallel deformation. Since also the transitivity of covariant derivative
holds, in such Finsler spaces the metrical non-linear angle-preserving connection is the
respective export of the metrical linear Riemannian connection. From the commutators
of covariant derivatives the associated curvature tensor is found. In case of the FS-space,
the explicit example of the conformally automorphic transformation can be developed,
which entails the explicit connection coefficients and the metric function of the Finsleroid

type.



1. Motivation and description

In any dimension N > 3 the Finsler metric function F' geometrizes the tangent bundle
T M over the base manifold M such that at each point x € M the tangent space T, M
is endowed with the curvature tensor constructed from the respective Finslerian metric
tensor gr,y(y) by means of the conventional rule of the Riemannian geometry considering
y to be the variable argument. There arises the Riemannian space Ry = {93 (y), T. M}
supported by the point € M such that T, M plays the role of the base manifold for the
space. In the Riemannian limit of the Finsler space, the spaces Ry,} are Euclidean spaces,
so that the tensor g¢,)(y) is independent of . The conformally flat structure of the spaces
R{s can naturally be taken to treat as the next level of generality of the Finsler space.
Can the metrical connection preserving the two-vector angle be introduced on that level?

The deformation of the Riemannian space to the Finsler space proves to be convenient
invention to apply. Namely, in the particular case when the Riemannian space can be
deformated to the Finsler space characterized by the conformally flat structure of the
spaces Ry,} the positive and clear answer to the above question can be arrived at.

Given an N-dimensional Riemannian space RY = (M,S), where S denotes the
Riemannian metric function, one may endeavor to obtain a Finsler space F~ = (M, F)
by applying an appropriate deformation C of the space RY. The notation F stands for
the Finsler metric function. The base manifold M is keeping the same for both the spaces,
RN and FN.

We assume that the transformation C is restrictive, in the sense that no point x € M
is shifted under the transformation, so that in each tangent space T, M the deformation
maps tangent vectors y € T, M into the tangent vectors of the same T, M:

y=C(z,y), y,y€T,M. (1.1)

In general, this transformation is non-linear with respect to . Non-singularity and suffi-
cient smoothness are always implied.

We may evidence in the Riemannian space R the metrical linear Riemannian con-
nection RL, which in terms of local coordinates {z'} introduced in M is given by

with a;; = a™;;(x) standing for the Christoffel symbols constructed from the Riemannian
metric tensor a,,,(r) of the space RY. The indices i, j, ... are specified on the range

(1,...,N). The respective covariant derivative V can be introduced in the natural way,
namely by means of the definition (4.18) which uses the operator
. 0 0
qriem — _—_ 4 ok _—_ 1.3
i o T igy (1.3)

to act on tensors considered on the tangent bundle underlined the space RY. In the space,
the scalar product (y, y2>?f}m = Qmn(2)y"yy of two vectors yi, yo supported by a fixed
point z € M is linear with respect to each vector, which gives rise to the profound meaning
of the connection (1.2) to preserve the product under the entailed parallel transports of
the entered vectors along curves running on M.

In the Finsler space, the scalar product is essentially non-linear object with respect
to the entered vectors, so that we may hope to meet similar preservation property in the
Finslerian domains if only we apply the connection which is non-linear, in the sense that



the involved connection coefficients depend on tangent vectors y in non-linear way. With
this hope, we need the metrical non-linear Finsler connection FN, such that

fN = {ijijij} . ij = ij(l',y), Dmij = Dmlj(l’,y) (14)

The adjective “metrical” means that the action of the entailed covariant derivative D on
the Finsler metric function, and also on the Finsler metric tensor, yields identically zero.
The coefficients N™; and D™;; are assumed to be positively homogeneous regarding the
dependence on vectors y, respectively of degree 1 and degree 0.

Accordingly, the most important object what should be lifted from the Riemannian to
Finslerian space is the two-vector angle, to be denoted by oz (y1, y2), where y1,y, € T, M.
Like to the Riemannian geometry proper, the underlined idea is to measure the angle by
means of length of the respective geodesic arcs evidenced on the indicatrix.

The Finsler space endows the vector pair yq, y» with the scalar product

(yl, y2>{x} = F(f’%yl)F(iE, y2)a{x}(yla yz)

on analogy of the Riemannian geometry.
The non-linear deformation

FN =C-RL (1.5)

of the Riemannian connection may exist to yield the Finsler connection FN which pre-
serves the Finslerian two-vector angle o, (1, y2) under the associated parallel transports
of the vectors yi, ys.

In the theory of Finsler spaces, the key objects, the connection included, were in-
troduced and studied on the basis of various convenient sets of axioms (see [1-5] and
references therein). Regarding the significance of the angle notion, the important farther
step was made in [6] were in processes of studying implications of the two-vector angle
defined by area, the theorem was proved which states that a diffeomorphism between two
Finsler spaces is an isometry iff it keeps the angle. This Tamassy’s theorem substantiates
the idea to develop the Finsler connection from the Finsler two-vector angle, possibly on
the analogy of the Riemannian geometry.

To meet new methods of applications, the interesting chain of linear connections was
introduced and studied in [3]. It was emphasized that in the Riemannian geometry we
have naturally the metrical and linear connection. We depart from this connection to
develop the Finsler connection.

Namely, we shall confine our attention to the case when the space F is obtainable
from the space R™ by means of the conformal automorphism, according to the definition
(2.1) of Section 2. We shall also assume that under the used transformations the Finslerian
indicatrix ZF,y € T, M and the Riemannian sphere S,y € T M are in correspondence
(according to (2.2)).

Additionally, we subject the C-transformations to the condition of positive homo-
geneity with respect to tangent vectors y, denoting the degree of homogeneity by H. We
call the H the degree of conformal automorphism.

Remarkably, such Finsler spaces of dimensions N > 3 can be characterized by the
condition that the indicatrix is a space of constant curvature (see Proposition 2.1). The
indicatriz curvature value Cr,q. is the square of the degree of conformal automorphism,
that is,

Crna. = H? (1.6)



(indicated in (2.3)). The condition has been realized, the Finslerian two-vector angle
Riem

vz} (Y1, y2) proves to be a factor of the angle a;$™(y1, y2) operative traditionally in the
Riemannian space, namely the simple equality

1

a{x}(y17y2> = %al{?‘im(m,w) (1.7)
(see (2.31)-(2.32)) is obtained.
The equality
S(z,9) = (F(z,y))" (1.8)

(see (2.10)) is arisen, which validates the indicatrix correspondence principle (2.2).
We set forth the conventional requirement of preservation of the Finsler metric func-
tion F'(x,y), namely

with 5 9
With the definition
Dy" = dy" — N"(z,y)da’ (1.11)

of covariant displacement of the tangent vector, the parallel transport of the vector means
the vanishing
Dy" = 0. (1.12)

We apply this observation to the two-vector angle oy, (y1,y2): the coeflicients
NFi(z,y) fulfill the angle preservation equation

diovgzy (Y1, y2) = 0, y1,y2 € T M (1.13)

under the parallel displacements of the entered vectors y; and s, if the involved operator
d; is taken to read

0 0 0
= — + NVi(x, 1) = + N*¥(z, y2) —. 1.14
The N*;(z,y) thus appeared can naturally be interpreted as the coefficients of the non-
linear connection produced by angle.

In this way we fulfill the canonical geometrical principle: the angle ay(y1, y2) formed
by two vectors y; and - is left unchanged under the parallel displacements of the vectors

d;

y1 and 1o, namely Da o (dx")d;ae = 0, for d;ae = 0.

In general the indicatrix curvature value Cr,q. may depend on the points x € M. We
say that the space F is indicatriz-homogeneous, if the value is a constant. In view of the
result Cr,g, = H? (indicated in (2.3)), such spaces can be characterized by the condition
that the degree H of conformal automorphism is independent of z.

It proves that in the indicatriz-homogeneous case of the studied space FY the equa-
tions (1.13)—(1.14) can explicitly be solved for the coefficients N*; (see Proposition 2.2 and
Note placed thereafter in Section 2).

From the obtained coefficients N*,, given by (2.36), the entailed coefficients

ON kmn
oy’

ON*,,

Nkmn -
oy

k
> Nmnj:

(1.15)



can straightforwardly be evaluated (Section 3). Let us use the coefficients to construct the
covariant derivative D,,g,, of the Finsler metric tensor g,; = gnj(x,y) of the considered
space F, namely

Dynbnj = dnGnj + N*migkn + N*ngsj, (1.16)

where d,, is given by (1.10). It proves that the covariant derivative introduced by (1.16)
with the coefficients N*,, given by (2.36) possesses the property

in the indicatrix-homogeneous case. The property can be verified by straightforward
substitutions which result in the vanishing

(see Proposition 3.1).

It is amazing but the fact that the last vanishing is an implication of the identity
y*Crnj = 0 shown by the Cartan tensor Cy,; = (1/2)0gkn/0y’. Indeed, additional evalu-
ation leads to the result

N¥ i = =D C* ;i (1.19)

in the indicatrix-homogeneous case (see Proposition 3.2), where
D, C* i = dyCFpj — N¥ G+ N OF i+ N CF (1.20)
The coefficients Ny = grndV hmnj can be written as
Nimnj = —DimChn; (1.21)

and, therefore, they are symmetric with respect to the subscripts k, n, j.
Thus, with the identification

in the Finsler space FV of the indicatrix-homogeneous type (that is, when H = const) the
metrical angle-preserving connection (1.4) is given by the coefficients {NF, D*;,} found
explicitly. Recollecting the assumed homogeneity of the coefficients, from (1.22) we infer
the equality

DFy™ = —N*,. (1.23)

Realizing the C-transformation locally by y* = y*(z, t) with t" = ¢" (see (2.11)) and
applying the Riemannian operator

: 0 0

deem - _ ki th—
‘ ot L ek

(cf. (1.3)) to the field y'(x, ), it is possible to conclude that

N™; = diiemyn (1.24)

(see (2.47)). This representation of the coefficients N™; possesses a clear geometrical and
tensorial meaning and is alternative (and equivalent) to the representation (2.36). The
derivation of the representation (1.24) uses the formula (1.23).



According to Proposition 2.3, the Finsler space FV of the indicatrix-homogeneous
type is obtained from the Riemannian space R by means of the parallel deformation.

Since also the transitivity of covariant derivative holds, namely D,t" = 0 (see (2.39)),
and gr, = C"Cllam, (see (2.25)), we should conclude that in the Finsler space F¥ of the
indicatrix-homogeneous type the metrical angle-preserving connection is the C-export of
the metrical linear Riemannian connection (1.2) applied conventionally in the background
Riemannian space RY.

In Section 4 we perform the attentive comparison between the commutators of the in-
volved Finsler covariant derivative D and the commutators of the underlined Riemannian
covariant derivative V, assuming H = const. By this method, we derive the associated
curvature tensor 0;";;. The skew-symmetry p0,,... = =0, = —Ppngi Dolds. The co-
variant derivative D; of the tensor fulfills the cyclic identity, completely similar to the
Riemannian case in which the cyclic identity is valid for the derivative V;a;";; of the
Riemannian curvature tensor a;";;. The tensor M";; = —ykpk"ij proves to be transitive
to the Riemannian tensor —y/'t"a;’;;, namely the equality M™;; = —yI't"a;';; holds. The
very tensor p,";; is not transitive to the Riemannian precursor a;™;;, instead the more
general equality

1
Py = —(1= H) 5 (ldy, = I"gmi) M™ 55 + yan™ it
is obtained. We observe that the difference between the curvature tensor p,";; and the
transitive term y” a,™;;tt is proportional to (1 — H). Squaring the tensor yields the sum
. . 2 1 -
pkm]pkmj = ak"”aknij + ? (m - 1) tlalm]thahnij>
which is the FN-extension of the Riemannian term a*"a,;;. The difference p*"p, .. —
a*qy,,;.: is proportional to (H=2 — 1).
In Section 5 we develop an explicit and attractive particular case, namely we present
the explicit example (5.27) of the conformally automorphic transformation (2.1), special-
izing the Finsler space to be the FS-space. The space is endowed with the Finsler metric

function F' which is constructed from a Riemannian metric function S = /a;;(x)y'y’ and
an 1-form b = b;(z)y’ according to the functional dependence

F(z,y) = (z;b,S,y), (1.25)

where ® is a sufficiently smooth scalar function. In step-by-step way, we derive the
coefficients N™; specified by (2.36), obtaining the explicit representation (5.72)—(5.75).
It proves that the suitability of the proposed transformation (5.27) imposes the se-
vere restriction on the Finsler metric function, namely the function must be of the
Finsleroid type (described in [7]). In the restricted case which implies independence
of the function ® (z;b,S,y) of z, assuming also that the Riemannian norm of the 1-form
b is a constant, the obtained coefficients N™; straightforwardly entail the vanishing set
D, F = D,y; = D,g:;; =0 (see (5.96)-(5.98)), together with the angle preservation (1.13).
Simplifying coefficients N™; culminates in the representation (5.102). The initial trans-
formation (5.27) reduces to (5.106), for it proves possible to find explicitly the involved
functions p and p.

In Conclusions, Section 6, we emphasize several important ideas.

In Appendices A-E we present the explicit evaluations which are required to verify
the validity of the formulated propositions.



2. Main observations

Below, any dimension N > 3 is allowable.

Let M be an N-dimensional C'*° differentiable manifold, 7,M denote the tangent
space to M at a point € M, and y € T, M\0 mean tangent vectors. Suppose we are
given on the tangent bundle TM a Riemannian metric S. Denote by RY = (M, S) the
obtained N-dimensional Riemannian space. Let additionally a Finsler metric function F'
be introduced on this T'M, yielding a Finsler space F¥ = (M, F). We shall study the
Finsler space FV specified according to the following definition.

INPUT DEFINITION. The space F¥ is conformally automorphic to the Riemannian
space RY:
FN=c.- RN (2.1)

such that in each tangent space T, M the C-automorphism transforms conformally the
metric produced by the Finsler metric to the Euclidean metric entailed by the Riemannian
metric. It is assumed that the applied C-transformations do not influence any point x € M
of the base manifold M and that they are invertible. It is also natural to require that the
C-transformations send unit vectors to unit vectors:

LF wy = C - Spay- (2:2)

Additionally, we subject the C-transformations to the condition of positive homogeneity
with respect to tangent vectors y, denoting the degree of homogeneity by H. We call the
H the degree of conformal automorphism.

The existence of such spaces is explained by the following proposition.

Proposition 2.1. A Finsler space is of the claimed type FY if and only if the
indicatriz of the Finsler space is a space of constant curvature. Denoting the indicatriz
curvature value by Cr.q., the equality

Crna. = H?, H >0, (2.3)

is obtained. The relevant conformal multiplier is given by p* with

1
Fl_H. 2.4
p= q ( )

The proposition is of the local meaning in both the base manifold and the tangent
space. The validity of the proposition can be verified by simple straightforward evaluations
(which are presented in Appendix A).

The value Cp,q. may vary from point to point of the manifold M, so that in general
H = H(z).

We take Crq. > 0. Extension of the proposition to negative value of Cp,q. would be
a straightforward task.

On every punctured tangent space T, M \ 0, the Finsler metric function F' is assumed
to be positive, and also positively homogeneous of degree 1:

F(x,ky) = kF(x,y), k> 0,Vy. (2.5)



Therefore, the conformal factor p? = (F =0/ )2 possesses this kind of homogeneity with
degree 2(1 — H). For a given function F' we can construct the covariant tangent vector
y = {y;} and the Finslerian metric tensor {g;;} in the ordinary way:

_ 10F” 1 &F* oy
Yi = 9 8y2 ) 9ij = 2 ayiayj o ayj'

The contravariant tensor {g“} defined by the reciprocity conditions g;;¢’* = 6%, where §

stands for the Kronecker symbol.
Let the C-transformation (2.1) be assigned locally by means of the differentiable
functions

g =y" (=), (2.6)
subject to the required homogeneity
g (x, ky) = kg y), k> 0,V (2.7)
This entails the identity
gyt = Hy", (2.8)

where g = 9y™/0y*. Fulfilling the conformal automorphism (2.1) means locally
Grn () = (2, 9) T iy = PPaii(x). (2.9)

Contracting the g,,, by y"™y"™ and noting the involved homogeneity together with the
value (2.4) of p, we get the equality

S(z,y) = (F(z,9)", (2.10)
where S = \/ @ (x)ymyn.
Denote by ' .
Yy =y'(x,t), "=y, (2.11)
the inverse transformation, so that
yi(x, kt) = kY Tyi(x,t), k> 0,V (2.12)
and ]
ypt" = Eyl, (2.13)

where y! = dy'/0t". The inverse to (2.9) reads:

The following useful relations can readily be arrived at:

R 1
ymyn =

= H—Sqtn = ﬁF2(1_H)tn, tn = anhth, (215)

and

1 1
YmUnits + Gmiyn = 2 (g - 1) F=2yst + 2 P Wayt],



where t5 = 7,y = 9y /9y'. Alternatively,

2

tyth = HF?MH=1y, (2.16)

=

and
thth Yyl + apth = 2(H — 1) F 2y, + HF?H Vg 42 (2.17)

where th = 0t! /0y*. We may also write

tyth + H PP g = 2(H — 1) F2HF*W Dy, + HE*H Vg
or
thth = H(1 — HYF>H =1 (g, — 21,1,). (2.18)
From (2.14) it follows that gn,y!™ = p*tda;;.

Differentiating (2.9) with respect to y* yields the following representation for the
Cartan tensor Coynr = (1/2)0Gmn/0y*:

2 o o
2Cmnk = (1= H) Zligmn + PPt + ot Vag;. (2.19)
Contracting this tensor by y” results in the equality

o 1
p2tinktﬂaij = (ﬁ — 1) (hkm — lklm), (220)

where the vanishing C,,,xy" = 0 and the homogeneity identity (2.8) have been taken into
account.

Symmetry of the tensor C,,,, demands

2 o o
(1= H) 5 (kGmn = bngin) + PPt —titl Va,; =0, (2.21)
so that we may alternatively write
1 o

Contracting the last tensor by g™ yields

n'mk

9 o o
2C,, = (1 — H)Flm + g™ PPttt Vag = 20",
from which it ensues that
n'mk m°nk

2 o o o
20, = (1 — H)Flm + 2g™ PPt a4+ g P (E ) — ) Yag,

or

2 o 2
2C, = (1— H)Flm + 29" p*tl g — (1 — H)gnkf(lmgnk — LGk )i



It is also convenient to use the representation

FCp = —(N = 2)(1 = H)lyy + Fg"™ " p?ti 7 as;. (2.23)

The space F¥ is obtainable from the Riemannian space R" by means of the deforma-
tion (1.1) which, owing to (2.2) and (2.9), can be presented by the conformal deformation
tensor

Ce' =i, (2.24)
so that
Jkn = C,Z”C,?amn (225)
The zero-degree homogeneity
Chl'(x, ky) =Cl (x,y),  k>0,Vy, (2.26)
holds, together with
Cly" = FHHygm, (2.27)

The indicatrix correspondence (2.2) is a direct implication of the equality S = F*#
(see (2.10)). We may apply the considered transformation (2.6) to the unit vectors:

l=C-L: [I'=vy'(x,L); L=C"'1: L'=t(zl), (2.28)

where I' = y*/F(z,y) and L' = ¢'/S(x,t) are components of the respective Finslerian and
Riemannian unit vectors, which possess the properties F'(z,l) = 1 and S(z,L) = 1. We
have L™ = t"(x,[). On the other hand, from (2.4) and (2.9) it just follows that

1 . .
so that under the transformation (2.28) we have
Grmn (2, D)dl™dl"™ = ﬁaij(x)dL ar’. (2.30)

No support vector enters the right-hand part in the previous equality (2.30). There-
fore, any two nonzero tangent vectors yq,yo € T, M in a fixed tangent space T,M form
the F-space angle

1
e (Y1, 92) = m arccos A, (2.31)

where the scalar

Wy () 7Y

\ =
518y

with " =t"(x,y1) and 5 =t"(z,y2), (2.32)

is of the entire Riemannian meaning in the space R"; the notation

S1 =V G ()Y So = /A (T) 511

has been used.
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From (2.32) it follows that

o\ it tY 1 ot™ ot?
_a712+ <ltgz+tm 2)

0x1 518y 51y M\ 9xi 2 T Pai

1 1 ot 1 ot
— A | — | @t 20—t ) + —— | G T+ 20 =212 ) |, (2.33
5 |i5151 (a il Uy + 2Za 8;[‘7' 1) +S2S2 (a 3v2 v2 + 2a axl 2):| ( )

where a,,,; = Oy, /02", and
12 Aty QT O\ Ant? Aty
= — At = — Al to. 2.34
8yf [ 5152 5151 :| 1k 8y§ |: 5251 5252 2k ( )
Let the coefficients N*; be subjected to the equation

d; A =0, (2.35)

where d; is the operator (1.10).
It is possible to establish the validity of the following proposition.

Proposition 2.2. When d;F = 0 and H = const, the equation (2.35) can be solved
for the coefficients N™,,, yielding

ot
ox™

N™, = —y" ( + ai,mtk) : (2.36)

See Appendix B.
In (2.36), the a’y, = a'y,(x) are the Christoffel symbols

; lih<0ahk Oapy, aa,m>

@ =5 \ozn ™ 9zk  Oah (2:37)

of the Riemannian space RY.

Note. When H = const, from (2.31) it just follows that the angle o,y (y1, y2) fulfills
the vanishing which is completely similar to (2.35), namely the vanishing (1.13) claimed
in Section 1.

With the covariant derivative
Dut' = dnt' + a'y,t* (2.38)
the representation (2.36) can be interpreted as the manifestation of the transitivity
D,t' =0 (2.39)

of the connection under the conformal automorphism (2.1).
By differentiating (2.39) with respect to y™ we may conclude that the covariant
derivative
Dot =duti, — D't +atgtt . D" = —N", (2.40)
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vanishes identically: '
Dyt = 0. (2.41)

Since yj;t; ngk — 47, the previous identity can be transformed to
diemyn 1 D™y — a gyl = 0, (2.42)

which can be interpreted as the covatiant derivative vanishing:

Dyl = 0. (2.43)
This formula entails
Diy" =0 (2.44)
(because of (2.39)), where .
Dy = d™y" 4+ D™ 55 (2.45)

Here, y™ mean the functions y"(x,t) introduced by (2.11). We have used the Riemannian
operator

— LF, = —d¥,t" 2.4
oxt otk’ @ in (2.46)

(ct. (1.3)).

Since D";sy® = —N";, from (2.44)-(2.45) we may conclude that the representation

oy"(z,t)

Nni — dRiem n— :
i Y ox’

+yr Ll (2.47)

is valid which is alternative to (2.36).
Let us verify (2.42). We have

ot
0= yn <8 ; + Nh th] Dhijtﬁ + a’%ﬁé)

8y 81&" .

Contracting this by y/ yields

oyn ath . o
Take N"; from (2.36):
WY o O ot -
T o YRty <6 i +aﬂt]) + D"jyh, — yra i
This vanishing is tantamount to the considered (2.42), for y? y? yhtk ==y

Owing to the equalities (2.4), (2.24), and (2.43), we are entltled to formulate the
following proposition.

Proposition 2.3. When d;F' = 0 and H = const, the deformation tensor (2.24) is
parallel
D,C;' =0, (2.48)
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where
D,C;" = d,.C;" — DhnkC;” + amnlC,i. (2.49)

With these observations, it is possible to develop a direct method to induce the
connection in the Finsler space FV from the metrical linear Riemannian connection (1.2)
meaningful in the background Riemannian space RY.

The coefficients N*;(z,y) can also be obtained by means of the transitivity map

{N*Y=cC-{LF}. (2.50)

Indeed, with an arbitrary differentiable scalar w(z,y), we can apply the transforma-
tion {y* = y*(x,t), t" = "} indicated in (2.11) and consider the C-transform

W(x,t) = w(z,y), which entails ZTW: = yﬁg—;, (2.51)

thereafter postulating that the C-transformation is covariantly transitive, namely

0 0 0 0
-+ N¥, — = | == + LFi(z,t) = | W(x,1). 2.52
( o NE(2,) ayk>w<x,y> ( o+ L, 1) aw) @, (25
Since the field w is arbitrary, the last equality is fulfilled if and only if
k
Nk, — dfaomyk — a?/a(%t) + yﬁLhi- (2.53)
1»7/

This is the representation which is required to realize the map (2.50). We have again
arrived at the coefficients (2.47).

With the knowledge of the coefficients N¥;(z,y), we can use the formulas (2.40)
and (2.41) to express the Finslerian connection coefficients D", through the Rieman-
nian Christoffel symbols a’,;. Thus we have induced the connection in the Finsler space
FN from the metrical linear Riemannian connection (1.2) meaningful in the background
Riemannian space RY.

It can readily be noted that the transitivity property (2.52) can straightforwardly be
extended to scalars dependent on two vectors. Namely, if

Wz, t,t2) = w(z,y1, y2), (2.54)

then

0 0 0 0 0 0
-+ Nf— + N§,— = — + L=+ L5— 2.
(al’l 1@8y]f 2zay§>w(‘r>ylay2) (81” + 128t]19 + 2zat§>W(Iatl>t2)> ( 55)

where fo = Nki(xvyl)v N§z = Nki(xuy2)7 L]fz = Lki(xvtl)u ng = Lkl($7t2)
3. Properties of connection coefficients

The derivative coefficients (1.15) can straightforwardly be evaluated from (2.36). We
obtain explicitly

ot* ots
+a8mhth, Ts’m = L +a8mhtﬁ, (31)

Nkmn = _yL]:ltl T;;_ykTS with TS =
ox™

n sTn,m m or™m
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which entails the contractions

1 1 F
ykamn = - (2 <_ - 1) F_2Hynts + ﬁFz(l_H)ashtZ - gln?Ji) Tm t TS (32>

H HS?”
and
yka + g N — 2 i—l F—2Hy " _I_iFQ(l_H)a hth e 2 A
mn n m H nts H shtn m H52 n,ms
together with
ykamni + gkszmn + glanmi + 2Clm'Nlm
: - ! ! o 1 2(1-H) , 4h s
=~ (5 -1)2F [(gni — 2H1,L)ts + (ynaath + yiagth,)] T2 — —F auth T8

1 1
- (2 (ﬁ - 1) F_2Hynts + ﬁF2(1_H)a5ht2) Crlsmv,

1 1 1 ots
— (2 =2-1 F—2H its _F2(1—H) . th Ts o —F2(1_H)ts ni Sm th- )
< <H ) vits T Aol | Snm = g gam @t
(3.3)

The attentive calculation of the entered terms (carried out in Appendix C) leads to the
following remarkable result.

Proposition 3.1. If the coefficients N*,, are taking according to Proposition 2.2,
then the vanishing y;N*¥,,,; = 0 holds identically.

In performing involved calculation it is necessary to note that in view of (2.15) and
(2.36), we can write

oF oF oF oF 1
dnF = NF,— = + N1 — —— POy T
dor gy aem T T Ggm T FH m
so that, because of d,, F' = 0, the equality
oF 1
— F2(1—H)tsTs 4
Jdxm™ FH " (34)

is valid.

It is also possible to evaluate the covariant derivative D,,C*,; (see (1.20)), using the
equality dpgnn = —N'mngm — N'mnge, entailed by the metricity (1.16). This way leads
to the following result.

Proposition 3.2. The representation Nkmnj = —Dkanj 1s valid, whenever d,, F' =
0 and H = const.

Proof of this proposition can be arrived at during a long chain of straightforward
substitutions (see Appendix D).
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4. Entailed curvature tensor

Throughout the present section we assume that H = const. Given a tensor w", =
w™(z,y) of the tensorial type (1,1), commuting the covariant derivative

Diw"k = diw"k + Dnih’whk — Dhikwnh (41)
yields the equality
ow™
|D;D; — DD w™y = Mhijﬁhk — By iw™s + By 'y (4.2)
with the tensors
and

When the choice D¥;,, = —N*¥,;, is made (cf. (1.23)), the tensor (4.3) can be written

in the form . .

M™.. — ON";  ON";

“ oxt oxJ

By applying the commutation rule (4.2) to the particular choices {F, 4", yk, gnr} and
noting the vanishing {D;F' = D;y" = D;yx = D;gnr = 0}, we obtain the identities

— NhiDnjh + Nthnih- (45)

ynMnij =0, ykEknij = _Mnija ynEknij = My, (4-6)
and
Ernij + Bumij = 2Cmmn M with  Chpp = %%C’;jf. (4.7)
Differentiating (4.5) with respect to y* and using the equality N7; = —D7;,y* yield
Ey"; = —agf/:ij- (4.8)
The cyclic identity
DyM";j + D;M"; + D;M"™ 5, = (4.9)
is valid, where
DpyM";j = dpM";; + antMtij —a’M"g; — a®y; M"is. (4.10)

It proves pertinent to replace in the commutator (4.2) the partial derivative dw", /Oy"
by the definition
S = 2 L Oty — O™ 4.11)
AW g = 8yh+ hEW K hEW m (4.
which has the meaning of the covariant derivative in the tangent space supported by the
point x € M. In particular,

agnk

Shgnk = 8yh - thngmk - thkgnm =0.




15

With the curvature tensor
Pt = Eitiy — M5 C" g, (4.12)
the commutator (4.2) takes on the form
(D;D; — D; D)) w"y = M";Spw™y, — plijw™n + p, ™. (4.13)
We denote py,,.; = gmnpPy"ij. The skew-symmetry

Prnij = ~ Prmij (4-14)
holds (cf. (4.7)). The tensor obeys also the cyclic identity
Dipy"ij + Dipy" i+ Dipy"ju = 0, (4.15)
where
Dipy"is = dipy"is + D"upy'is — D'wpyiy — aupy”s; — i Py "is-

Let us realize the action of the C-transformation (2.1)-(2.2) on tensors by the help
of the transitivity rule, that is,

{w"n(@,y)} =C AW (2, )} W = ypts, W";, (4.16)

where W",, is a tensor of type (1,1). The metrical linear connection RL introduced by

(1.2) may be used to define the covariant derivative V in R" according to the conventional
rule: e P

ViW", = —"2 + LF,=—" 4+ L"), W",, — L', W™, 4.17

g i T g (4.17)

which can be written shortly with the help of the operator di™ defined by (1.3), namely

VW, = diemwr,, 4+ LYW, — L W (4.18)

We have '
V.S =0, Vi) =0, Vit = 0. (4.19)
Due to the nullifications D;yy = 0 and Dt/ = 0 (see (2.39) and (2.43)), we have the
transitivity property
D", = yyti VW, (4.20)
for the covariant derivatives.
In the commutator

V.V, =V, V] W", = _ymamhijTyh —ai" i jW", + ahnijth (4.21)

the associated Riemannian curvature tensor is constructed in the ordinary way

- oa’ oa’ - .
i nm nk u i U i
An km = a.ﬁlﬁk - O™ +a @ uk — O pkQ ym - (422>

With the ordinary Riemannian covariant derivative

t
8ah ij

oxk

t t u U t u t u t
Viap'i; = + @ gun i — 0 ppQy i — " gian w; — a'gian i, (4.23)
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the cyclic identity
Viam"ij + Viay" ki + Viay" i = 0 (4.24)

holds.
Under these conditions, by comparing the Finslerian commutator (4.13) with the
Riemannian precursor (4.21), we obtain

M = —yithay's; (4.25)
and
By = ypten M™ s + yman™ sty (4.26)
together with
Pr"i; = (Unth, — C" i) M™ 5 + yiman™ it

Inserting here the tensor C",,; taken from (2.22) and noting the vanishing {,,,A/™;; = 0
(see (4.6)), we get

1
P = (thZm — (1 - H)F(lk% + " gote) — D thaing” ) M™ 5 + yman™ ity

Let us lower here the index n and use the equality ¢,y = p*tJa;; (ensued from
(2.14)). This yields

1
pknij — (p%;tﬁmalh — (1 — H)F(lkgmn + lngmk) p2tl thkalh) M™ ij +p amltl ap, Z]tk
Next, we use here the skew-symmetry relation (2.21), obtaining

2 1
pkm‘j = ((1 - H)F(lngmk - lkan) — (1 - H)F(lkgmn + lngmk)) Mmij +p2amltl ap, zyt

or

1
Pini = —(1 = H) 5 (6 Mri = b Misj) + pPansstit, (4.27)

where apii; = ajra”;;. Finally, we return the index n to the upper position, arriving at

1
Py =—(1— H)F(lk% — " Gt ) M ™5 + ylan™ it (4.28)
The totally contravariant representation

knij __ pk mi n]
p =49 ,Op mn

reads

g 1 g . 1
pkm] _ _(1 . H)F(lkaj _ lanz]) thyf hm]’ (429)

where " = aMa™q™q;",,, and M™9 = aMq" M™,,,
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Similarly, we can conclude from (4.25) that the tensor
Myij = GnmM™

reads
Mnij = —p2tht;”ahmij. (430)

Squaring yields
Mniij'j = p2tlal”ijthahnij. (431)
From the representations (4.27) and (4.30) it follows directly that the cyclic identities
(4.9) and (4.15) are consequences of the Riemannian cyclic identity (4.24), for D, F =
Dllk = DltZ == Dlp = Dltm =0.
Now we square the p-tensor:

pkm]pkm‘j =(1- H)2ﬁMn2]Mm'j —2(1 - H)F(lka] - lan])p2ahlijtZt£L + Clkmjaknij

2 2

y 1
5 MM,y — 21~ H)H

=(1—-H) ﬁp2(ahlijtht;M " — apigtit M) + a aggg,

or

knij — (1—H 22_pztl nijgh, L 9(1—H Hp? hyr g Ui glyr g hij knij
P pkm;j — ( ) ap ahnzy+ ( ) (ahlzy Qar ahlzy Ay )+CL akTLZ]7

F? [?
which is
keni _ knij 2 (1 1) ta, M9 th 4.32
P Piniy = 07 ki + o5 | gz — 1) B i (4.32)

Because of the transitivity (4.20), from (4.25) it follows that
DM"; = =y t"Viay's;. (4.33)
From (4.28) we can conclude that
1
Dlpknij = (1 — H)F(lk(;;z — l"gmk)y;”thvlahtij + y%tgvlahmi]’. (434)

It is also convenient to use the representation

pkm]’ = Tknhmahmija (435)
where ) )
Tea"™ = p? |08 = 60t0) + (1= H) 5 (et 65—yt ") | - (4.36)
Since
D/T},"™ = 0, (4.37)

we have the relation
Dy = Tien™ N 1 - (4.38)
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5. FS-space example of the space FV

Let us also assume that the manifold M admits a non—vanishing 1-form b = b(z, y)
and denote by

Cc= HbHRiomannian (51)

the respective Riemannian norm value, assuming

0<ec<l (5.2)

With respect to natural local coordinates z* we have the local representations
a’(2)bi(2)bj(z) = *(x),  b=b;(x)y". (5.3)

The reciprocity a™a,; = 0", is assumed, where ¢*; stands for the Kronecker symbol. The
covariant index of the vector b; will be raised by means of the Riemannian rule b* = ab;,

which inverse reads b; = a;;b’.

We shall use also the normalized vectors

~ 1 ~ -~

. 1. o~
b; = —b;, b' = -b" = a"b; a™"b,,b, = 1. (5.4)
c c
We get -
aijy'y’ — b >0 (5.5)
and may conveniently use the variable
q =\ Yyl — b2 (5.6)
Obviously, the inequality
g > - -

is valid.
We also introduce the tensor

ryle) = ay(a) — bi(@)by(x) (5.8)

to have the representation
q = \/Tiyy’. (5.9)

The equalities

rut = (1 — )by, Pint™ =17, — (1 — )b, (5.10)
hold.
In evaluations it is convenient to use the variables
u; = aijyj, v'o= gyt — b, U 2= Upm — Dby = Ty = Q0™ (5.11)
We have
ov; ob 0 2 . .
Tij = —U., - =, 7 U—, vb' = v'b; = (1 — )b, (5.12)
y? oy’ Ay q

and



2

wv' = vy’ = ¢°, Tin0™ = v; — (1 — c*)bb;, vt = ¢* — (1 = A2

With the variable
w = %, b>0,

we obtain
ow  qe;

oyl b2’

€; = _bz + — Vi,
q2

and y'e; = 0.
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(5.13)

(5.14)

(5.15)

The Finsler metric function F' of the FS-space is given by (1.25). When b > 0, we can
conveniently use the generating metric function V.=V (x,w) to have the representation

F=bV(x,w).
The unit vector l,, = OF/Jy™ is given by

ov
ln = b,V + we,, V', V= —.
ow

It proves convenient to use the quantities

and

There are the useful equalities

ov

=_ W5 v
"o

T=T=—=, V=Y, 1%
V/

We say that the FS-space is special, if 8‘7/81’" = 0, that is when

V = V(o).
Take two differentiable scalar functions

C:C(Zlf)’ CIICI(']:)’ C>07 ¢ > |Cl‘7

and construct the scalars

H=/C2—(C,)?

L [C=a
S Vo+oy

Let a positive function p = u(x,y) be specified according to

and

b, =V (1 - —

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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H v v
Vi = i [1+k*+ (1= k%) cos o], (5.25)
where ¢ = p(x,y) is an input scalar. We can write

V= C+ Cycosp. (5.26)

Consider the transformation t™ = t™(z,y) with

1 v y ~ 1 H
t" = |i™sino + —[1 — k* + (1 + k?) cos bm] —FH, 5.27
singt L= (14 R o | (527
where
1 1
= y™ — =bb" | <. 5.28
= (- ) 2 (5.29
We have
bi™ =0, A" =1, Amny™ 1" = q, (5.29)
and
b*—i[1—/22+(1+/22)cosg]£5 (5.30)
2k N '
where
S = an ™", b =1y, by = bm, b= b (5.31)
We get also the equality
1
b* = (C1 + Ccosp)—S. 5.32
(€ )\/ﬁ (5.32)

The functions (5.27) obviously fulfill the H-degree homogeneity condition (2.7). The
validity of the equality S = F (see (2.10)) can readily be verified.

The property
t"™(z,b(x)) ~ ™ (x) (5.33)

holds.

The following useful equalities can readily be obtained:
(1—k2)S — (1 + k2)b*
(1+k2)S — (1 — k2)b*’

cos Qo = —

2HES
(14 k2)S — (1 — k2)b’

Vi = (5.34)

\/ﬁ 7.2 1.2\ %
cos 0 = QH%S[(l k*)S — (14 k%)b"],
and
52— (b)?
[(1+k2)S — (1 - k2)p]*

sin? p = 4k?
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together with
sinp 1 S%—(b%)?

= 5.35
. IS (5.35)
Differentiating (5.28) yields
o™ 1 1 1 1 w?
— =0 — =b " | —= — bt — ——=1"ey, 5.36
oy* < Bt ) b b bz (5:36)
which entails
o™ o™ o™ o™ o™
k k ) n
Yoy = gyt Uy By Y nm g
(5.37)
We can use the relations
b 1 . . o (b 1
b = =1, — w?=ey, Wi, = wey, + Wby, = wle, + 0 | =l —w?=ey |,
F T F T
so that ) ) )
. . w w
e — FbU)lk = 5 (1 — 7) €L,
where i, = ap,i".
We have also
o 1 b 1 lb , 1w?,
Amh—— = | anp — —= — — —bpip, — ——ipey,
hayk he G OkOR | e = Okl = s thek
which entails
o 1 . 1
amhﬁ—y’f = <ahk — gbkbh — Zk'lh) @ (538)

With these observations, from (5.27) we find that the derivative coefficients t}' =
ot™ /Oy* can be given by
1 1 v v w FH oim R 1 1 O0yp
—t = " — (1 + k?)sin o™ | o —ep——=+sin g —— + = [t — —— "
it Cos o1 21{:( + k%) sin o }Qbek\/ﬁ—i-smgayk\/ﬁjLFk H i oyt
Since

ONAT H Yoy . , W
8—\351: - _%(1 — kY sinppo Eeka

we obtain the explicit representation

1 1 v v
ﬁ\/ﬁt? = {cos 0" — ﬁ(l + k%) sin gbm] Q’%ekFH

o 1 1 y w
ino——FH" — I+ — (1 — k?)si '—ep| t™. .
+Smg8yk +[\//7Fk—|—2k( )smggbek] (5.39)

The identity ¢7y* = Ht™ can readily be verified.
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We can straightforwardly evaluate the contraction a,,,t;'t}, which leads to the ex-
pression which is a linear combination of gis, eren, lkln, and el + eply. To obtain the
conformal result, the terms [;l; are to be canceled, which proves possible if and only if
the function u is taken to be

1
p= =T sin? g, (5.40)

which entails

1’5_2 B L52_(b*)2

T H? @ S?
(see (5.35)). With the choice of p according to (5.40), using the representation (5.39)
leads straightforwardly to the equality

1 1 w? 0o % w?
At = = ——( — | —serenF?"
H? RO rsin? o (010) "

(5.41)

1 —w(r' - ? L
L lpon ((Tmw(Tmw) W e ke (5.42)
T T w? b?

(see Appendix E).
Subjecting the p to the equation

do 1\/?—@(?’—@) ,
9 o = sin g, (5.43)

where 71 = O7/0w, is necessary and sufficient to reduce the right-hand part in (5.42) to
the conformal representation, namely we obtain simply

1
mamnt? n— A (5.44)

Comparing the last representation with the formulas (2.1), (2.4), and (2.9) makes us
conclude that the following assertion is valid.

Proposition 5.1. With choosing the function p to be given by (5.40) and subjecting
the function o to the equation (5.43), the transformation t™ = t™(x,y) introduced by (5.27)
fulfills the conformal automorphism (2.1)-(2.2).

From (5.28) it follows that
1 NG y 1
o/ = s )+ 2"

so that we can write (5.27) to read

m o b*gm _

HFP [1 1
by c?

v
On the other hand, using the equality S = F'# in (5.41) yields
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H2F2H B
= T (5.45)

52 _ (b*)2

.
Thus, it is valid that

1 /1 1 1 v
N R ' R S SR A 5.46
@ <by 2 ) 52— (b°)? ( ) (548)

Let us evaluate the explicit form of the respective coefficients N™, proposed by
(2.36). Accordingly, we assume d;F = 0 and H = const. Since S = F*_ we have d;S = 0.
From (2.38)—(2.39) it follows that dit" = —a";,t".

Also, d;b* = d,-(tmgm) = —amihthgm + tm(V,-gm + arimg,,) = tmv,-?;m, so that

1 1 /1 1 1 v ~
—db = |= | -y — =" | + ———=D"0"| Vb
/5% — (b*)? w \ b c? 52— (b7)2
Henceforth, we assume ¢ = const. In this case b™V;b,, = 0, and therefore

;dib* = ilymvﬁm.
52 — (b)2 wb

Under these conditions, applying the operator d; to (5.46) yields

1 ~ 1 m 1 m 1 1 m 1 m 1 m m h

b
1 o
= b db* GRS
(5% = (b")?) /5% = (b*)?
1 m *\ pm x( fm _ .m _7Th
+m (dit — (d;b")b b*(Vib a™ipb )) )
or
1 1 1 1 1 1 1
o _iN 7*1'* -,om T am —dlm——mdlb—— me_ mibh
{ﬁdw+52—(b*)2b db} (by c2b )—i—b Y 72V Cz(V a™pb")
v o (51 L (L Ly i — a7 )= L)
= —a Y= = - 0 —ay - i
e\ " N nb) ) =5 Vb
Using the new variable
b*
W =— 5.47
S’ ( )
we have
1— k= (1+k°
cosp = — (1+#)W (5.48)

v

b™.



and

W2
sin? p = 4k? — L Wv 5
[1 + k2 —(1- kz)W}

which entails

dcos o o 1
— 4k _ .
ow [1+ k2 — (1 - k2)W]

In the equality
10w 1 0o
wOW  sinpOW
we use (5.49) and (5.50), obtaining

1 9w 1
Tow 1w

where the notation

has been used.
Therefore, in the special case (see (5.21)) of the FS-space, we have

ow w w 1
T T A e

and can write

1 1 1 1 1 1
(V) T3y [[)<by 2 )

1 m m m

w m HFHl h *7 Lm 1 hv L \[Im

5'2 _ (b*)2
and . . X X '
W HFH v) L
[ —a™ i ——=—y" = BV 0™ | — (¥ D™
52— ()2 < LV (y"Vibn)

Taking into account the equality

bw

T
which is valid in the special case of the FS-space, we obtain

w1
S

1

1 w? 1 1
P— " — —=bb" ——(d;b" Py™
1—W2( W)(y c? )+TS( )1—W2 Y

d;y (d;b")

24

(5.49)

(5.50)
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\/? m HFH h *v7 LM hv 1 \im 1 m
+ a™in Nz y' —bb*V;b (y"V;bp)b™ + Cvazb

@21, 1 NG S
——y"'V;b—=Py™ b WVb™ — (y"V:bp)b™ + bV 0" — a™ iy
+7‘by hmy v 2 +02 @iy
Here,
~9
1-w? =

T

Therefore,
~9

UL h T, \/_ T pm w_i hy 1 \/_
diy™ = bNy VbhH (P — W)( bb )—l— =Y VbhH

vy 1
b\]/;I_WV b — (y"Vibp)b™ + gbvibm —a™ iy (5.51)
Noting the equality

leads to

11 ~ 1 — P
N™; = E%(yhvibh)ﬁ’am — ﬁ\/T — H202 b3 — (y"Vbp)b™ + bV ™ — a™y", (5.53)

where

Fam =2 = [ym . % (ym —”b'z?m)} (5.54)

and

~m ~m 1 7 m Mm
Bt = Vib" = (Vi) <y y ) : (5.55)
which can also be written in the form
11
N™; = it ~(y"Viby) Fa™ \/B H2@ B — (y"Vbp)b™ + bV ™ — a™ iy, (5.56)

with

Fam = - {ym - qg (ym —EEm)} : (5.57)
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~ ~ 1 ~ —
Bt = Vib" = = "Vibn) (y’” - bb’”) : (5.58)

and
B = VT, (5.59)

Thus we have

Proposition 5.2. If in the special case of the FS-space with ¢ = const the trans-
formation (5.27) results in the conformally automorphic space, then the coefficients (2.36)
can explicitly be given by means of the representation (5.56)-(5.59).

It is easy to verify that

™y, = 0, By, = 0, B, =0, B, = 0. (5.60)

By contracting (5.56) we find

1 2
[ N™; = —(yhvibh) <1 - T ) V- lm@mihyh~ (5.61)
T
From this result it follows that
oF m
E + 1, N", =0. (5.62)
Indeed, denoting
S = ymvkbm, (563)
we get
8(] b h 1 aamn
= = — m m —y™y" 5.64
D q(Sk +y"bpa" mr) + P (5.64)
and B 1 B
w m q m m_n Amn
9ok —5(81@ + y"bpa ) — b—z(Sk +y"bpa" i) + oY Ok’
o B 1 19
w 2 m h m n Amn
_— = bpa”,, — )
The equality B
_ow ow (5.66)

We—— = W—r-
oxk Oxk
can appropriately be used.

In the special case F' = bV (@) (see (5.21)) of the FS-space we have

F [~ 1 . w~ -1 L we 1w~
OF _ (7 - Loy} g (V= L2 207) gt + L2 07ymyn
Ox bg  w bg  w qw

or

oF ~ 571 S%1 o 1 ~, . O,
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In terms of the function 7, we can write

oF  ~ 1+ w? ~ 1+ w? h 1% O,
2 _y(1- - M+ Y (5,
daF V( 7 )S”V( 7 )y n ot gV e (568)

With this equality the validity of the vanishing (5.62) can readily be verified.
The following proposition is valid.

Proposition 5.3. The transformation (5.27) entails the conformal automorphism
(2.1) iff } }
T=C*+2CV1— H2w + w’. (5.69)

It follows that 5
T—w(T —w) = C?.

In these formulas, C' is an integration scalar C' = é’(:c) It can readily be seen
that when |é’ | # 1, the entailed Finsler metric function F' can vanish at various values
of tangent vectors y. To agree with the condition that F' vanishes only at zero-vectors
y = 0, we admit strictly the values C =1and C = —1. In this case we can write the
above T as follows:

r=1+gu+w’, -2<g<2. (5.70)
Generally, the ¢ may depend on x. We obtain
1 2
B - H?¢* = (b + §ga) . (5.71)

In this case the coefficients (5.56) take on the form

11 1 1 ~ ~ T T
N™. — —_— Fm™35, — = a0 ) g™ — pT. o g™yl 72
i ha m - S; h<b+2g(J) 52 b Sz+bvzb a pY -, (57 )
with
m __ 1 ~7m m __ 7rm :L 2Tm m
" = g [P0~ (0 gd) (v B )| = =5 [ BV - 0k ed)y] (6T
~ e B A
Bi = Vlb — qq (y — bb ) Siy (574>
m™ = o™, and B
5 = y"Viby,. (5.75)

Note. We used the input representation F' = bV (x, w) (see (5.16)) at b > 0. All the
performed calculations can be repeated word-for-word in the negative case b < 0. The
above representation (5.72)-(5.75) obtained for the coefficients N™; embraces both the
cases b > 0 and b < 0.

The last three terms in (5.72) are linear with respect to the tangent vectors y.



28

The function 7 given by (5.70) represents the ffgp D_Finsleroid space described in
the paper [7]. To comply with the representations used in [7], we should replace the

notation H by the notation h:
2
h:m—gz. (5.76)

The g plays the role of the characteristic parameter. The FF, gP P_Finsleroid metric function
K is given as it follows:

K=+vBJ,  with J=c 29, (5.77)
where
X = %(— arctan % + arctan %), ifb>0;, x= %(7‘(‘ — arctan% + arctan %), if b <0,
(5.78)
with the function L = ¢ + (¢g/2)b fulfilling the identity
L* + h*p* = B. (5.79)
B is the function given by (5.71):
B = b+ gbq + ¢*; (5.80)
G = g/h. The definition range
0<x< %W

is of value to describe all the tangent space. The normalization in (5.78) is such that
X|,_, =0 (5.81)

The quantity x can conveniently be written as

1
= — 5.82
x=/ (5.82)
with the function Ale.y) )
T,y -
= arccos ————, A=b+ —gq, 5.83
f e 594 (5.83)
ranging as follows:
0< f<m. (5.84)

The function K is the solution for the equation (5.70).
The Finsleroid-axis vector b’ relates to the value f = 0, and the opposed vector —b
relates to the value f = 7

f=0 ~ y=ub; f=m ~ y=-b. (585)

The normalization is such that
K(z,b(z)) =1 (5.86)

(notice that ¢ = 0 at y* = b*). The positive (not absolute) homogeneity holds: K (z,vy) =
vK (z,y) for any v > 0 and all admissible (x,y).



29

The entailed components y; := (1/2)0K?/dy" of the covariant tangent vector § =
{y;} can be found in the simple form

yi = (u; + gabi)ﬁ, (5.87)

where u; = a;;97.
Under these conditions, we obtain the FF}P-Finsleroid space

FF)P = {M; ay(w); bi(x); g(x); K(z,y)}. (5.88)

Definition. Within any tangent space T, M, the metric function K (x,y) produces
the fffD-Fmslemid

]:]:I;Dgc} ={y € ]:]:;?gc} cy e T,M, K(z,y) < 1}. (5.89)

g

Definition. The FF}P-Indicatriz I]:g]?ﬁ,} C T, M is the boundary of the FF}P-
Finsleroid, that is,

IF 0y =y € TF Ly cy € oM, K(z,y) = 1}. (5.90)

Definition. The scalar g(z) is called the Finsleroid charge. The 1-form b = b;(x)y’
is called the Finsleroid—axis 1-form.

It can readily be seen that

2

K N ) N2 2
det(g”) = (F) det(aij) > O, AZAZ = g

4 Y

where A, = KC;.

Note. The representation (5.72)-(5.75) obtained for the coefficients N™; coincides
exactly with the representation (6.53) of [7]. Considering the vector C; = ¢""Cjy, the
equality

Cm
R — (5.91)
Vg CCy,
holds exactly with the vector m™ given by the representation (5.73) (which is equivalent
to the representation (A.46) proposed in [7]).

Let us verify Proposition 5.3. With the variable W = 0*/S (see (5.47)) we can write
the equation (5.43) as follows:

1 9o OW _ \/%—w(%/—ﬁi)
Y 7y SR S S 5.92
sin o OW Ow v T ( )
Let us introduce the function j by means of the equality
T = jw’. (5.93)

We obtain [ — @&(7 — @)]/7 = [1 — j — @j']/j and
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1 dcoso\> [ OW _ 2_1 105 OW _
Qmszf)(55?>—3‘1‘3ai55” (5.:94)

Using (5.49) and (5.50) together with
5 1

= H :
j T (5.95)
(see (5.41)), we can write the equation (5.94) in the form
1ow _\? 1 oW 1
——w 2W — 0| =—=1-WH -1
(1—W2aw“’) * (1—W28ﬂ7w) 7Ek )L
which can conveniently be written as follows:
1 oW ? 1
— 04+ W) == —-1)1-W?.
(1—%/28@“’+ ) (H2 )( )
It proves convenient to go over to the variable W?2:
1 ow? ? 1
W+ 2W? | =4 — 1) (1 -WHW
(1_W2 Wt W) <H2 )( W
Since
H2 ~2
W2 =1--"2
-
(see (5.45)), we get
8w2 2
— H2 ~2 ~2 H2 2
L T gqo(1- Y —a1 - (-2
w? Jw T T T
or
(@7 — 27 + 2(7 — H?@?))" = 4(1 — HY)@*(r — H*@?).
Simplifying leaves us with the equation
(7 —2H?*w)* = 4(1 — H?) (1 — H*@?),
which can readily be solved to yield (5.69). Proposition 5.3 is valid.
The coefficients (5.72) show the properties
k L ko, k 1 j ko
ugN"p = _quijnbj — upa” Yy’ bN"p = E(l = h)y' Vb — bra”
(where uy = ag,y™), and
0b 1 . dqg 1 1 .
dpb = =— + by N*, = —y/V,.b;, d,q = —vgN*, = ——(b IV nbj
B Tk AL 1= G T hq( + 99)y’ Vb,
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B 2
1+ 95 i b,

together with
d, (@) — —  ByV,b;, dyB=—LByvV,b, d,o =
b 62 h 7 qh 7 b? b3qh
With these formulas it is possible to verify directly the validity of the vanishing
K
D,K = oK + Nl (5.96)
ox™
0y; "
Dny; = axi nGmj — D™ niyym = 0, (5.97)
and
. agl) m m m
Dngij = Oz + 2N iji - D nj9mi — D nigmj = O, (598>
where D™,; = —ON™,, /0y
(5.99)

The identity B
K%(zﬁviﬁh) — L'y

LN = —
coming from (5.72) is useful to take into account when considering the vanishing (5.96)

The vanishing (5.97) can be obtained directly by differentiating (5.96) with respect to y’
Using (5.96) and (5.99), we can modify the representation (5.72) by evaluating the

gq m~ + lmltatihyh

sum oK
+ oxt h = By %
+—=Km™s b+ g ﬁ b™s; + bV 0" — a™ iy
hq ok
We insert here (5.74), getting
oK gq .. 11
Nmi — _m JH1 m 3 __K
O + y + ha m™
T ]' ]' ~ ~m ]' ]' ]' m TIm Tm~ m .t 1
Let us introduce the tensor
_ ~~ 1_ ~ ~
7 =ad" =0t — S, T =y - bt (5.100)
q
We come to
oK gq . 1 ~
Nmi _ _Jm J1 . m f ZZKm™ f
Op + By Si + 3 m'"s
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1 1 ~ 1 ~~m Tm~ m j
"—% (b"— §QQ) ngiU —b S; — h’t atijyj.

In this way, with the tensor
H™ = g™ — ™ — (5.101)
we arrive at the representation

~ 1 g K2 (1 P4 :
b (b 2q) Y (S - L) gy
(  ( +2q>)H B+(ha gz )Y

0K

Nmi = —l -
ox’

+ Vigj—hfbatijyj,

(5.102)
where h}" = 6" — ["l; and m™ is the vector (5.73).

The equality H™ = (B/K?)j™ holds.

In the dimension N = 2 we would have H™ = 0.

Regarding regularity of the global y-dependence, it should be noted that the F ]-"f b_
Finsleroid metric function K given by the formulas (5.76)-(5.80) involves the scalar ¢ =
/T y™y"™ With 7., = tmn — b,,b,,. Since the 1-form b is of the unit norm \\5|| =1, the
scalar ¢ is zero when y = b or y = —b, that is, in the directions of the north pole or the
south pole of the Finsleroid. The derivatives of K may involve the fraction 1/¢ which
gives rise to the pole singularities when ¢ = 0. This just happens in the right-hand part
of the representation (5.102) for the coefficients N™;.

Therefore, we may apply the coefficients on but the b-slit tangent bundle T,M =
TM\O0\b\ —b (obtained by deleting out in T'M \ 0 all the directions which point along,
or oppose, the directions given rise to by the 1-form b), on which the coefficients N™;, as
well as the function K, are smooth of the class C* regarding the y-dependence.

On the punctured tangent bundle T'M \ 0, the metric function K is smooth globally
of the class C? and not of the class C? regarding the y-dependence.

In the case (5.70) the equation (5.43) can readily be solved, yielding

p=f, (5.103)

where f is the function which was indicated in (5.83). We obtain

1

i ha o 59(1 5.104

sinp = —, cos 0 = :
0= 75 0=—7% (5.104)

The representation (5.40) entails
p=h? (5.105)
so that from (5.26) we may conclude that C; = 0. The transformation (5.27) reduces to
~ 1 ~ 1 K"

t" = h(y™ =bb")+ (b4 =gq | V" | —=. 5.106
=+ (v g00) 77| (5.100

Thus we have

Proposition 5.4. In the FF}"-Finsleroid space the transformation (5.106) per-
forms the conformally automorphic transformation. When h = const and ¢ = const, the
coefficients (2.36) can explicitly be given by means of the representation (5.101)-(5.102).
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In the remainder of the present section, we take ¢ = 1, that is, ||b||Riemannian = 1-
Using (5.73), we can transform (5.106) to the expansion

K2 Kh—l
tm = (T ™ + Tom™) — 5.107
( 1 +1om ) B \/E ( )
with respect to the frame {I™ m™}, where
2 1 1
h=-(1-ng+B+594b+gq), To=|(1-nb+799)q (5.108)

The t™ of (5.106) is equivalent to the ("™ of (6.26) of [7]: t™ = (™. The coefficients
(5.102) are equivalent to (6.62) of [7]. Therefore, with the substitution (™ = t™ all
the relations among curvature tensors which were established in [7] are applicable to the
approach developed in the present section, including the following:

B

1 1
K2 h h

1
My = ((1 —h)b+ §QQ> hblanlij - <%Un +(1— h)bn) hytblatlij — nigy'

and

oM™ Mg = (ﬁ ((1—h)b+ §Q>bha M —ay, jyh) (E ((1—h)b+ §Q)blanlij_atnijyt>-

If we take A from (2.32) and the coefficients N*; from (5.102), and use the functions
t™ = t™(x,y) specified by (5.106), we obtain the vanishing d;A(x,y1,y2) = 0, when h =
const. To verify the statement, it is worth deriving the equality

1 1
Bivgy, + Q%bkAZ — by Ayvy — U2 (hzvm + (bk + §gq—U1k) A1)
1

o\
= K2 , 5.109
oy} BV B1 v/ By ( )
together with the counterpart
9 9 1 1
A Boviy, + q3br A1 — by Ayvog — vig | h7var, + ( O + §gq_U2k Ay
= h? 2 (5.110)

oys By\/By /B :

where Ay = A(z,y1), A2 = A(z,y2), B1 = B(z,41), Ba = B(z,42), 1 = q(x,11), ¢2 =
q(z,y2), b1 = b(x,y1), ba = b(z,ys), together with vy; = 7y, (2)yy and vy = ry(x)ys.
Plugging these derivatives in d;A(z, y1, yo) results in the claimed vanishing d;A(z, y1,y2) =
0 after attentive couplepage reductions.

It will be noted that

O\ — B2 Q%Az —v2dy bkﬂ o hQQSAl — vip Ay

b* = , = h—
8% BivBi v/ By 8?/5 Byv/Bi v/ Bs

We have also

dg 2

ox 1 (blql szz) At Q1A + g2 A1 — gura

i _|_ - ,
Bl BQ 2\/ Bl vV BQ
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or
@— ! [q%A2a —1—@0 - (éa —i—éa)]
99~ 2VB VB, B, 7 B, 2 2\ p Nt 2|
where
o) = gAl + g =q+ %bl, oy = %Az +h =g+ gb2- (5.111)
There arises the equality
O\ 1 O\ O\ 1 oA o\
AR P Y W | = = |s,0F 22 ck=_ 5.112
dg  2h? [Ol oyf 0y§} h? [Zl T (>112)
where ) )
z:qlKla ZZQ2K2O,
1 NgB, 1 2 NgB, 2

6. Conclusions

In the two-dimensional approach, N = 2, the general representation for the coef-
ficients N™; = N™;(z,y) entailing the property of preservation of two-vector angle can
be indicated locally for arbitrary sufficiently smooth Finsler metric function [8,9]. Such
a general possibility can doubtfully be meet in the dimensions N > 3, for in these di-
mensions the two-vector is of complicated nature except for rare particular cases. Such
lucky cases are just proposed by the Finsler spaces which are conformally automorphic
to the Riemannian spaces. The respective two-vector angle is explicit, namely is given by
the simple formulas (1.7) and (2.31)-(2.32). Such Finsler spaces can be characterized by
the constancy of the indicatrix curvature. In each tangent space, the indicatrix curvature
value Crq. = H? is obtained and the relevant conformal multiplier is given by p? with
p = (1/H)F'H. This p is constructed from the Finsler metric function F. The H is
the degree of conformal automorphism. In the case H = 1 the Finsler space under
consideration reduces to the Riemannian space proper.

In indicatrix-homogeneous case, the required connection coefficients are presented
by the pair {N7;, D73}, where D7y, = —ON7;/0y*. The equality N7; = — D7,y holds.

In the Riemannian geometry the two-vector angle is aﬁim(yl, Y2) = G () Y7y /S15,

where S1 = \/@mn(2)yyy and Sy = \/ @ (x)y5yy. Starting with the fundamental prop-
erty of the metrical linear Riemannian connection that the Riemannian angle is preserving
under the parallel displacements of the involved vectors, which in terms of our notation
can be written as

dﬁiemal{gim(ylv y2) = Ov Y1, Y2 € TZBMu
with
: 0 0 0
dﬁlem ==+ Lkl(x7 yl)— + Lkl(x7 y2)—7
O Oyt 17
where LFi(x,y1) = —a*;(2)yl, LFi(x,y) = —a*;(2)y), and a*;; are the Riemannian

Christoffel symbols fulfilling the Riemannian Levi-Civita connection, the important ques-
tion can be set forth: Can we have the similar vanishing in the Finsler space? It proves
that the respective extension of the Riemannian equation d¥mafiem = () to the equation
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d;oc = 0 applicable to the Finsler space under consideration can straightforwardly be
solved giving the required coefficients N7; indicated in (2.36). They admit the remark-
able alternative representation N”; = dXmy" (see (1.24)). In this way we obtain the
connection {N7;, D’;} which is metrical and simultaneously angle-preserving. The key
vanishing y, N kmm— = 0 holds fine.

Remarkably, the Finsler connection presented by this pair {N7;, D7;.} is the image
of the metrical linear Riemannian connection under conformally-automorphic transforma-
tions. When going from the considered Finsler space to the underlined Riemannian space,
the covariant derivative behaves transitively and the non-linear deformation which mate-
rializes the conformal automorphism is parallel. In particular, the Riemannian vanishing
d¥em G = () just entails the Finslerian counterpart d,, F' = 0.

Also, the involved coefficients N™; fulfill the representation N kmm— = —DmC'knj (see
Proposition 3.2). Just the same representation is valid in the two-dimensional Finsler
spaces (see (2.14) in [8,9]). Is the equation

02 NF
= — D, C*,.
ynoyJ J

meaningful in other (in any?) Finsler spaces to find the coefficients N*,, required to
preserve the two-vector angle? The question is addressed to readers.

The curvature tensor p,";; has been explicated from commutators of arisen covariant
derivatives which is attractive to develop in future the theory of curvature for the Finsler
space FV.

For the FS-space specialized by (1.25) we have got at our disposal the simple exam-
ple of the parallel deformation transformation, namely proposing by (5.27), which entails
the coefficients N™; possessing the property of angle preservation. The coefficients are
given explicitly by the representation (5.72)—(5.75), which admits the alternative form
(5.101)-(5.102). The space proves to be of the Finsleroid type, with the Finsleroid charac-
teristic parameter g manifesting the meaning: h = /1 — (¢2/4) is the homogeneity degree
(denoted above by H) of the conformal automorphism. The Finsleroid metric function
K when considered on the b-slit tangent bundle T,M := TM \ 0\ b\ —b is smooth of
the class C'*° regarding the global y-dependence. The same regularity property is valid
for the coefficients N™; given by (5.102).

Appendix A: Proof of Proposition 2.1

Let us verify the validity of Proposition 2.1, starting with the conformal tensor
uij = F2agij, a = a(a:),

and denoting w;jx = Ou;;/0y*. We get uyr = 2(a/F)F*lygi; + 2F*Cijx, where Cijp =
(1/2)0g:;/0y*. Constructing the coefficients

1
Zijk, = i(ukﬂ + Uiki — Uijk)

leads to a
Zijk = Fan(ligkj + gk — lkgz'j) + ancijk-
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Since the components u” reciprocal to u;; are of the form u” = F~2¢%  the coefficients
™M = uthZ-jh read merely

We obtain
OYALSS a - S, a o o m m oC™ ;i
8yj = —ﬁl](lnél ‘l‘ lzén - l gm) ‘l‘ ﬁ(hwén + hn](SZ - hj gm - 2l FCm]) + 8yj
and oz™ oz™
ni nj a m m m
o oy 4 = _ﬁ[ln(ljéi —1;63") = 1" (Ligni — lignj)]
a m m m m 8Cmnz 8Cmn]
+ﬁ[(hnj5i - hniéj ) - (hj Gin — hi gjn)] + 8yj - 8@/@ )
so that
8me' 8Zmnj o 2a m m 8Cmm aC’mnj
S = 55 (ng i = hagh?) + o e
Also,

afla

a2 a
- <_) (9m5;n - gjn@m) + F(ljcmm - liijn> + Chm'thj - Chnjcmhia

F
or
LM i Z i — L 2 = — (%)2 (hinh™ = hyah) 4 C"i O™y = C"iC™ s
The curvature tensor
Enmij = ag;m — 8?;{” A VAL SR AN AL

is found as follows: F2§nm,~j = a(a + 2)(hnihi* — hpih') + S,™ij, where

. oc™,;  aC™,; . .
S, ij:( o o +C My — CC ,n-) P2,

In term of the covariant components R,,,;; = umhRnhij and Spij = gthnhij, we obtain

F2§nmij = Snmij + a(a' + 2)(h'n]h7m - hmhm])

Therefore, if Enmij =0, then
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Since Cpg. = 1 — C (see Section 5.8 in [1]), we get Crq, = H?, where H = a + 1. The
proposition is valid.

Appendix B: Proof of Proposition 2.2

Let us verify the validity of Proposition 2.2. From the equation

oA O\ oA
gui TV tigyE TN gy =0

we want to find the tensors

nlz - tlkallu n22 - t2ka22 (Bl)
Using (2.33) and (2.34), we obtain

amn,itmtn 1 1 myn 1 myn
5175122 — =\ { A U7+ —— A it tz}

S151 S25

IS

amntn At 1 8t71n amnt? Al 2 aL
* {5152 55, A] ( Tt axi) - {5251 55 | 2T 5,

which can be written in the concise form

L Gty Gty i Gy Gmnty —0,
S1 | Se Sh 52 Sh Sy

where ot .
yﬁ?:n’{ﬁ—az%—a,ktl, yg;:ng;+al+amt2,

and a™;, are the Riemannian Christoffel symbols (2.37).
In this way we come to the equation

(51526Lmn SQSQCLmn )Vlz (Sngamn SlSlamn ) V2z =0. (B2)
Use oOF oOF 1
P — k _ 27 4~ p2(l-H) m.
GF = o + N = o PO,
so that

F
ox?

From S? = F?" it follows that

m 1 F
t <8L—|—CL Zktk) _H—FzHa

oxt F ox?
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(H = const is implied). We obtain
oz’

where the equality t,t" = HEF?>H =Yy (see (2.16)) has been used. When d;F = 0, we
have unambiguously t¢,,™; = 0 and the equation (B.2) reduces to

tml/mi = HF2(H_1)diF, l/mi = ’)’Lmi + + amiktk, n;ﬂ = thNkz, (BB)

Aty V] + Qmnt Ve = 0. (B.4)

Thus we may conclude that when H = const and d;F = 0 is fulfilled, the started
equation d;\ = 0 is equivalent to the equation (B.4).
The case v™; = 0 reads

otm
n" = — <0xi + amiktk) ) (B.5)

which is equivalent to (2.36). The examined proposition is valid.
Appendix C: Validity of Proposition 3.1

Let us consider the term

ots. otpth. - Oa; ,
agnth T8 4ty [ = gt ) = St il I g a b A tal ot
oxrm™ ox™ ox™

oxm ozxh oxJ

oxm ozh ol

h
_ 8athtm _ tjt’,;. ga]‘h + %ti” <8ajh + 8ajm 8amh) th + %tj <8ajh + 8ajm 8amh) tﬁl
" xm

Oyt

= S
We can take #;,t", from (2.18). By doing so and introducing the notation P =1 — H, we
transform the representation (3.3) to

n st n,m

2P

_FF_zH [(gnz - 2Hlnlz)t8 + (ynaslté + yiasltln)} Tsl
P —2H 1 2(1-H) h s P —2H 1 2(1—-H) h s
— <2ﬁF ynts + ﬁF ashtn 7—‘2',771 — 2ﬁF yzts + ﬁF ashti Tn,m

(1—H) OF* =1 (g,; — 21,1;)

—PF?
oxrm
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and take the tensor gg; from (2.9), obtaining

ykamm' + 2Cylm']\ﬂm gkzysltl Ts + gknysltlTs

2P
_FF_2H [(gnz - 2Hlnl7,)ts + (ynaslté + yiasltil)} T;q
P 2H P 2(1-H h 2H P 2(1-H h S

1 Uyps 2(H-1
8(H2a5ut ts — 2F™ )lnli)

_PF2(1 H)
oz™

After that, we take into account the formula (3.31) which specifies the object T} .
This yields
ykamm' + 2Cylm']\ﬂm - gkzysltl Ts + gknysltlTs

2P

_FF_2H [(gnz - 2Hlnl7,)ts + (ynaslté + yiasltil)} T;q

P ot ot 1
—2—F M, [y < +a mhth> + v < -+ asmhtZ):| o P aga (1, +ity)

H oz™ ox
P pea- H)t“tsaasu o P poa—m OF tatstnt;
H n G em e Oxm

Here, t,th = HF?H=Dy (see (2.16)).
Noting that

u vays vyu
gkzyfltiz = p2auvt t; = _pzauvti knyfa

Zan

taking Cy,; from (2.19), and using the vanishing Hyy* — F?0=H)t = 0 (see (2.15)), we
perform simplifications and remain with

P P
— F M (ypagt; + yiagty) Ty — 2—F 72 t,0° n (yat! + yithh)

N* i = APF 11,13t T3, —
Yk mni lnllts m H H

1
—i—sz(l_H)aslasmh(tlnt? + titZ)

—2H

o2 "’87“ o2 ox™
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Finally, we apply (3.4)
OF F

— = ——tTI .
o HS?'®

take 77 from (3.1), and notice the vanishing

2P ot P _ o Otpt
7 (Unti + yitn) 5 + 290 nbi B

We arrive at

op Oa, 2P
ykamnz = _ﬁF_2H(ynti + yztiz) ( tsa _l_ Y mht ) H F_2Ht5a8ml (ynti + yztiz)
p , P 8ah
L opea-my s cpugh oogughy A g2 qun 9%
+H2F asua mh(tntz + t,l tn) H2F tntz axm - O

We have verified the validity of Proposition 3.1.
Appendix D: Verifying Proposition 3.2
With the convenient notation

da,
X = Yt " + 50"ty — yla™ = =

we can write (3.1) in the form

NF 4+ XF o = —ylit —yra :
ysl na m Ys Orm

Differentiating this equality with respect to ¢/ and using the notation X*%,,;, =
OX*,., /0y, we get

ot ot Dat 0YuZy,
k k l k4l kgl su%ulbn k su_”Jdu“n
N mnj +X mnj — (ysl]t + ysltnj)a—m - ysltn axfn ysltja W T Ys iju

where Zlm = avlt”tl nj and the identity yh ; = 0. has been taken into account. Here, the
equality y*a*"y" = p?g*" should be used.
This method results in

ot* Ny ot;
0]
a m ysl na m —Yq 7 axm

Nkmnj + kanj = (ysljtl + ysltn])

oyh YA
k su vyl Y Iu 2 kh nj
a’ " ayityt,, ; - .
—Ys ! J a m p oxrm



Since .
Chnj = (1- H)F(ljghn + lgn; — lhgnj) +p2Zlnj

(see (2.22)), we can write

o ayk\ , . or ot D!
N g + XFong = — ; — Yt = — yhtha
J + J (ay] ay ) uds §pm ysl nHpm Ysi J oxm

, op? _ 1h OChnj

5'3/
k_su tY fl u kh tV¢
a Cl,v av ni
Ys l*h 9 1Yhnj oxrm oxrm

OF

1
—(1— H)gkhﬁ(ljghn + lngnj — lhgnj)ax—m

0l ol,, ol AGhn O O
+(1 _H>9kh— K@ 9+ S Ghg M—Zgnj) + (l» Iiny O9hi 99 J)} .

I Oxm ox™ ox™

Considering the relation

DN b= 2 (W) - S —— 2 ) - S
Ayi Oy oyJ oy oyn oyl oyn
and noting that yF = g*"p?a;,t%, we obtain the useful equality

0 8% o 0 kh, 2 8% l
(Gyrous ) =~z 6" ntite) = Gl

Along this way we come to

Chni
h nj uasm th

k k k
N mnj +X mnj +g 8yu s

9 kh, 2 0yl ! ot 8t5 k4l
= Aothlyn) + 2t ke —ygtia®™
(ay (9" PP awtytl,) 9y Ys G~ Ysttn g — Yl

ots .. Op?
+p’ g agtl = g hoy gkhavlthtlnjax—m

1 oF 1 [/ ol ol,, ol
—(1—H)g"™ [ﬁ(ljghn + lngnj — lhgnj)(%—m T (axfnghn oI —hgnj)}
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where
OChni OChni
A Chni = oo N, —
g ox™ oy
Reducing similar terms yields
Nkmnj = _gkhdmchnj + kanja (D]-)
where 90 5
k _ k khOChng w s h kol suyl O%ul
Somnj = =X g — 9 oy Vs mit" = Yt o
0 oyF ot* ots ots
+ ( un@yj (g pa h) 8yn uj Ys oxm Ysi nHpm Ysi I Hgm
ot v op? 1 oF
+p29khasltlnjax—fn + gkhavltht;jax—m —(1- H)gkhﬁ(ljghn + lngnj — lhgnj)m—m

1 al; ol ol 0 OGn; OGn;
_ kh - J n_ . Yhn o OYhn 9hj 5 OF9nj
=) p [(axmgh“ D 9" axmg’“) * (lf Do T ggm lhaxm)]

1 , ot , ot
‘l'(l - H)gkhﬁ |:(ljghn + lnghj - lhgnj)luys 8:6—’” - (hjughn + hnughj - hhugnj) Ys &L’—m:|

1 ot? 0 ot*
— 2(1 — H)gkhf (le}mu + lnChju - thnju) y:%—m - gkhtgnayu (anIUtZ) ygax—m (DQ)

We also find the contraction

ot® ots
N"mnCrnj = — {y;tz (ag:—m + asmhth) +ys < o T asmvtz)} Crng

(see (3.1)), getting

ot*

T T 1 v r ats
N mnCrnj = _Crnjysltlhax—m - [(1 - H)F(ljgm + 1ngrj — 1:gnj) _'_pztrtizjavl} Ys aziz

— (yutha®mnt”" + yia®mut)) Crnj. (D.3)
The indicated relations are sufficient to obtain the representation
k - k k k k
N mnj — _Dmc nj — _dmC nj +N thtnj - Ntmnc tj — Ntij nt

after performing required substitutions.



43

Appendix E: Validity of Proposition 5.1

With (5.39), we get the expression

1 o 1
o = [L =it g+ (14 s o] (&) putescn
.2 o 1 Loy 2 ~9 ~9 2 ~9 1\’
—+ sin QF Ap — —2bkbh - Tz[w ek(w ep +w bh) +w bk(w ep tw bh)] —
c w bw
+\/ﬁll \/_—l +— ! ~(1—k?) SIIIQQ | F2H
jaks ntor 5 €
+i(1 — %Q)Singg’ge f—l + — L - (1 — k:2)smgg n| F*H
ok b VIER TR b e
. 1+l\%2 V2 V2 1_7%2 /w ,w H 2H
+SIHQ[COSQ— e [1—k*4+ (1+ k%) cosol| e \/_—lh—l— o smggzeh QEWF
1+ k2 » 1— k2 H
+sin o [COSQ — + [1 — 2+ + (1 + £%) cos Q]] e \/_—lk + — Y smgg’%ek] g’%ﬁFQH

which can readily be simplified to read

1 Y 1
Hzamnt? 5 [ 2]:;2(1 — k*)?sin g] (0))? ﬁwQekehF

4 1 2
+ Sil’l2 QF2H (akh — bkbh — w2<6h —+ bh)(ek -+ bk) -+ <w2 — %) ekeh) <_~)
w bw
1
—|—,MF2 Ll + \/7 k;(l - ]{32) sin o o z(lkeh + lhek)FQH

1— k2 W

1— k2 oH
(exln + enly) + 7 sin g o —ekeh] %TF

—chzsing 1+lv€2+(1—luc2)cosg]

=S
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w? 1
= (g')zﬁekethH + Nﬁlklh

4 1 2
+ Sin2 QF2H (akh — bkbh - w2(eh + bh)(ek + bk) + (w2 B %) ekeh) <_~) .
o bw

We use here the expansion
2

F _ I _
Ikn = ey + e (akh — brby, — w?(ep + by) (ex + bg) + M?ﬁ@h%)

of the involved Finslerian metric tensor and take p from (5.40) and w?/7 from (5.41).

We obtain
L myn / 2w2 2H L 2(H-1)
=T sin Qﬁamntk ty = (o) b—zekehF + =7 sin® oF' Jkh

T—w(T —w w! 1)’
+ sin? pF*H <—#w26hek + (w2 - ﬁ) ekeh) <ﬁ) ) (E.1)

T

This representation is obviously equivalent to (5.42).
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