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DIFFERENTIAL HARNACK INEQUALITIES FOR NONLINEAR

HEAT EQUATIONS WITH POTENTIALS

UNDER THE RICCI FLOW

JIA-YONG WU

Abstract. In this paper, we prove several differential Harnack inequalities
for positive solutions of nonlinear (backward) heat equations with different
potentials under the Ricci flow. In particular, for a closed surface, we derive a
nonlinear version of the interpolated Harnack inequality. These results include
many well known differential Harnack inequalities for linear heat equations
with potentials coupled with the Ricci flow.

1. Introduction

The study of differential Harnack estimates for parabolic equations originated
with the work of P. Li and S.-T. Yau [27], who first proved a gradient estimate for
the heat equation via the maximum principle and then derived a sharp Harnack
inequality by integrating the gradient estimate along space-time paths. Later S.-T.
Yau generalized this result to the Harnack inequalities for some nonlinear heat-
type equations [38] and non-self-adjoint evolution equations [39]. Surprisingly, R.
Hamilton employed similar techniques to obtain Harnack inequalities for the Ricci
flow [21], and the mean curvature flow [23]. In dimension two, a differential Harnack
estimate for the positive scalar curvature was proved by R. Hamilton [20], which was
then extended by B. Chow [39] when the scalar curvature changes sign. Moreover,
B. Chow applied similar techniques to obtain the Harnack inequalities for the Gauss
curvature flow [11] and the Yamabe flow [12]. H.-D. Cao [3] proved a Harnack
inequality for the Kähler-Ricci flow. B. Andrews [1] obtained several Harnack
inequalities for general curvature flows of hypersurfaces. In [15], B. Chow and
R. Hamilton give an extension of Li-Yau’s Harnack inequality, which they called
constrained and linear Harnack inequalities. For more detail discussions above, we
refer the interested reader to Chapter 10 of [17].

On the other hand, R. Hamilton [22] also generalized Li-Yau’s Harnack inequality
to a matrix Harnack form on a class of Riemannian manifolds with nonnegative
sectional curvature. This result was then further extended to the constrained matrix
Harnack inequalities by B. Chow and R. Hamilton [15]. H.-D. Cao and L. Ni [4]
proved a matrix Harnack estimate for the heat equation on Kähler manifolds. B.
Chow and L. Ni [32] proved a matrix Harnack estimate for Kähler-Ricci flow by
the interpolation consideration originated by B. Chow [13].
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In another direction, differential Harnack inequalities for (backward) heat-type
equations coupled with the Ricci flow have become an important object, which can
be traced back to the work of R. Hamilton [20]. Later this aspect was furthermore
exploited by B. Chow [13], B. Chow and R. Hamilton [15], B. Chow and D. Knopf
[16], and H.-B. Cheng [9], etc. Perhaps the most spectacular one is the differen-
tial Harnack inequality for the fundamental solution of conjugate heat equation
coupled with the Ricci flow without any curvature assumption discovered by G.
Perelman [33]. Perelman’s Harnack inequality has many important applications.
For example it is essential in proving the pseudolocality theorems. Recently, X.
Cao [5], and S.-L. Kuang and Qi S. Zhang [26] both extended Perelman’s Har-
nack inequality. They independently proved a differential Harnack inequality for
all positive solutions of the conjugate heat equation under the Ricci flow on closed
manifolds with nonnegative scalar curvature.

For differential Harnack inequalities for the linear heat equation coupled with
the Ricci flow, there were also many research activities on this direction; see for
example [2], [6], [8], [14], [19], [28], [36] and [40].

In the past few years there has been an increasing interest in the study of the
case of nonlinear heat equations coupled with the Ricci flow. A nice example of
nonlinear heat equations is the following form:

(1.1)
∂

∂t
f = ∆f − af ln f − bf,

where a and b are real constants, which was introduced by L. Ma in [29]. However L.
Ma only proved a local gradient estimate for positive solutions to the corresponding
elliptic version

(1.2) ∆f − af ln f − bf = 0

on a complete manifold with a fixed metric. Indeed, F. R. K. Chung and S.-T.
Yau [18] observed that the elliptic equation (1.2) is linked with the Gross Logarith-
mic Sobolev inequality. They also established a Logarithmic Harnack inequality
for this equation when a < 0. In [37], Y. Yang derived local gradient estimates for
positive solutions to (1.1) on a complete manifold with a fixed metric (see also [10],
[25], [34], [35]). Recently, Yang’s result has been developed by L. Ma in [30, 31].
In [24], S.-Y. Hsu proved a local gradient estimate for the nonlinear heat equation
(1.1) under the Ricci flow. We need to emphasize that the above equations (1.1)
and (1.2) often appear in geometric evolution equation, and are also closely related
to the gradient Ricci solitons. See, for example, [7] and [29] for nice explanations
on this subject.

Very recently, X. Cao and Z. Zhang [7] employed X. Cao and R. Hamilton’s
argument in [6] and proved an interesting differential Harnack inequality for positive
solutions of the nonlinear heat equation

(1.3)
∂

∂t
f = ∆f − f ln f +Rf

coupled with the Ricci flow equation

(1.4)
∂

∂t
gij = −2Rij

on a closed manifold. Here the symbol ∆, R and Rij are the Laplacian, scalar
curvature and Ricci curvature of the metric g(t) moving under the Ricci flow.
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In this paper, we will be concerned with general time-dependent nonlinear (back-
ward) heat equations of the type (1.1) with different potentials on closed Riemann-
ian manifolds under the Ricci flow.

Firstly, suppose (M, g(t)), t ∈ [0, T ), is a solution to the Ricci flow (1.4) on a
closed manifold. Let f be a positive solution of the nonlinear heat equation with
potential R, i.e.,

(1.5)
∂

∂t
f = ∆f − af ln f +Rf,

where a ≥ 0 is a real constant. In this case, we have the following differential
Harnack inequality.

Theorem 1.1. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
manifold, and suppose that g(0) (and so g(t)) has weakly positive curvature operator.
Let f be a positive solution to the nonlinear heat equation (1.5), u = − ln f and

H = 2∆u− |∇u|2 − 3R− 2
n

t
.

Then for all time t ∈ (0, T ),

H ≤
n

4
a.

Remark 1.2. If we choose a = 1, this result belongs to X. Cao and Z. Zhang (see
Theorem 1.1 in [7]). On the other hand, we observe that H ≤ n

4 a is equivalent to

|∇f |2

f2
− 2

(

ft
f

+ a ln f +
R

2

)

≤ 2
n

t
+

n

4
a.

However, in [37] (see also [35]), the classical Li-Yau gradient estimate for positive
solutions to the nonlinear heat equation (1.1) is

|∇f |2

f2
− 2

(

ft
f

+ a ln f + b

)

≤ 2
n

t
+ na

on manifolds with a fixed metric satisfying nonnegative Ricci curvature. Hence
our Harnack inequality is similar to the classical Li-Yau gradient estimate for the
nonlinear heat equation (1.1).

In particular, if we restrict ourselves on surfaces, we can derive a new differential
interpolated Harnack inequality, which is originated by B. Chow [13].

Theorem 1.3. Let (M, g(t)), t ∈ [0, T ), be a solution to the ε-Ricci flow (ε ≥ 0)

(1.6)
∂

∂t
gij = −εRgij

on a closed surface with R > 0. Let f be a positive solution to the nonlinear heat
equation

(1.7)
∂

∂t
f = ∆f − af ln f + εRf,

u = − ln f and Hε = ∆u− εR. Then for all time t ∈ (0, T ),

Hε ≤
1

t
,

i.e.,
∂

∂t
ln f − |∇ ln f |2 + a ln f +

1

t
= ∆ ln f + εR+

1

t
≥ 0.
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Secondly, we consider differential Harnack inequalities for positive solutions of
the nonlinear backward heat equation with potential 2R, i.e.,

(1.8)
∂

∂t
f = −∆f + af ln f + 2Rf,

where a ≥ 0 is a real constant, under the Ricci flow. For this system, we have

Theorem 1.4. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold. Let f be a positive solution to the nonlinear backward heat equation (1.8),
u = − ln f , τ = T − t and

H = 2∆u− |∇u|2 + 2R− 2
n

τ
.

Then for all time t ∈ [0, T ),

H ≤
n

2
a.

If we further assume that our solution to the Ricci flow is of type I, i.e.,

|Rm| ≤
d0

T − t

for some constant d0, where T is the blow-up time, then we can show that

Theorem 1.5. Let (M, g(t)), t ∈ [0, T ], be a type I solution to the Ricci flow on a
closed manifold. Let f be a positive solution to the nonlinear backward heat equation
(1.8), u = − ln f , τ = T − t and

H = 2∆u− |∇u|2 + 2R− d
n

τ
,

where d = d(d0, n) ≥ 2 is some constant such that H(τ) < 0 for small τ . Then for
all time t ∈ [0, T ),

H ≤
n

2
a.

Thirdly, let us now consider the nonlinear conjugate heat equation

(1.9)
∂

∂t
f = −∆f + af ln f +Rf,

where a ≥ 0 is a real constant, under the Ricci flow. For this system, we prove that

Theorem 1.6. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with nonnegative scalar curvature. Let f be a positive solution to the
nonlinear conjugate heat equation (1.9), u = − ln f , τ = T − t and

H = 2∆u− |∇u|2 +R− 2
n

τ
.

Then for all time t ∈ [0, T ),

H ≤
n

4
a.

Alternately, by modifying the Harnack quantity of Theorem 1.6, we can prove
the following form of differential Harnack inequalities.

Theorem 1.7. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold. Let f be a positive solution to the nonlinear conjugate heat equation (1.9),
v = − ln f − n

2 ln(4πτ) , τ = T − t,

P = 2∆v − |∇v|2 +R− 2
n

τ
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and
P̃ = 2∆v − |∇v|2 +R− 3

n

τ
.

Then the following differential Harnack inequalities are true:

(1) if the scaler curvature R ≥ 0, then for all time t ∈ [0, T ),

P ≤
n

4
a;

(2) without assuming the nonnegativity of R, then for all time t ∈ [T2 , T ),

P̃ ≤
n

4
a.

Remark 1.8. The above mentioned theorems include the recent results of X. Cao
(see Theorems 1.1, 1.2, 1.3 and 3.6 in [5]), X. Cao and R. Hamilton (see Theorem
1.1 in [6]), B. Chow (see Theorem 1 in [13]), and S.-L. Kuang and Qi S. Zhang (see
Theorem 2.1 in [26]). In fact if a = 0, we recover their theorems.

The proof of our all theorems nearly follows the arguments of X. Cao [5], X.
Cao and R. Hamilton [6], X. Cao and Z. Zhang [7], and S.-L. Kuang and Qi S.
Zhang [26], where computations of evolution equations and the maximum principle
for parabolic equations are employed. The only difference is that our Harnack
estimates are for the nonlinear heat equations.

An interesting feature of this paper is that our differential Harnack inequalities
are not only like the Perelman’s Harnack inequalities, but also similar to the classical
Li-Yau Harnack inequalities for the corresponding nonlinear heat equation (see
Remark 1.2 above). Due to the soliton potential functions are linked with our
nonlinear heat equations, we expect that our differential Harnack inequalities will
be useful in understanding the Ricci solitons.

The rest of this paper is organized as follows: In Sect. 2, we first prove Theorem
1.1. Then we prove an integral version of the Harnack inequality (see Theorem 2.2).
For a closed surface, we will prove a new differential interpolated Harnack inequality,
i.e., Theorem 1.3. In Sect. 3, we shall prove Theorems 1.4 and 1.5. Meanwhile, a
classical Harnack inequality of Theorem 1.4 will be derived (see Theorem 3.2). In
Sect. 4, we will prove Theorem 1.6 as well as its classical Harnack version (Theorem
4.2). By modifying the Harnack quantity of Theorem 1.6, we will prove Theorem
1.7. In Sect. 5, we will prove gradient estimates for the nonlinear (backward) heat
equation (without the potential term), i.e., Theorems 5.1 and 5.3.

2. On the nonlinear heat equation with potentials

In this section, we will prove the differential Harnack inequalities for positive
solutions of nonlinear heat equations with potentials coupled with the Ricci flow
(Theorems 1.1 and 1.3). An analogous result was obtained by X. Cao and Z. Zhang
(see Theorem 1.1 in [7]).

Let f be a positive solution of the nonlinear heat equation (1.5). By maximum
principle, we conclude that the solution for (1.5) will remain positive along the
Ricci flow when scalar curvature is positive. If u = − ln f , we can easily compute
that

∂

∂t
u = −

∂

∂t
ln f,

and
∇u = −∇ ln f, ∆u = −∆ ln f.
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Hence u satisfies the following equation,

(2.1)
∂

∂t
u = ∆u− |∇u|2 −R − au.

We shall follow X. Cao and R. Hamilton’s argument in [6] (see also [5]) and shall
prove Theorem 1.1. We observe that the evolution equation of u, is similar to the
equation (2.1) (c = 1) in [6]. So we can borrow their computation for the very
general setting there to simplify our calculation. The only difference is that we
have extra terms coming from time derivative ∂

∂t
u.

Proof of Theorem 1.1. Let f and u be defined as above. Set

H = 2∆u− |∇u|2 − 3R− 2
n

t
.

Comparing with the equation (2.3) in [6], using (2.1), we have

(2.2)

∂

∂t
H =∆H − 2∇H · ∇u−

2

t
H −

2

t
|∇u|2 − 2

∣

∣

∣

∣

∇i∇ju−Rij −
1

t
gij

∣

∣

∣

∣

2

− 2

(

∂

∂t
R+

R

t
+ 2∇R · ∇u+ 2Rijuiuj

)

− 2a(∆u− |∇u|2)

≤∆H − 2∇H · ∇u−
2

t
H −

2

t
|∇u|2 −

2

n

(

∆u−R−
n

t

)2

− 2a(∆u− |∇u|2),

where in the last step above we used

∂

∂t
R+

R

t
+ 2∇R · ∇u+ 2Rijuiuj ≥ 0,

which is called the trace Harnack inequality for the Ricci flow proved by R. Hamilton
in [21], since g(t) has weakly positive curvature operator. Meanwhile, we also used
the elementary inequality

∣

∣

∣

∣

∇i∇ju−Rij −
1

t
gij

∣

∣

∣

∣

2

≥
1

n

(

∆u−R−
n

t

)2

.

By the definition of H , we also note that

−2a(∆u− |∇u|2) = −2aH + 2a
(

∆u−R −
n

t

)

− 4aR−
2n

t
a.

Plugging this into (2.2), we have

(2.3)

∂

∂t
H ≤ ∆H − 2∇H · ∇u−

(

2

t
+ 2a

)

H −
2

t
|∇u|2

−
2

n

(

∆u−R−
n

t
−

n

2
a
)2

+
n

2
a2 − 4aR−

2n

t
a.

Adding −n
4 a to H yields

∂

∂t

(

H −
n

4
a
)

≤ ∆
(

H −
n

4
a
)

− 2∇
(

H −
n

4
a
)

· ∇u−

(

2

t
+ 2a

)

(

H −
n

4
a
)

−
2

t
|∇u|2 −

2

n

(

∆u+R−
n

t
−

n

4
a
)2

− 4aR−
5n

2t
a.
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Since R ≥ 0 and a ≥ 0, it is easy to see that for t small enough then H − n
4 a < 0.

Applying the maximum principle to the above evolution formula yields

H −
n

4
a ≤ 0

for all time t. This completes the proof of Theorem 1.1. �

Remark 2.1. Theorem 1.1 is also true on complete noncompact manifolds when we
can apply maximum principle. For example, we can assume that the Ricci flow
solution g(t) is complete with the curvature tensor and all the covariant derivatives
being uniformly bounded, and ∆u has a upper bound for all time t.

We now integrate the inequality

H −
n

4
a ≤ 0

along a space-time path and derive a classical Harnack inequality. More precisely,
since

∂

∂t
u = ∆u− |∇u|2 −R − au,

combining this with

H −
n

4
a = 2∆u− |∇u|2 − 3R− 2

n

t
−

n

4
a ≤ 0

we have

2
∂

∂t
u+ |∇u|2 −R− 2

n

t
+ 2au−

n

4
a.

Pick a space-time path γ(x, t) joining (x1, t1) and (x2, t2) with 0 < t1 < t2. Along
the path γ, we have

du

dt
=

∂u

∂t
+∇u · γ

≤ −
1

2
|∇u|2 +

1

2
R+

n

t
− au+

n

8
a+∇u · γ

≤
1

2

(

|γ̇|2 +R+
n

4
a
)

+
n

t
− au,

where in the last step above we used the inequality

−
1

2
|∇u|2 +∇u · γ −

1

2
|γ̇|2 ≤ 0.

Rearranging terms yields

d

dt

(

eat · u
)

≤
eat

2

(

|γ̇|2 +R +
n

4
a+

2n

t

)

.

Integrating this inequality we obtain

eat2 · u(x2, t2)− eat1 · u(x1, t1) ≤
1

2
inf
γ

∫ t2

t1

eat
(

|γ̇|2 +R+
n

4
a+

2n

t

)

dt.

Note that u = − ln f . Hence we have the following classical Harnack inequality.

Theorem 2.2. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a
closed manifold, and suppose that g(0) (and so g(t)) has weakly positive curvature
operator. Let f be a positive solution to the nonlinear heat equation (1.5). Assume
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that (x1, t1) and (x2, t2), 0 < t1 < t2 < T , are two points in M × (0, T ). Then we
have

eat1 · ln f(x1, t1)− eat2 · ln f(x2, t2) ≤
1

2
inf
γ

∫ t2

t1

eat
(

|γ̇|2 +R+
n

4
a+

2n

t

)

dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

Similar to the trick of proof of Theorem 1.1, now we can finish the proof of
Theorems 1.3.

Proof of Theorem 1.3. The proof follows from a direct computation and the para-
bolic maximum principle. We can compute that u satisfies

(2.4)
∂

∂t
u = ∆u − |∇u|2 − εR− au.

Let

Hε = ∆u− εR.

A direct computation yields

(2.5)

∂

∂t
Hε =∆Hε − 2

∣

∣

∣
∇i∇ju−

ε

2
Rgij

∣

∣

∣

2

− 2∇Hε · ∇u− εRHε

−R |∇u+ ε∇ lnR|
2
− εR

(

∂ lnR

∂t
− ε|∇ lnR|2

)

− a∆u

≤∆Hε −H2
ε − 2∇Hε · ∇u− (εR+ a)Hε +

ε

t
R− εaR.

The reason for the last inequality above is that the trace Harnack inequality for the
ε-Ricci flow on a closed surface proved by B. Chow in [13] (see also Lemma 2.1 in
[36]) implies

∂ lnR

∂t
− ε|∇ lnR|2 = ε(∆ lnR+R) ≥ −

1

t
,

since g(t) has positive scalar curvature. Besides this, we also used the elementary
inequality

∣

∣

∣
∇i∇ju−

ε

2
Rgij

∣

∣

∣

2

≥
1

2
(∆u − εR)2 =

1

2
H2

ε

and the relation

−a∆u = −aHε − εaR.

Adding − 1
t
to Hε in (2.5) yields

(2.6)
∂

∂t

(

Hε −
1

t

)

≤ ∆

(

Hε −
1

t

)

− 2∇

(

Hε −
1

t

)

· ∇u−

(

Hε +
1

t

)(

Hε −
1

t

)

− (εR+ a)

(

Hε −
1

t

)

−
a

t
− εaR.

It is easy to see that for t small enough then Hε −
1
t
< 0. Since R > 0 and a ≥ 0,

applying the maximum principle to the evolution formula (2.6) we conclude

Hε −
1

t
≤ 0

for all time t, and the proof of the theorem is completed. �
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In Theorem 1.3, let us take a = 0 and then we get the following interpolation
proved by B. Chow [13] between the classical Li-Yau Harnack inequality for the
heat equation and the Chow-Hamilton linear trace Harnack inequality for the Ricci
flow on a closed surface:

Corollary 2.3 (B. Chow [13]). Let (M, g(t)) be a solution to the ε-Ricci flow (1.6)
on a closed surface with R > 0. If f is a positive solution to

∂

∂t
f = ∆f + εRf,

then

(2.7)
∂

∂t
ln f − |∇ ln f |2 +

1

t
= ∆ ln f + εR+

1

t
≥ 0.

On the other hand, if we take ε = 0 in Theorem 1.3, we can get the following
differential Harnack inequality for a nonlinear heat equation on closed surfaces with
a fixed metric:

Corollary 2.4. If f : M× ∈ [0, T ) → R, is a positive solution to the nonlinear
heat equation

(2.8)
∂

∂t
f = ∆f − af ln f,

where a ≥ 0 is a real constant, on a closed surface (M, g) with R > 0, then for all
time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2 + a ln f +

1

t
= ∆ ln f +

1

t
≥ 0.

If we take ε = 1 in Theorem 1.3, then

Corollary 2.5. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
surface with R > 0. If f is a positive solution to the nonlinear heat equation (1.5),
then for all time t ∈ (0, T ),

∂

∂t
ln f − |∇ ln f |2 + a ln f +

1

t
= ∆ ln f +R+

1

t
≥ 0.

Remark 2.6. Interestingly, Theorem 1.3 is a nonlinear interpolated Harnack in-
equality which links Corollary 2.4 to Corollary 2.5.

3. On the nonlinear backward heat equation with potentials

In this section, we start to study several differential Harnack inequalities for
positive solutions of nonlinear backward heat equations with potentials:

∂

∂t
f = −∆f + af ln f + 2Rf,

where a ≥ 0 is a real constant, under the Ricci flow.
To prove Theorems 1.4 and 1.5, we shall apply a similar trick as in the proof of

Theorem 1.1. We will see that evolution equations of u, is very similar to what is
considered in [5]. Just as the case of the proof of Theorem 1.1, the only difference
is we have more terms coming from time derivative ∂

∂t
u.
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Proof of Theorems 1.4 and 1.5. As before, it is easy to compute that u satisfies the
following equation,

(3.1)
∂

∂τ
u = ∆u− |∇u|2 + 2R− au.

Let

(3.2) H = 2∆u− |∇u|2 + 2R− 2
n

τ
.

Comparing with the equation (2.4) in [5], we have

(3.3)

∂

∂τ
H =∆H − 2∇H · ∇u−

2

τ
H −

2

τ
|∇u|2 − 2|Rc|2

− 2

∣

∣

∣

∣

∇i∇ju+Rij −
1

τ
gij

∣

∣

∣

∣

2

− 2a(∆u− |∇u|2)

≤∆H − 2∇H · ∇u−
2

τ
H −

2

τ
|∇u|2 −

2

n
R2

−
2

n

(

∆u+R−
n

τ

)2

− 2a(∆u− |∇u|2).

From (3.2), we know that

−2a(∆u− |∇u|2) = −2aH + 2a
(

∆u+R −
n

τ

)

+ 2aR−
2n

τ
a.

Plugging this into (3.3) yields

∂

∂τ
H ≤ ∆H − 2∇H · ∇u−

(

2

τ
+ 2a

)

H −
2

τ
|∇u|2 −

2

n
R2

−
2

n

(

∆u+R−
n

τ
−

n

2
a
)2

+
n

2
a2 + 2aR−

2n

τ
a

= ∆H − 2∇H · ∇u−

(

2

τ
+ 2a

)

H −
2

τ
|∇u|2

−
2

n

(

∆u+R−
n

τ
−

n

2
a
)2

−
2

n

(

R−
n

2
a
)2

−
2n

τ
a+ na2.

Therefore adding −n
2 a to H , we have

(3.4)
∂

∂τ

(

H −
n

2
a
)

≤ ∆
(

H −
n

2
a
)

− 2∇
(

H −
n

2
a
)

· ∇u−

(

2

τ
+ 2a

)

(

H −
n

2
a
)

−
2

τ
|∇u|2 −

2

n

(

∆u+R−
n

τ
−

n

2
a
)2

−
2

n

(

R−
n

2
a
)2

−
3n

τ
a.

If τ small enough, we can easily see that H− n
2 a < 0. Then applying the maximum

principle to the evolution equation (3.4) yields

H −
n

2
a ≤ 0

for all time τ , hence for all t ∈ [0, T ). This finishes the proof of Theorem 1.4.
As for the proof of Theorem 1.5, from the above proof, we can easily see that

Theorem 1.5 is true for all time t < T . �

Remark 3.1. Theorem 1.4 is also true on complete non-compact Riemannian man-
ifolds as long as we can apply maximum principle.
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From Theorem 1.4, we can derive a classical Harnack inequality by integrating
along a space-time path.

Theorem 3.2. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold. Let f be a positive solution to the nonlinear backward heat equation (1.8).
Assume that (x1, t1) and (x2, t2), 0 ≤ t1 < t2 < T , are two points in M × [0, T ).
Then we have

eat2 ·ln f(x2, t2)−eat1 ·ln f(x1, t1) ≤
1

2
inf
γ

∫ t2

t1

ea(T−t)

(

|γ̇|2 + 2R+
n

2
a+

2n

T − t

)

dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

Proof. Our strategy in this proof will be similar to that in the proof of Theorem 2.2.
We include it here because this is a Harnack inequality for the nonlinear backward
heat equation. Let us consider the solutions of

∂

∂τ
u = ∆u− |∇u|2 + 2R− au.

Combining this with

H −
n

2
a = 2∆u− |∇u|2 + 2R− 2

n

τ
−

n

2
a ≤ 0,

we have

2
∂

∂τ
u+ |∇u|2 − 2R− 2

n

τ
+ 2au−

n

2
a.

Pick a space-time path γ(x, t) joining (x2, τ2) and (x1, τ1) with τ1 > τ2 > 0. Along
the space-time path γ, we have

du

dτ
=

∂u

∂τ
+∇u · γ

≤ −
1

2
|∇u|2 +R+

n

τ
− au+

n

4
a+∇u · γ

≤
1

2

(

|γ̇|2 + 2R+
n

2
a
)

+
n

τ
− au.

Rearranging terms yields

d

dτ
(eaτ · u) ≤

eaτ

2

(

|γ̇|2 + 2R+
n

2
a+

2n

τ

)

.

Integrating this inequality we get

eaτ1 · u(x1, τ1)− eaτ2 · u(x2, τ2) ≤
1

2
inf
γ

∫ τ1

τ2

eaτ
(

|γ̇|2 + 2R+
n

2
a+

2n

τ

)

dτ.

Namely,

eat1 · u(x1, t1)− eat2 · u(x2, t2) ≤
1

2
inf
γ

∫ t2

t1

ea(T−t)

(

|γ̇|2 + 2R+
n

2
a+

2n

T − t

)

dt.

Therefore the desired classical Harnack inequality follows. �
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4. On the nonlinear conjugate heat equation with potentials

In this section, we will study several differential Harnack inequalities for positive
solutions of the nonlinear conjugate heat equation

∂

∂t
f = −∆f + af ln f +Rf,

where a ≥ 0 is a real constant, under the Ricci flow. In this case, in general we
need to assume that the initial metric g(0) has nonnegative scalar curvature, it is
well known that this property is preserved by the Ricci flow.

Proof of Theorem 1.6. We go on applying a similar trick in last sections to prove
Theorem 1.6. It is easy to compute that u satisfies the following equation,

(4.1)
∂

∂τ
u = ∆u− |∇u|2 +R− au.

Comparing with the equation (3.2) in [5], we have

(4.2)

∂

∂τ
H =∆H − 2∇H · ∇u−

2

τ
H −

2

τ
|∇u|2 − 2

R

τ

− 2

∣

∣

∣

∣

∇i∇ju+Rij −
1

τ
gij

∣

∣

∣

∣

2

− 2a(∆u− |∇u|2).

Note that

H = 2∆u− |∇u|2 +R− 2
n

τ
,

which implies

−2a(∆u− |∇u|2) = −2aH + 2a
(

∆u+R−
n

τ

)

−
2n

τ
a.

Plugging this into (4.2), we obtain

∂

∂τ
H ≤ ∆H − 2∇H · ∇u−

(

2

τ
+ 2a

)

H −
2

τ
|∇u|2 − 2

R

τ

−
2

n

(

∆u+R−
n

τ

)2

+ 2a
(

∆u+R−
n

τ

)

−
2n

τ
a

= ∆H − 2∇H · ∇u−

(

2

τ
+ 2a

)

H −
2

τ
|∇u|2 − 2

R

τ

−
2

n

(

∆u+R−
n

τ
−

n

2
a
)2

−
2n

τ
a+

n

2
a2.

Therefore adding −n
4 a to H yields

(4.3)
∂

∂τ

(

H −
n

4
a
)

≤ ∆
(

H −
n

4
a
)

− 2∇
(

H −
n

4
a
)

· ∇u−

(

2

τ
+ 2a

)

(

H −
n

4
a
)

−
2

τ
|∇u|2 − 2

R

τ
−

2

n

(

∆u+R−
n

τ
−

n

2
a
)2

−
5n

2τ
a.

Since R ≥ 0 and a ≥ 0, it is easy to see that for τ small enough then H − n
4 a < 0.

Applying the maximum principle to the evolution formula (4.3), we have

H −
n

4
a ≤ 0

for all time τ , hence for all t. This finishes the proof of Theorem 1.6. �



DIFFERENTIAL HARNACK INEQUALITIES FOR NONLINEAR HEAT EQUATIONS 13

As in Section 3, we can see that if the solution to the Ricci flow is of type I, i.e.,

|Rm| ≤
d0

T − t

for some constant d0, where T is the blow-up time, then the following Harnack
estimate holds for all time t < T .

Theorem 4.1. Let (M, g(t)), t ∈ [0, T ], be a type I solution to the Ricci flow on a
closed manifold with nonnegative scalar curvature. Let f be a positive solution to
the nonlinear backward heat equation (1.9), u = − ln f , τ = T − t and

H = 2∆u− |∇u|2 +R− d
n

τ
,

here d = d(d0, n) ≥ 1 is some constant such that H(τ) < 0 for small τ . Then for
all time t ∈ [0, T ),

H ≤
n

4
a.

In the same way, from Theorem 1.6 we can derive a classical Harnack inequality
by integrating along a space-time path.

Theorem 4.2. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with nonnegative scalar curvature. Let f be a positive solution to the
nonlinear conjugate heat equation (1.9). Assume that (x1, t1) and (x2, t2), 0 ≤ t1 <
t2 < T , are two points in M × [0, T ). Then we have

eat2 · ln f(x2, t2)−eat1 · ln f(x1, t1) ≤
1

2
inf
γ

∫ t2

t1

ea(T−t)

(

|γ̇|2 + R+
n

4
a+

2n

T − t

)

dt,

where γ is any space-time path joining (x1, t1) and (x2, t2).

In the rest of this section, we will finish the proof of Theorem 1.7.

Proof of Theorem 1.7. We first prove Theorem 1.7 in the case R ≥ 0. Compute
that u satisfies the following equation,

(4.4)
∂

∂τ
v = ∆v − |∇v|2 +R−

n

2τ
− a

(

v +
n

2
ln(4πτ)

)

.

Comparing with the equation (3.7) in [5], we have

(4.5)

∂

∂τ
P =∆P − 2∇P · ∇v −

2

τ
P −

2

τ
|∇v|2 − 2

R

τ

− 2

∣

∣

∣

∣

∇i∇jv +Rij −
1

τ
gij

∣

∣

∣

∣

2

− 2a(∆v − |∇v|2).

By the definition of P , we have

−2a(∆v − |∇v|2) = −2aP + 2a
(

∆v +R−
n

τ

)

−
2n

τ
a.
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Plugging this into (4.5) yields

∂

∂τ
P ≤ ∆P − 2∇P · ∇v −

(

2

τ
+ 2a

)

P −
2

τ
|∇v|2 − 2

R

τ

−
2

n

(

∆v +R−
n

τ

)2

+ 2a
(

∆v +R−
n

τ

)

−
2n

τ
a

= ∆P − 2∇P · ∇v −

(

2

τ
+ 2a

)

P −
2

τ
|∇v|2 − 2

R

τ

−
2

n

(

∆v +R−
n

τ
−

n

2
a
)2

−
2n

τ
a+

n

2
a2.

Therefore adding −n
4 a to P gives

(4.6)
∂

∂τ

(

P −
n

4
a
)

≤ ∆
(

P −
n

4
a
)

− 2∇
(

P −
n

4
a
)

· ∇v −

(

2

τ
+ 2a

)

(

P −
n

4
a
)

−
2

τ
|∇v|2 − 2

R

τ
−

2

n

(

∆v +R−
n

τ
−

n

2
a
)2

−
5n

2τ
a.

Since R ≥ 0 and a ≥ 0, it is easy to see that for τ small enough then P − n
4 a < 0.

Applying the maximum principle to the evolution formula (4.6) yields

P −
n

4
a ≤ 0

for all time τ , hence for all t. Hence the theorem in the case R ≥ 0 is proved.
Next we prove the Harnack inequality without the nonnegativity assumption for

the scalar curvature R. Similarly, we have

(4.7)

∂

∂τ
P̃ =∆P̃ − 2∇P̃ · ∇v −

2

τ
P̃ −

2

τ
|∇v|2 − 2

R

τ
−

n

τ2

− 2

∣

∣

∣

∣

∇i∇jv +Rij −
1

τ
gij

∣

∣

∣

∣

2

− 2a(∆v − |∇v|2).

According to the definition of P̃ , we have

−2a(∆v − |∇v|2) = −2aP̃ + 2a
(

∆v +R−
n

τ

)

−
4n

τ
a.

Substituting this into (4.7), we get

(4.8)

∂

∂τ
P̃ ≤ ∆P̃ − 2∇P̃ · ∇v −

(

2

τ
+ 2a

)

P̃ −
2

τ
|∇v|2 − 2

R

τ
−

n

τ2

−
2

n

(

∆v +R−
n

τ

)2

+ 2a
(

∆v +R−
n

τ

)

−
4n

τ
a

= ∆P̃ − 2∇P̃ · ∇v −

(

2

τ
+ 2a

)

P̃ −
2

τ
|∇v|2 −

2

τ

(

R+
n

2τ

)

−
2

n

(

∆v +R−
n

τ
−

n

2
a
)2

−
4n

τ
a+

n

2
a2.

Note that the evolution of scalar curvature under the Ricci flow is

∂R

∂t
= ∆R + 2|Ric|2 ≥ ∆R+

2

n
R2.

Applying the maximum principle to this inequality yields

R ≥ −
n

2t
.
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Since t ≥ T/2, then 1/t ≤ 1/τ . Hence

R ≥ −
n

2t
≥ −

n

2τ
,

i.e.,

R+
n

2τ
≥ 0.

Combining this with (4.8), we have

∂

∂τ
P̃ ≤ ∆P̃ − 2∇P̃ · ∇v −

(

2

τ
+ 2a

)

P̃ −
4n

τ
a+

n

2
a2.

Adding −n
4 a to P̃ , we get

(4.9)
∂

∂τ

(

P̃ −
n

4
a
)

≤ ∆
(

P̃ −
n

4
a
)

− 2∇
(

P̃ −
n

4
a
)

· ∇v −

(

2

τ
+ 2a

)

(

P̃ −
n

4
a
)

−
9n

2τ
a.

Since a ≥ 0, it is easy to see that for τ small enough then P̃ − n
4 a < 0. Applying

the maximum principle to the evolution formula (4.9) yields

P̃ −
n

4
a ≤ 0

for all time t ≥ T/2. Hence the theorem is completely proved. �

Remark 4.3. Note that Theorem 1.7 in the case R ≥ 0 is equivalent to Theorem 1.6.
Similar to Theorems 4.1 and 4.2, we can prove similar theorems by the standard
argument from Theorem 1.7.

5. Gradient estimates for nonlinear (backward) heat equations

In this section we first consider the positive solution f(x, t) < 1 to the nonlinear
heat equation without any potentials

(5.1)
∂

∂t
f = ∆f − af ln f,

where a ≥ 0 is a real constant, with the metric evolved by the Ricci flow (1.4). If
u = − ln f , then

∂

∂t
u = ∆u− |∇u|2 − au

and u > 0.
Following the arguments of X. Cao and R. Hamilton’s paper [6], we let

H = |∇u|2 −
u

t
.

Comparing with the equation (5.3) in [6], we have

(5.2)

∂

∂t
H = ∆H − 2∇H · ∇u−

1

t
H − 2|∇∇u|2 − 2a|∇u|2 +

a

t
u

= ∆H − 2∇H · ∇u−

(

1

t
+ a

)

H − 2|∇∇u|2 − a|∇u|2.

Notice that if t small enough, then H < 0. Then applying the maximum principle
to (5.2), we have
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Theorem 5.1. Let (M, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
manifold. Let f < 1 be a positive solution to the nonlinear heat equation (5.1),
u = − ln f and

H = |∇u|2 −
u

t
.

Then for all time t ∈ (0, T ),
H ≤ 0.

Remark 5.2. Theorem 5.1 implies X. Cao and R. Hamilton’s result (see Theorem
5.1 in [6]). If a = 0, then we recover their result. In this case, we do not need any
curvature assumption.

On the other hand, we can also consider the positive solution f(x, t) < 1 to the
nonlinear backward heat equation without any potentials

(5.3)
∂

∂t
f = −∆f + af ln f,

where a ≥ 0 is a real constant, with the metric evolved by the Ricci flow (1.4). Let
u = − ln f . Then we have

∂

∂τ
u = ∆u− |∇u|2 − au

and u > 0.
Following the arguments of X. Cao’s paper [5], let

H = |∇u|2 −
u

τ
.

Comparing with the equation (5.3) in [5], we have

(5.4)

∂

∂τ
H = ∆H − 2∇H · ∇u−

1

τ
H − 2|∇∇u|2 − 4Rijuiuj − 2a|∇u|2 +

a

τ
u

= ∆H − 2∇H · ∇u−

(

1

τ
+ a

)

H − 2|∇∇u|2 − 4Rijuiuj − a|∇u|2.

If we assume Rij(g(t)) ≥ −K, where 0 ≤ K ≤ a
4 , then

−4Rijuiuj − a|∇u|2 ≤ (4K − a)|∇u|2 ≤ 0.

Hence if τ small enough, then H < 0. Then applying the maximum principle to
(5.4), we have

Theorem 5.3. Let (M, g(t)), t ∈ [0, T ], be a solution to the Ricci flow on a closed
manifold with the Ricci curvature satisfying Rij(g(t)) ≥ −K, where 0 ≤ K ≤ a

4 .
Let f < 1 be a positive solution to the nonlinear backward heat equation (5.3),
u = − ln f , τ = T − t and

H = |∇u|2 −
u

τ
.

Then for all time t ∈ [0, T ),
H ≤ 0.

Remark 5.4. Theorem 5.3 generalizes X. Cao’s result (see Theorem 5.1 in [5]). If
we choose a = 0, our theorem reduces to his.

Remark 5.5. In Theorems 5.1 and 5.3, we give the assumption f < 1 to guarantee
the maximum principle can be used. However this assumption, not like the case of
linear equation, does not seem natural for this nonlinear equation.
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