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THE UNIVERSAL GLIVENKO-CANTELLI PROPERTY

BY RAMON VAN HANDEL∗

Princeton University

LetF be a separable uniformly bounded family of measurable functions on a
standard measurable space(X,X), and letN[](F, ε, µ) be the smallest num-
ber ofε-brackets inL1(µ) needed to coverF. The following are equivalent:

1. F is a universal Glivenko-Cantelli class.

2. N[](F, ε, µ) < ∞ for everyε > 0 and every probability measureµ.

3. F is totally bounded inL1(µ) for every probability measureµ.

4. F does not contain a Booleanσ-independent sequence.

In particular, universal Glivenko-Cantelli classes are uniformity classes for
general sequences of almost surely convergent random measures.

1. Main results. Let (X,X) be a measurable space, and letF be a family of
measurable functions on(X,X). Given a probability measureµ on (X,X), the
family F is said to be aµ-Glivenko-Cantelli classif

sup
f∈F
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k=1

f(Xk)− µ(f)

∣

∣

∣

∣

∣

n→∞
−−−→ 0 a.s.,

where(Xk)k≥1 is the i.i.d. sequence ofX-valued random variables with distribu-
tion µ, defined on its canonical product probability space.1 The classF is said to
be auniversal Glivenko-Cantelli classif it is µ-Glivenko-Cantelli for every proba-
bility measureµ on (X,X). The goal of this paper is to obtain, under mild regular-
ity assumptions, a precise characterization of universal Glivenko-Cantelli classes.
Somewhat surprisingly, we find that universal Glivenko-Cantelli classes are in fact
uniformity classes for convergence of (random) probability measures in a very gen-
eral setting, so that their applicability extends substantially beyond the setting of
laws of large numbers for i.i.d. sequences that is inherent in their definition.

∗This work was partially supported by NSF award DMS-1005575.
AMS 2000 subject classifications:60F15, 60B10, 41A46
Keywords and phrases:universal Glivenko-Cantelli classes, uniformity classes, uniform conver-

gence of random measures, entropy with bracketing, Booleanindependence
1 Recall that a sequence of possibly non-measurable real-valued functions(Zn)n≥1 on a probabil-

ity space is said to converge a.s. to a functionZ if there exists a sequence of nonnegative measurable
functions∆n converging to zero a.s. such that|Zn − Z| ≤ ∆n pointwise for alln ≥ 1.
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The following probability-free independence properties for families of functions
will play a fundamental role in this paper. These notions date back to Marczewski
[14] (for sets) and Rosenthal [17] (for functions, see also [8]).

DEFINITION 1.1. A family F of functions on a setX is said to beBoolean
independent at levels(α, β) if for every finite subfamily{f1, . . . , fn} ⊆ F

⋂

j∈F

{fj < α} ∩
⋂

j 6∈F

{fj > β} 6= ∅ for everyF ⊆ {1, . . . , n}.

A sequence(fi)i∈N is said to beBooleanσ-independent at levels(α, β) if

⋂

j∈F

{fj < α} ∩
⋂

j 6∈F

{fj > β} 6= ∅ for everyF ⊆ N.

A family (sequence) of functions is said to be Boolean (σ-)independent if it is
Boolean (σ-)independent at levels(α, β) for someα < β.

We also recall the well-known notions of bracketing and covering numbers.

DEFINITION 1.2. LetF be a class of functions on a measurable space(X,X).
Givenε > 0 and a probability measureµ on(X,X), a pair of measurable functions
f+, f− such thatf− ≤ f+ pointwise andµ(f+ − f−) ≤ ε defines anε-bracket
in L1(µ) [f+, f−] := {f : f− ≤ f ≤ f+ pointwise}. Denote byN[](F, ε, µ) the
cardinality of the smallest collection ofε-brackets inL1(µ) coveringF, and by
N(F, ε, µ) the cardinality of the smallest covering ofF by ε-balls inL1(µ).

A class of functionsF on a setX will be said to beseparable2 if it contains a
countable dense subset for the topology of pointwise convergence inRX . Recall
that a measurable space(X,X) is said to bestandardif it is Borel-isomorphic to a
Polish space. We can now formulate our main result.

THEOREM 1.3. LetF be a separable uniformly bounded family of measurable
functions on a standard measurable space(X,X). The following are equivalent:

1. F is a universal Glivenko-Cantelli class.
2. N[](F, ε, µ) < ∞ for everyε > 0 and every probability measureµ.
3. N(F, ε, µ) < ∞ for everyε > 0 and every probability measureµ.
4. F contains no Booleanσ-independent sequence.

2 Note that the notion of separability used here is a slightly weaker assumption than a common
notion of poinwise measurability employed, for example, in[21], Example 2.3.4.
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A notable aspect of this result is that the four equivalent conditions of Theorem
1.3are quite different in nature: roughly speaking, the first condition is probabilis-
tic, the second and third are geometric and the fourth is combinatorial.

The implication1 ⇒ 2 in Theorem1.3is the most important result of this paper.
A consequence of this implication is that universal Glivenko-Cantelli classes can
be characterized as uniformity classes in a much more general setting, as in the
following Corollary. The first condition is due to Topsøe [20], while the remaining
implications are straightforward up to measurability issues.

COROLLARY 1.4. Under the assumptions of Theorem1.3, the following are
equivalent to the equivalent conditions 1–4 of Theorem1.3:

5. For any probability measureµ on (X,X) and net of probability measures
(µα)α∈I such thatµα → µ setwise, we havesupf∈F |µα(f)− µ(f)| → 0.

6. For any probability measureµ on (X,X) and sequence of random proba-
bility measures (kernels)(µn)n∈N such thatµn(A) → µ(A) a.s. for every
A ∈ X, we havesupf∈F |µn(f)− µ(f)| → 0 a.s.

7. For any countably generated reverse filtration(G−n)n∈N andX-valued ran-
dom variableZ, supf∈F |PG−n

(f(Z))−PG−∞
(f(Z))| → 0 a.s.

8. For any strictly stationary sequence(Zn)n∈Z ofX-valued random variables,
supf∈F |

1
n

∑n
k=1 f(Zk)−PI(f(Z0))| → 0 a.s. (I is the invariantσ-field).

HerePG denotes any version of the regular conditional probabilityP[ · |G].

The separability assumption in Theorem1.3 is crucial: without it, easy coun-
terexamples show that a characterization along the lines ofthis paper is impossi-
ble. For example, consider the classF consisting of all indicator functions of finite
subsets ofX. It is clear that this class is notµ-Glivenko-Cantelli for any nonatomic
measureµ, yet it is easily seen that condition 3 of Theorem1.3holds. On the other
hand, [3], section 1.2 gives a simple example of a universal Glivenko-Cantelli class
(in fact, a Vapnik-Chervonenkis class that satisfies standard measurability assump-
tions) for which condition 8 of Corollary1.4, and therefore condition 2 of Theorem
1.3, are violated. It therefore appears that separability plays a fundamental role here
and cannot be replaced by a weaker measurability assumption.

On the other hand, the assumption thatF is uniformly bounded is not a restric-
tion: indeed, it is easily seen that any universal Glivenko-Cantelli class is uniformly
bounded up to additive constants (see, for example, [11], Proposition 4). The im-
portance of the assumption that the measurable space(X,X) is standard is less ob-
vious. Its main role in the proof is to ensure that the implication 4 ⇒ 2 holds in the
absence of a Booleanσ-independent sequence rather than a Boolean independent
sequence. For this purpose it would suffice to restrict attention to quasi-compact
measures as defined in [18], but this does not yield a substantial weakening of the
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assumptions. For the case where(X,X) is a general measurable space we will
prove the following quantitative result, which is of independent interest.

DEFINITION 1.5. Letγ > 0. A family F of functions on a setX is said to
γ-shattera subsetX0 ⊆ X if there exist levelsα < β with β − α ≥ γ such that,
for every finite subset{x1, . . . , xn} ⊆ X0, the following holds:

∀F ⊆ {1, . . . , n}, ∃ f ∈ F so that f(xj) < α for j ∈ F, f(xj) > β for j 6∈ F.

Theγ-dimensionof F is the maximal cardinality ofγ-shattered finite subsets ofX.

THEOREM 1.6. LetF be a separable uniformly bounded family of measurable
functions on a measurable space(X,X), and letγ > 0. Consider:

a. F has finiteγ-dimension.
b. No sequence inF is Boolean independent at levels(α, β) with β − α ≥ γ.
c. N[](F, ε, µ) < ∞ for everyε > γ and every probability measureµ.

Then the implicationsa ⇒ b ⇒ c hold.

The notion ofγ-dimension appears in [4] (called Vγ/2-dimension there). The
implicationa ⇒ c of Theorem1.6contains the recent results of Adams and Nobel
[1, 2, 3]. Let us note that conditionb is strictly weaker than conditiona: for ex-
ample, the classF = {1C : C is a finite subset ofN} has infiniteγ-dimension for
γ < 1, but does not contain a Boolean independent sequence. Condition b is dual
(in the sense of Assouad [6]) to the nonexistence of aγ-shattered sequence inX.
A connection between the latter and the universal Glivenko-Cantelli property for
families of indicators is considered by Dudley, Giné and Zinn [11].

An interesting question arising from Theorem1.6is as follows. It is known, see
[4] and [15], that if F has finiteγ-dimension for allγ > 0 thensupµN(F, γ, µ) <
∞ for all γ > 0, that is, the covering numbers of the classF are bounded uniformly
with respect to the underlying probability measure. If in addition F is a family of
indicators, then we even have the polynomial boundsupµN(F, ε, µ) . ε−d for
some constantd > 0. In view of Theorem1.6, one might expect that one can
similarly obtain quantitative bounds on the bracketing numbers. Unfortunately, this
is not the case:N[](F, ε, µ) can blow up arbitrarily quickly asε ↓ 0.

PROPOSITION 1.7. There exists a countable classC of subsets ofN, whose
Vapnik-Chervonenkis dimension is two (that is, theγ-dimension of{1C : C ∈ C}
is two for all 0 < γ < 1) such that the following holds: for any functionn(ε) ↑ ∞
asε ↓ 0, there is a probability measureµ onN such thatN[](C, ε, µ) ≥ n(ε) for
all 0 < ε < 1/3. In particular, supµN[](C, ε, µ) = ∞ for all 0 < ε < 1/3.
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Probabilistically, this result has the following consequence. In Theorem1.3,
we established that the universal Glivenko-Cantelli property is characterized (un-
der mild regularity assumptions) in terms of the bracketingnumbers. In contrast,
Proposition1.7shows that neither the uniform Glivenko-Cantelli propertynor the
universal Donsker property can be characterized in terms ofbracketing numbers
(both these properties are characterized by finiteness of the Vapnik-Chervonenkis
dimension for classes of sets, see [9], p. 225 and p. 215, respectively). Indeed, the
former would require a uniform bound on the bracketing numbers, while the latter
would require finiteness of the bracketing integral for every probability measure
(see [16]), both of which are ruled out by Proposition1.7.

The original motivation of the author was an attempt to characterize unifor-
mity classes for certain reverse martingales that appear inthe theory of nonlinear
filtering. In a remarkable recent paper, Adams and Nobel [3] showed that Vapnik-
Chervonenkis classes of sets are uniformity classes for theconvergence of empiri-
cal measures of stationary ergodic sequences; their proof could be extended to more
general random measures. A simplified version of the argument, which makes the
natural connection with bracketing, appeared subsequently in [2]. While attempt-
ing to understand the results of [3], the author realized that the techniques used
in the proof are very closely related to a set of techniques developed in Banach
space theory by Bourgain, Fremlin and Talagrand [8, 19] in order to study point-
wise compact sets of measurable functions. The proof of Theorem 1.3 is based
on this elegant theory, which does not appear to be widely known in the proba-
bility literature (however, the proofs in this paper are intended to be essentially
self-contained). A key innovation is the construction in section 2 of the “weakly
dense” set which allows to fully exploit the techniques of [8, 19].

The remainder of this paper is organized as follows. We first prove Theorem1.6
in section2. The proofs of Theorem1.3, Corollary 1.4, and Proposition1.7 are
subsequently given in sections3, 4, and5, respectively.

2. Proof of Theorem 1.6. In this section, we fix a measurable space(X,X)
and a separable uniformly bounded family of measurable functionsF. LetF0 ⊆ F

be a countable family that is dense inF in the pointwise convergence topology.

DEFINITION 2.1. Denote byΠ(X,X) the collection of all finite measurable
partitions ofX. Forπ, π′ ∈ Π(X,X), we writeπ � π′ if π is finer thanπ′. For any
pair of setsA,B ∈ X, finite partitionπ ∈ Π(X,X), and probability measureµ on
(X,X), define theµ-essentialπ-boundary of(A,B) as

∂µ
π (A,B) =

⋃

{P ∈ π : µ(P ∩A) > 0 andµ(P ∩B) > 0}.

We begin by proving an approximation result.
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LEMMA 2.2. Letµ be a probability measure on(X,X) and letγ > 0. If

inf
π∈Π(X,X)

sup
f∈F0

µ
(

∂µ
π ({f < α}, {f > β})

)

= 0 for all β − α ≥ γ,

thenN[](F, ε, µ) < ∞ for everyε > γ.

PROOF. There is clearly no loss of generality in assuming that every f ∈ F

takes values in[0, 1]. Fix k ∈ N, and letδ := γ/k. Chooseπ ∈ Π(X,X) such that

sup
f∈F0

µ (Ξ(f)) < δ, Ξ(f) :=
⋃

1≤j≤⌊δ−1⌋

∂µ
π ({f < jδ}, {f > jδ + γ}).

For eachf ∈ F0, define the functionsf+ andf− as follows:

f+ = δ ⌈δ−1⌉1Ξ(f) +
∑

P∈π:P 6⊆Ξ(f)

δ ⌈δ−1 ess supP f⌉1P ,

f− =
∑

P∈π:P 6⊆Ξ(f)

δ ⌊δ−1 ess infP f⌋1P .

Here ess supP f (ess infP f ) denotes the essential supremum (infimum) off on
the setP with respect toµ. By construction,f− ≤ f ≤ f+ outside aµ-null set
andµ(f+ − f−) < γ + 2δ. Moreover, asf+, f− are constant on eachP ∈ π and
take values in the finite set{jδ : 0 ≤ j ≤ ⌈δ−1⌉}, there is only a finite number of
such functions. AsF0 is countable, we can eliminate the null set to obtain a finite
number of(γ + 2δ)-brackets inL1(µ) coveringF0. But F0 is pointwise dense in
F, soN[](F, γ + 2δ, µ) < ∞, and we may chooseδ = γ/k arbitrarily small.

To proceed, we need the notion of a “weakly dense” set, which is the measure-
theoretic counterpart of the corresponding topological notion defined in [8].

DEFINITION 2.3. Given a measurable setA ∈ X and a probability measureµ
on (X,X), the family of functionsF is said to beµ-weakly dense overA at levels
(α, β) if µ(A) > 0 and for any finite collection of measurable setsB1, . . . , Bp ∈
X such thatµ(A ∩ Bi) > 0 for all 1 ≤ i ≤ p, there existsf ∈ F such that
µ(A ∩Bi ∩ {f < α}) > 0 andµ(A ∩Bi ∩ {f > β}) > 0 for all 1 ≤ i ≤ p.

The key idea of this section, which lies at the heart of the results in this paper, is
that we can construct such a set if the bracketing numbers fail to be finite.

PROPOSITION 2.4. Suppose there exists a probability measureµ on (X,X)
such thatN[](F, ε, µ) = ∞ for someε > γ. Then there existα < β withβ−α ≥ γ
and a measurable setA ∈ X such thatF0 isµ-weakly dense overA at levels(α, β).
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PROOF. By Lemma2.2, there existα < β with β − α ≥ γ such that

inf
π∈Π(X,X)

sup
f∈F0

µ
(

∂µ
π ({f < α}, {f > β})

)

> 0.

Choose for everyπ ∈ Π(X,X) a functionfπ ∈ F0 such that

µ
(

∂µ
π ({fπ < α}, {fπ > β})

)

≥
1

2
sup
f∈F0

µ
(

∂µ
π ({f < α}, {f > β})

)

.

DefineAπ := ∂µ
π ({fπ < α}, {fπ > β}). Then(1Aπ )π∈Π(X,X) is a net of random

variables in the unit ball ofL2(µ). By weak compactness, we may extract a subnet
(1Aπ(τ)

)τ∈T that converges weakly inL2(µ) to a random variableH. We claim
thatF0 is µ-weakly dense overA := {H > 0} at levels(α, β).

To prove the claim, let us first note that asinfπ µ(Aπ) > 0, clearlyµ(A) > 0.
Now fix B1, . . . , Bp ∈ X such thatµ(A ∩ Bi) > 0 for all i. This trivially implies
thatµ(H1A∩Bi

) > 0 for all i, so we can chooseτ0 ∈ T such that

µ(Aπ(τ) ∩A ∩Bi) > 0 ∀ 1 ≤ i ≤ p, τ � τ0.

Let π0 be the partition generated byA,B1, . . . , Bp, and chooseτ∗ ∈ T such that
τ∗ � τ0 andπ∗ := π(τ∗) � π0. AsA ∩Bi is a union of atoms ofπ∗ by construc-
tion, µ(Aπ∗ ∩A∩Bi) > 0 must imply thatA∩Bi contains an atomP ∈ π∗ such
thatµ(P ∩ {fπ∗ < α}) > 0 andµ(P ∩ {fπ∗ > β}) > 0. Therefore

µ(A ∩Bi ∩ {fπ∗ < α}) > 0 and µ(A ∩Bi ∩ {fπ∗ > β}) > 0 ∀ i.

ThusF0 is µ-weakly dense overA at levels(α, β) as claimed.

We can now complete the proof of Theorem1.6.

PROOF OFTHEOREM 1.6.
a ⇒ b: The proof of Theorem 4.6.2 in [9] (see also [6]) shows that ifF contains

a finite subset of cardinality2n that is Boolean independent at levels(α, β) with
β−α ≥ γ, thenF γ-shatters a finite subset ofX of cardinalityn. Therefore, if con-
dition b fails, there must clearly existγ-shattered finite subsets ofX of arbitrarily
large cardinality, in contradiction with conditiona.

b ⇒ c: Suppose that conditionc fails. By Lemma2.2and Proposition2.4, there
exist a probability measureµ, levelsα < β with β − α ≥ γ, and a measurable
setA ∈ X such thatF0 is µ-weakly dense overA at levels(α, β). We can now
iteratively apply Definition2.3 to construct a Boolean independent sequence. In-
deed, applying first the definition withp = 1 andB1 = X, we choosef1 ∈ F0

such thatµ(A ∩ {f1 < α}) > 0 andµ(A ∩ {f1 > β}) > 0. Then applying the
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definition withp = 2 andB1 = {f1 < α}, B2 = {f1 > β}, we choosef2 ∈ F0

such thatµ(A ∩ {f1 < α} ∩ {f2 < α}) > 0, µ(A ∩ {f1 < α} ∩ {f2 > β}) > 0,
µ(A ∩ {f1 > β} ∩ {f2 < α}) > 0, andµ(A ∩ {f1 > β} ∩ {f2 > β}) > 0.
Repeating this procedure yields the desired sequence(fi)i∈N.

3. Proof of Theorem 1.3. Throughout this section, we fix a standard measur-
able space(X,X) and a separable uniformly bounded family of measurable func-
tionsF. We will prove Theorem1.3by proving the implications1 ⇒ 4 ⇒ 2 ⇒ 1
and2 ⇒ 3 ⇒ 4. Below, we consider each of these implications in turn.

3.1. 1 ⇒ 4. Suppose there exists a sequence(fi)i∈N ⊆ F that is Boolean
σ-independent at levels(α, β) for someα < β. Clearly we must have

κ− < α < β < κ+, κ− := inf
f∈F

inf
x∈X

f(x), κ+ := sup
f∈F

sup
x∈X

f(x).

Define the measurable set

X0 =
⋂

n∈N

({fn < α} ∪ {fn > β}) .

As (fi)i∈N is Booleanσ-independent, this set is nonempty (in fact uncountable).
DefineCn := {fn < α} ∩ X0, and note thatX0\Cn = {fn > β} ∩ X0 by
construction. Therefore, the Booleanσ-independence property can be expressed as

⋂

j∈F

Cj ∩
⋂

j 6∈F

X0\Cj 6= ∅ for everyF ⊆ N.

Define onX0 theσ-fieldX0 := σ{Cn : n ∈ N}. By a result of Marczewski [14], p.
25, there exists a probability measureµ0 on(X0,X0) such that(Cn)n∈N is an i.i.d.
sequence of sets withµ0(Cn) := p, where we choose(κ+−β)/(κ+−α) < p < 1.
As (X,X) is a standard measurable space, the extension theorem of [13] implies
that there exists a probability measureµ on (X,X) that is supported onX0 and
such that the restriction ofµ to (X0,X0) coincides withµ0.

We now claim thatF is notµ-Glivenko-Cantelli, which yields the desired con-
tradiction. To this end, note that we can trivially estimatefor anyf ∈ F

β 1f>β + κ− 1f≤β ≤ f ≤ α 1f<α + κ+ 1f≥α.

We therefore have

sup
f∈F

∣

∣

∣

∣

∣

1

n

n
∑

k=1

f(Xk)− µ(f)

∣

∣

∣

∣

∣

≥ sup
j∈N

1

n

n
∑

k=1

{fj(Xk)− µ(fj)}

≥ (κ− − β) inf
j∈N

1

n

n
∑

k=1

1fj≤β(Xk) + ε,
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where we have used thatµ(fn < α) = p = (κ+ − β + ε)/(κ+ − α) for some
ε > 0. But if (Xk)k≥1 are i.i.d. with distributionµ then, by construction, the family
of random variables{1fj≤β(Xk) : j, k ∈ N} is i.i.d. withP[1fj≤β(Xk) = 0] > 0.
Using the Borel-Cantelli lemma, it is easily established that

inf
j∈N

1

n

n
∑

k=1

1fj≤β(Xk) = 0 a.s. for alln ∈ N.

ThusF is not aµ-Glivenko-Cantelli class. This completes the proof.

3.2. 4 ⇒ 2. Suppose there exists a probability measureµ andε > 0 such that
N[](F, ε, µ) = ∞. By Lemma2.2 and Proposition2.4, there exist levelsα < β
and a measurable setA ∈ X such thatF is µ-weakly dense overA at levels(α, β).
We will presently construct a Booleanσ-independent sequence, which yields the
desired contradiction. The idea is to repeat the proof of Theorem 1.6, but now
exploiting the fact that(X,X) is a standard measurable space to ensure that the
infinite intersections in the definition of Booleanσ-independence are nonempty.

As (X,X) is standard, we may assume without loss of generality thatX is Polish
and thatX is the Borelσ-field. Thusµ is inner regular. We now apply Definition
2.3as follows. First, settingp = 1 andB1 = X, choosef1 ∈ F such that

µ(A ∩ {f1 < α}) > 0, µ(A ∩ {f1 > β}) > 0.

As µ is inner regular, we may choose compact setsF1 ⊆ {f1 < α} andG1 ⊆
{f1 > β} such thatµ(A ∩ F1) > 0 andµ(A ∩ F2) > 0. Applying the definition
with p = 2, B1 = F1, andB2 = G1, we can choosef2 ∈ F such that

µ(A ∩ F1 ∩ {f2 < α}) > 0, µ(A ∩ F1 ∩ {f2 > β}) > 0,

µ(A ∩G1 ∩ {f2 < α}) > 0, µ(A ∩G1 ∩ {f2 > β}) > 0.

Using again inner regularity, we can now choose compact setsF2 ⊆ {f2 < α}
andG2 ⊆ {f2 > β} such thatµ(A ∩ F1 ∩ F2) > 0, µ(A ∩ F1 ∩ G2) > 0,
µ(A ∩ G1 ∩ F2) > 0, andµ(A ∩ G1 ∩ G2) > 0. Iterating the above steps, we
construct a sequence of functions(fi)i∈N ⊆ F and compact sets(Fi)i∈N, (Gi)i∈N
such thatFi ⊆ {fi < α}, Gi ⊆ {fi > β} for everyi ∈ N, and for anyn ∈ N

µ





⋂

j∈Q

Fj ∩
⋂

j∈{1,...,n}\Q

Gj



 > 0 for everyQ ⊆ {1, . . . , n}.

Now suppose that the sequence(fi)i∈N is not Booleanσ-independent. Then
⋂

j∈R

{fj < α} ∩
⋂

j 6∈R

{fj > β} = ∅
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for someR ⊆ N. Thus we certainly have

⋂

j∈R

Fj ∩
⋂

j 6∈R

Gj = ∅.

Choose arbitraryℓ ∈ R (if R is the empty set, replaceFℓ by G1 throughout the
following argument). Then clearly{X\Fj : j ∈ R} ∪ {X\Gj : j 6∈ R} is an open
cover ofFℓ. Therefore, there exists finite subsetsQ1 ⊆ R, Q2 ⊆ N\R such that
{X\Fj : j ∈ Q1} ∪ {X\Gj : j ∈ Q2} coversFℓ. But then

Fℓ ∩
⋂

j∈Q1

Fj ∩
⋂

j∈Q2

Gj = ∅,

a contradiction. Thus(fi)i∈N is Booleanσ-independent at levels(α, β).

3.3. 2 ⇒ 1. This is the usual Blum-DeHardt argument, included here for com-
pleteness. Fix a probability measureµ andε > 0, and suppose thatN[](F, ε, µ) <
∞. Chooseε-brackets[f1, g1], . . . , [fN , gN ] in L1(µ) coveringF. Then

sup
f∈F

|µn(f)− µ(f)| = sup
f∈F

{µn(f)− µ(f)} ∨ sup
f∈F

{µ(f)− µn(f)}

≤ max
i=1,...,N

{µn(gi)− µ(fi)} ∨ max
i=1,...,N

{µ(gi)− µn(fi)},

where we define the empirical measureµn := 1
n

∑n
k=1 δXk

for an i.i.d. sequence
(Xk)k∈N with distributionµ. The right hand side in the above expression is measur-
able and converges a.s. to a constant not exceedingε by the law of large numbers.
As ε > 0 andµ were arbitrary,F is universal Glivenko-Cantelli.

3.4. 2 ⇒ 3 ⇒ 4. As N(F, ε, µ) ≤ N[](F, 2ε, µ), the implication2 ⇒ 3 is
trivial. It therefore remains to prove the implication3 ⇒ 4.

To this end, suppose that there exists a sequence(fi)i∈N ⊆ F that is Boolean
σ-independent at levels(α, β) for someα < β. Construct the probability measure
µ as in the proof of the implication1 ⇒ 4. We claim thatN(F, ε, µ) = ∞ for
ε > 0 sufficiently small, which yields the desired contradiction.

To prove the claim, it suffices to note that for anyi 6= j

µ(|fi − fj|) ≥ µ(|fi − fj|1fj<α1fi>β)

≥ (β − α)µ({fj < α} ∩ {fi > β}) = (β − α)p(1 − p) > 0

by the construction ofµ. ThereforeF contains an infinite set of(β − α)p(1 − p)-
separated points inL1(µ), soN(F, (β − α)p(1 − p)/2, µ) = ∞.
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4. Proof of Corollary 1.4. Throughout this section, we fix a standard mea-
surable space(X,X) and a separable uniformly bounded family of measurable
functionsF. We will prove Corollary1.4 by proving the implications2 ⇔ 5 and
2 ⇒ {6, 7, 8} ⇒ 1. Below, we consider each of these implications in turn.

4.1. 2 ⇔ 5. The implication2 ⇒ 5 follows by the Blum-DeHardt argument
as in section3.3. For the implication5 ⇒ 2, we employ a result due to Topsøe [20]
that can be stated as follows. For any probability measureµ, functionf ∈ F, and
finite partitionπ ∈ Π(X,X), define theµ-averageπ-oscillation off as

̟µ
πf =

∑

P∈π

{

sup
x∈P

f(x)− inf
x∈P

f(x)

}

µ(P ).

By [20], Theorem 1, condition 5 holds if and only if

inf
π∈Π(X,X)

sup
f∈F

̟µ
πf = 0 for every probability measureµ.

We claim that the latter property implies condition 2.
To prove the claim, we may clearly assume that everyf ∈ F takes values in

[0, 1]. Fix a probability measureµ andk ∈ N. Chooseπ ∈ Π(X,X) such that
supf∈F ̟

µ
πf ≤ k−1. For eachf ∈ F, define the functionsf+ andf− as follows:

f+ =
∑

P∈π

k−1⌈k supx∈P f(x)⌉1P ,

f− =
∑

P∈π

k−1⌊k infx∈Pf(x)⌋1P .

By construction,f− ≤ f ≤ f+ pointwise andµ(f+ − f−) ≤ 3k−1 for every
f ∈ F. Moreover, asf+, f− are constant on eachP ∈ π and take values in the
finite set{jk−1 : 0 ≤ j ≤ k}, there is only a finite number of such functions. Thus
N[](F, 3k

−1, µ) < ∞. Asµ andk are arbitrary, the claim is established.

4.2. 2 ⇒ {6, 7, 8}. The implication2 ⇒ 6 follows immediately from the
Blum-DeHardt argument as in section3.3. The complication for the implications
2 ⇒ {7, 8} is that the limiting measure is a random measure (unlike2 ⇒ 6 where
the limiting measure is assumed to be nonrandom). Intuitively one can simply con-
dition onG−∞ or I, respectively, so that the problem reduces to the implication
2 ⇒ 6 under the conditional distribution. The main work in the proof consists of
resolving the measurability issues that arise in this approach.

LetF0 ⊆ F be a countable family that is dense inF in the topology of pointwise
convergence. We first show thatF0 is alsoL1(µ)-dense inF for anyµ: this is not
obvious, as the dominated convergence theorem does not holdfor nets.
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LEMMA 4.1. If N[](F, ε, µ) < ∞ for all ε > 0, thenF0 isL1(µ)-dense inF.

PROOF. Fix ε > 0, and chooseε-brackets[f1, g1], . . . , [fN , gN ] in L1(µ) cov-
eringF. As topological closure and finite unions commute, for everyf ∈ F there
exists1 ≤ i ≤ N such thatf is in the pointwise closure of[fi, gi] ∩ F0. But then
clearly f ∈ [fi, gi], and choosing anyg ∈ [fi, gi] ∩ F0 we haveµ(|f − g|) ≤
µ(gi − fi) ≤ ε. As ε > 0 is arbitrary, the proof is complete.

We can now reduce the suprema in conditions7 and8 to countable suprema.

COROLLARY 4.2. Suppose thatN[](F, ε, µ) < ∞ for everyε > 0 and proba-
bility measureµ. Then for any pair of probability measuresµ, ν we have

sup
f∈F

|µ(f)− ν(f)| = sup
f∈F0

|µ(f)− ν(f)|.

In particular, this holds whenµ andν are random measures.

PROOF. Fix (nonrandom) probability measuresµ, ν, and defineρ = {µ+ν}/2.
ThenF0 isL1(ρ)-dense inF by Lemma4.1. In particular, for everyf ∈ F andε >
0, we can chooseg ∈ F0 such thatµ(|f−g|)+ν(|f−g|) ≤ ε. Now let(fn)n∈N ⊆ F

be a sequence such thatsupf∈F |µ(f)−ν(f)| = limn→∞ |µ(fn)−ν(fn)|. For each
fn, choosegn ∈ F0 such thatµ(|fn − gn|) + ν(|fn − gn|) ≤ n−1. Then

sup
f∈F

|µ(f)− ν(f)| = lim
n→∞

|µ(gn)− ν(gn)| ≤ sup
f∈F0

|µ(f)− ν(f)|,

which clearly yields the result (asF0 ⊆ F). In the case of random probability
measures, we simply apply the nonrandom result pointwise.

To prove2 ⇒ 8 we use the ergodic decomposition. Consider a strictly station-
ary sequence(Zn)n∈Z of X-valued random variables on an underlying probabil-
ity space(Ω,G,P). As (X,X) (hence also(XZ,X⊗Z)) is standard, Theorem 7.6
in [12] states that there exists a versionPI of the regular conditional probability
P[(Zn)n∈Z ∈ · |I] such that the lawPω

I
is stationary and ergodic for everyω ∈ Ω.

Applying the Blum-DeHardt argument as in section3.3for fixedω ∈ Ω gives

Pω
I

[

sup
f∈F0

∣

∣

∣

∣

∣

1

n

n
∑

k=1

f(Zk)−Pω
I (f(Z0))

∣

∣

∣

∣

∣

n→∞
−−−→ 0

]

= 1 for all ω ∈ Ω.

Integrating this expression with respect toP(dω) gives

sup
f∈F0

∣

∣

∣

∣

∣

1

n

n
∑

k=1

f(Zk)−PI(f(Z0))

∣

∣

∣

∣

∣

n→∞
−−−→ 0 a.s.
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using the disintegration of measures. Applying Corollary4.2and using the fact that
regular conditional probabilities are a.s. unique (so the result holds for an arbitrary
choice of the regular conditional probability) yields the desired result.

To prove the implication2 ⇒ 7, we aim to repeat the proof of2 ⇒ 8 with a
suitable tail decomposition, given presently, replacing the ergodic decomposition.

PROPOSITION4.3. Let (Z−k)k≥0 be random variables on a probability space
(Ω,G,P) taking values in the standard space(X,X), and letF0 be a countable
family of bounded measurable functions on(X,X). LetG−n := σ{Z−k : k ≥ n}
andG−∞ :=

⋂

n G−n. Then there exists for every0 ≤ n ≤ ∞ a versionPG−n
of

the regular conditional probabilityP[(Z−k)k≥0 ∈ · |G−n] such that:

1. ForP-a.e.ω ∈ Ω

Pω
G−∞

[

Pω
G−∞

[f(Z0)|G−n] = PG−n
(f(Z0)) ∀ f ∈ F0, n ∈ N

]

= 1.

2. G−∞ isPω
G−∞

-a.s. trivial forP-a.e.ω ∈ Ω.

PROOF. Define on(Ω × Ω,G ⊗ G) the random variables(Z1
−n, Z

2
−n)n≥0 as

Z1
−n(ω, ω

′) = Z−n(ω), Z2
−n(ω, ω

′) = Z−n(ω
′), and define the probability mea-

sureQ such thatQ(A×B) = P(A∩B) for all A,B ∈ G. That is,Q is supported
on the diagonal{(ω, ω′) : ω = ω′} and its marginals coincide withP.

Choose for everyn ≤ ∞ a versionµn of the regular conditional probability
P[(Z−k)k≥0 ∈ · |G−n] (it exists by [10], Theorem 10.2.2 as(XZ+ ,X⊗Z+) is stan-
dard). It is easily seen that(ω, ω′) 7→ µω

∞ is a version of the regular conditional
probability Q[(Z2

−k)k≥0 ∈ · |G−∞ ⊗ {∅,Ω}] and that(ω, ω′) 7→ µω′

n is a ver-
sion of the regular conditional probabilityQ[(Z2

−k)k≥0 ∈ · |G−∞⊗G−n] for every
n < ∞. AsG−n is countably generated, the result in [22], pp. 95–96 states that

µω
∞[f(Z0)|G−n] = µn(f(Z0)) P-a.e.ω ∈ Ω

for all f ∈ F0 andn ∈ N. AsF0,N are countable we have proved the first part of
the result. The second part of the result is proved in [7], Theorem 15.

We now prove2 ⇒ 7. Let (G−n)n∈N be a reverse filtration such thatG−n is
countably generated for eachn ∈ N, and consider a random variableZ taking
values in the standard space(X,X). Choose for everyn ∈ N a countable gen-
erating class(Hn,j)j∈N ⊆ G−n, and define the{0, 1}N-valued random variable
Y−n = (1Hn,j

)j∈N. Then, by construction,G−n = σ{Y−k : k ≥ n}. As {0, 1}N is
Polish, it is Borel-isomorphic with(X,X), so we can construct for everyn ∈ N an
(X,X)-valued random variableZ−n such thatG−n = σ{Z−k : k ≥ n}. Finally,
defineZ0 = Z. This puts us in the setting of Proposition4.3.
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Define the tailσ-field G−∞ =
⋂

n G−n (of courseG−∞ is not countably gen-
erated, but this is not needed). Using Proposition4.3, the martingale convergence
theorem, and applying the Blum-DeHardt argument as in section 3.3gives

Pω
G−∞

[

sup
f∈F0

∣

∣

∣
PG−n

(f(Z))−Pω
G−∞

(f(Z))
∣

∣

∣

n→∞
−−−→ 0

]

= 1 for P-a.e.ω ∈ Ω.

Integrating this expression with respect toP(dω), using the disintegration of mea-
sures, and applying Corollary4.2yields the desired result.

4.3. {6, 7, 8} ⇒ 1. These implications are immediate, as each of the condi-
tions {6, 7, 8} contains condition1 as a special case. Indeed, for the implication
6 ⇒ 1, it suffices to chooseµn to be the empirical measure of an i.i.d. sequence
with distributionµ. Similarly, the implication8 ⇒ 1 follows from the fact that an
i.i.d. sequence is stationary and ergodic. Finally, the implication 7 ⇒ 1 follows
from Theorem 6.1.6 in [9] and the Kolmogorov zero-one law.

5. Proof of Proposition 1.7.

5.1. Construction. The construction of the classC in Proposition1.7 is based
on a combinatorial construction due to Alon, Haussler, and Welzl [5], Theorem
A(2). We begin by recalling the essential results in that paper.

DEFINITION 5.1. Letq ∈ N be a prime power and definem = q2 + q + 1.
Thefinite projective planePG(2, q) is a family ofm subsets of{1, . . . ,m} such
that every setC ∈ PG(2, q) has cardinalityq + 1, every pointx ∈ {1, . . . ,m}
belongs to exactlyq + 1 elements ofPG(2, q), and for every pair of pointsx, x′ ∈
{1, . . . ,m}, x 6= x′ there is a unique setC ∈ PG(2, q) with x, x′ ∈ C.

The finite projective planePG(2, q) is known to exist wheneverq is a prime
power (see [5] and the references therein). For our purposes, the key result about
finite projective planes is the following (see [5], p. 336 for the proof).

PROPOSITION5.2. Let q ∈ N be a prime power and definem = q2 + q + 1.
Then for any partitionπ of {1, . . . ,m} such that

max
C∈PG(2,q)

|∂πC|

m
≤ ε,

we have|π|2 > m1/2(1− ε). Here| · | denotes the cardinality of a set, and we have
defined theπ-boundary∂πC :=

⋃

{P ∈ π : P ∩C 6= ∅ andP 6⊆ C}.
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We now proceed to construct the classC in Proposition1.7. Let qj ↑ ∞ be
an increasing sequence of prime powers, and definemj = q2j + qj + 1. We now
partitionN into consecutive blocks of lengthmj, as follows:

N =
∞
⋃

j=1

Nj , Nj =

{

j−1
∑

i=1

mj + 1, . . . ,

j
∑

i=1

mj

}

.

DefineC as the disjoint union of copies ofPG(2, qj) on the blocksNj:

C =

∞
⋃

j=1

Cj , Cj = {B ⊆ Nj : B ∩Nj = C, C ∈ PG(2, qj)}.

We claim that the countable classC of subsets ofN hasγ-dimension two.

LEMMA 5.3. C has Vapnik-Chervonenkis dimension two.

PROOF. Choose any three distinct pointsn1, n2, n3 ∈ N. If two of these points
are in distinct intervalsNj, then no set inC contains both points. On the other hand,
suppose that all three points are in the same intervalNj . Then by the definition of
the finite projective plane, either there is no set inC that contains all three points,
or there is no set that contains two of the points but not the third (as each pair of
points must lie in a unique set inC). Thus we have shown that no family of three
points{n1, n2, n3} is γ-shattered for0 < γ < 1. On the other hand, it is clear
from the definition of the finite projective plane that any pair of points{n1, n2}
belonging to the same intervalNj is γ-shattered for0 < γ < 1.

We now turn to the proof of Proposition1.7.

5.2. Proof of Proposition1.7. We will use the following crude lemma to obtain
lower bounds on the bracketing numbers.

LEMMA 5.4. Letµ be a probability measure onN. Then

inf
|π|≤3N

sup
C∈C

µ(∂πC) > ε implies N[](C, ε, µ) > N,

where the infimum ranges over all partitions ofN with |π| ≤ 3N .

PROOF. Suppose thatN[](C, ε, µ) ≤ N . Then we may choosek ≤ N pairs
{C+

i , C−
i }1≤i≤k of subsets ofN such thatµ(C+

i \C
−
i ) ≤ ε for all 1 ≤ i ≤ k, and

for everyC ∈ C, there exists1 ≤ i ≤ k such thatC−
i ⊆ X ⊆ C+

i . Let π be the
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partition generated by{C+
i , C−

i : 1 ≤ i ≤ k}. Then|π| ≤ 3N , asπ is the common
refinement of at mostN partitions{C−

i , C+
i \C−

i ,N\C+
i } of size three.

Now choose anyC ∈ C, and choose1 ≤ i ≤ k such thatC−
i ⊆ C ⊆ C+

i .
As C−

i andN\C+
i are unions of atoms ofπ by construction, and asC−

i ⊆ C and
(N\C+

i )∩C = ∅, we evidently have∂πC ⊆ C+
i \C

−
i . Thusµ(∂πC) ≤ ε. As this

holds for anyC ∈ C, we complete the proof by contradiction.

Denote byµj the uniform distribution onNj . Let (pj)j∈N be a sequence of
nonnegative numberspj ≥ 0 so that

∑

j pj = 1, and define the probability measure

µ =

∞
∑

j=1

pjµj.

We first obtain a lower bound onN[](C, ε, µ). Subsequently, we will be able to
choose the sequence(pj)j∈N such that this bound grows arbitrarily quickly.

To obtain a lower bound, let us suppose thatN[](C, ε, µ) ≤ N . Then applying
Lemma5.4, there exists a partitionπ of N with |π| ≤ 3N such that

sup
j∈N

pj min
|π′|≤3N

max
C∈PG(2,qj)

|∂π′C|

mj
≤ sup

j∈N
pj sup

C∈Cj

µj(∂πC) ≤ sup
C∈C

µ(∂πC) ≤ ε.

By Proposition5.2,

min
|π′|≤3N

max
C∈PG(2,qj)

|∂π′C|

mj
≤

ε

pj
implies m

1/4
j

√

1−
ε

pj
∧ 1 < 3N .

Therefore,N[](C, ε, µ) ≤ N implies that

N >
1

4
log3 mj +

1

2
log3

(

1−
ε

pj
∧ 1

)

for everyj ∈ N. Conversely, we have shown that

N[](C, ε, µ) ≥ sup
j∈N

⌊

1

4
log3 mj +

1

2
log3

(

1−
ε

pj
∧ 1

)⌋

.

This bound holds for any choice of(pj)j∈N.
Fix n(ε) ↑ ∞ asε ↓ 0. We now choose(pj)j∈N such thatN[](C, ε, µ) ≥ n(ε).

First, asmj ↑ ∞, we can choose a subsequencej(k) ↑ ∞ such that

mj(⌊log2(2/3ε)⌋)
≥ 34n(ε)+6 for all 0 < ε < 1/3.

Now define(pj)j∈N as follows:

pj(k) = 2−k for k ∈ N, pj = 0 for j 6∈ {j(k) : k ∈ N}.
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Then we clearly have, settingJ(ε) = j(⌊log2(2/3ε)⌋),

N[](C, ε, µ) ≥

⌊

1

4
log3 mJ(ε) +

1

2
log3

(

1−
ε

pJ(ε)
∧ 1

)⌋

≥ ⌊n(ε) + 1⌋ ≥ n(ε)

for all 0 < ε < 1/3. This completes the proof.
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