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THE UNIVERSAL GLIVENKO-CANTELLI PROPERTY

BY RAMON VAN HANDEL*
Princeton University

Let F be a separable uniformly bounded family of measurable fonston a
standard measurable spgce, X), and letNy (7, ¢, 1) be the smallest num-
ber ofe-brackets inZ." (1) needed to coveF. The following are equivalent:

1. Fis auniversal Glivenko-Cantelli class.

2. Ny(F,e, 1) < oo for everye > 0 and every probability measure
3. JFis totally bounded in.! (11) for every probability measure.

4. F does not contain a Booleanindependent sequence.

In particular, universal Glivenko-Cantelli classes aréarmity classes for
general sequences of almost surely convergent random resasu

1. Mainresults. Let (X, X) be a measurable space, andJdbe a family of
measurable functions ofiX, X). Given a probability measurg on (X, X), the
family F is said to be a-Glivenko-Cantelli clas#
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where(Xy),>1 is the i.i.d. sequence of -valued random variables with distribu-
tion p, defined on its canonical product probability spacEhe classT is said to
be auniversal Glivenko-Cantelli clagsit is ;-Glivenko-Cantelli for every proba-
bility measureu on (X, X). The goal of this paper is to obtain, under mild regular-
ity assumptions, a precise characterization of universiae@ko-Cantelli classes.
Somewhat surprisingly, we find that universal Glivenko-teédinclasses are in fact
uniformity classes for convergence of (random) probahitieasures in a very gen-
eral setting, so that their applicability extends subst#iptbeyond the setting of
laws of large numbers for i.i.d. sequences that is inheretitair definition.
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Keywords and phrasesiniversal Glivenko-Cantelli classes, uniformity classesform conver-
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! Recall that a sequence of possibly non-measurable reagdélinctions 7, ),,>1 on a probabil-
ity space is said to converge a.s. to a functibif there exists a sequence of nonnegative measurable
functionsA,, converging to zero a.s. such that, — Z| < A,, pointwise for alln. > 1.
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The following probability-free independence propertiesfamilies of functions
will play a fundamental role in this paper. These notion®detck to Marczewski
[14] (for sets) and Rosenthal ] (for functions, see alsd]).

DerINITION 1.1. A family F of functions on a seK is said to beBoolean
independent at levelgy, ) if for every finite subfamily{ f1,..., f,} CF

({fi <o} ({f; > B} #2 foreveryF C{1,...,n}.

jEeF jE¢F
A sequencd f;);cn is said to beBooleans-independent at levelgy, ) if

ﬂ{fj<a}ﬂ ﬂ{fj>ﬁ}7€® for everyF C N.

jeEF JEF

A family (sequence) of functions is said to be Boolean)ihdependent if it is
Boolean ¢-)independent at levelgy, 3) for somea < .

We also recall the well-known notions of bracketing and ciogenumbers.

DEFINITION 1.2. LetJ be a class of functions on a measurable sgacex).
Givene > 0 and a probability measugeon (X, X), a pair of measurable functions
ft, f~ such thatf~ < f* pointwise andu(f™ — f~) < e defines are-bracket
in L' (p) [f*,f7):={f: f~ < f < f* pointwise}. Denote byN};(F,e, ;1) the
cardinality of the smallest collection efbrackets inL!(x) coveringd, and by
N (T, ¢, ) the cardinality of the smallest covering &foy s-balls in L ().

A class of functionsF on a setX will be said to beseparablé if it contains a
countable dense subset for the topology of pointwise cgevere inRX. Recall
that a measurable spac¥, X) is said to bestandardif it is Borel-isomorphic to a
Polish space. We can now formulate our main result.

THEOREM1.3. LetJ be a separable uniformly bounded family of measurable
functions on a standard measurable sp&&e X). The following are equivalent:

1. Fis a universal Glivenko-Cantelli class.

2. Nj(T,¢, 1) < oo for everye > 0 and every probability measuye
3. N(F,e,u) < oo for everye > 0 and every probability measuye
4. F contains no Boolean-independent sequence.

2 Note that the notion of separability used here is a slightyaker assumption than a common
notion of poinwise measurability employed, for examplgaty, Example 2.3.4.
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A notable aspect of this result is that the four equivalemiditions of Theorem
1.3are quite different in nature: roughly speaking, the firstdition is probabilis-
tic, the second and third are geometric and the fourth is quabdrial.

The implicationl = 2 in Theoreml.3is the most important result of this paper.
A consequence of this implication is that universal Glivertkantelli classes can
be characterized as uniformity classes in a much more desettang, as in the
following Corollary. The first condition is due to Tops&9], while the remaining
implications are straightforward up to measurability &su

COROLLARY 1.4. Under the assumptions of Theordn8, the following are
equivalent to the equivalent conditions 1-4 of Theoten

5. For any probability measurg on (X, X) and net of probability measures
(Ha)aer such thatu, — p setwise, we havep reg |1a(f) — p(f)| — 0.

6. For any probability measurg on (X, X) and sequence of random proba-
bility measures (kernels)u,, ).en such thatu, (A) — p(A) a.s. for every
A € X, we havesup e |pn(f) — p(f)] — O as.

7. For any countably generated reverse filtrati@. ,,),cy and X -valued ran-
dom variableZ, sup ;e [Pg_, (f(Z2)) — Pg__ (f(Z))] = O as.

8. For any strictly stationary sequenc¢g,, ),z of X-valued random variables,
sup g |2 S0 f(Zk) — Pa(f(Zo))| — 0 as. (is the invarianto-field).

HerePg denotes any version of the regular conditional probabikty- |G].

The separability assumption in Theoren8 is crucial: without it, easy coun-
terexamples show that a characterization along the linési®paper is impossi-
ble. For example, consider the cléssonsisting of all indicator functions of finite
subsets ofX. It is clear that this class is nptGlivenko-Cantelli for any nonatomic
measureu, yet it is easily seen that condition 3 of Theoré&rB3holds. On the other
hand, B], section 1.2 gives a simple example of a universal Glive@Gkmtelli class
(in fact, a Vapnik-Chervonenkis class that satisfies stahogeasurability assump-
tions) for which condition 8 of Corollar{.4, and therefore condition 2 of Theorem
1.3 are violated. It therefore appears that separabilitypptefundamental role here
and cannot be replaced by a weaker measurability assumption

On the other hand, the assumption thas uniformly bounded is not a restric-
tion: indeed, it is easily seen that any universal Glive@atelli class is uniformly
bounded up to additive constants (see, for examflty, Proposition 4). The im-
portance of the assumption that the measurable péac¥) is standard is less ob-
vious. Its main role in the proof is to ensure that the impgilara4 = 2 holds in the
absence of a Booleastindependent sequence rather than a Boolean independent
sequence. For this purpose it would suffice to restrict ttterto quasi-compact
measures as defined ihg], but this does not yield a substantial weakening of the
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assumptions. For the case whérg, X) is a general measurable space we will
prove the following quantitative result, which is of indegent interest.

DEFINITION 1.5. Lety > 0. A family F of functions on a seX is said to
~-shattera subsetX, C X if there exist levelsx < g with 5 — « > ~ such that,
for every finite subsefx, ..., z,} C Xy, the following holds:

VEC{l,...,n}, 3f €T sothat f(z;) <aforjeF, f(xz;)>pforj¢F.
The~-dimensiorof F is the maximal cardinality of-shattered finite subsets &f.

THEOREM1.6. LetJ be a separable uniformly bounded family of measurable
functions on a measurable spacg, X), and lety > 0. Consider:

a. F has finitey-dimension.
b. No sequence ifi is Boolean independent at levéls, 5) with 5 — a > ~.
c. Ny(J,e,p) < oo for everye >~ and every probability measuye

Then the implications = b = ¢ hold.

The notion ofv-dimension appears i] (called V., ,-dimension there). The
implicationa = ¢ of Theoreml.6 contains the recent results of Adams and Nobel
[1, 2, 3]. Let us note that condition is strictly weaker than condition: for ex-
ample, the clas§ = {1¢ : C'is afinite subset aN} has infinitey-dimension for
~ < 1, but does not contain a Boolean independent sequence. tongis dual
(in the sense of Assouad]) to the nonexistence of @-shattered sequence .

A connection between the latter and the universal Glive@kotelli property for
families of indicators is considered by Dudley, Giné andriZil1].

An interesting question arising from Theordnis as follows. It is known, see
[4] and [19], that if F” has finitey-dimension for alty > 0 thensup, N (F, v, 1) <
oo for all v > 0, that is, the covering numbers of the cl&sare bounded uniformly
with respect to the underlying probability measure. If ii#dn JF is a family of
indicators, then we even have the polynomial bownd, N (F,¢, 1) < e~ for
some constand > 0. In view of Theoreml1.6, one might expect that one can
similarly obtain quantitative bounds on the bracketing bars. Unfortunately, this
is not the caselN[(F, ¢, 1) can blow up arbitrarily quickly as |. 0.

PROPOSITION1.7. There exists a countable clagsof subsets oN, whose
Vapnik-Chervonenkis dimension is two (that is, thdimension of 1 : C' € C}
is two for all0 < v < 1) such that the following holds: for any functieric) 1 co
ase | 0, there is a probability measurg on N such thatV;(C, e, 1) > n(e) for
all 0 < e < 1/3. In particular, sup,, Nj(€, e, ) = oo forall 0 < e < 1/3.
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Probabilistically, this result has the following consegece In Theoreml.3
we established that the universal Glivenko-Cantelli propes characterized (un-
der mild regularity assumptions) in terms of the bracketingnbers. In contrast,
Propositionl.7 shows that neither the uniform Glivenko-Cantelli propetty the
universal Donsker property can be characterized in termwaxfketing numbers
(both these properties are characterized by finitenessed¥dpnik-Chervonenkis
dimension for classes of sets, s€§ p. 225 and p. 215, respectively). Indeed, the
former would require a uniform bound on the bracketing nursbehile the latter
would require finiteness of the bracketing integral for gverobability measure
(see [L6]), both of which are ruled out by Propositidn?.

The original motivation of the author was an attempt to ctiaréze unifor-
mity classes for certain reverse martingales that appeteitheory of nonlinear
filtering. In a remarkable recent paper, Adams and NoBletliowed that Vapnik-
Chervonenkis classes of sets are uniformity classes fardheergence of empiri-
cal measures of stationary ergodic sequences; their poodd be extended to more
general random measures. A simplified version of the argtimdrich makes the
natural connection with bracketing, appeared subsequenfl]. While attempt-
ing to understand the results &][ the author realized that the techniques used
in the proof are very closely related to a set of techniqueldped in Banach
space theory by Bourgain, Fremlin and Talagra®dlP] in order to study point-
wise compact sets of measurable functions. The proof of fEmed.3 is based
on this elegant theory, which does not appear to be widelyknio the proba-
bility literature (however, the proofs in this paper areeimded to be essentially
self-contained). A key innovation is the construction ict&m 2 of the “weakly
dense” set which allows to fully exploit the techniques &f19].

The remainder of this paper is organized as follows. We fiztg Theoreni.6
in section2. The proofs of Theorem.3, Corollary 1.4, and Propositiorl.7 are
subsequently given in sectioBs4, and5, respectively.

2. Proof of Theorem 1.6. In this section, we fix a measurable spdcé X)
and a separable uniformly bounded family of measurabletiomed. LetF, C F
be a countable family that is densedtin the pointwise convergence topology.

DEerFINITION 2.1. Denote byI(X, X) the collection of all finite measurable
partitions ofX. Form, 7’ € TI(X, X), we writer < #’ if 7 is finer thant’. For any
pair of setsA, B € X, finite partition7 € II(X, X), and probability measure on
(X, X), define theu-essentialr-boundary of(A, B) as

O(A,B) = {P em:p(PNA)>0andu(PnB) > 0},

We begin by proving an approximation result.
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LEMMA 2.2. Letyu be a probability measure ofiX, X) and lety > 0. If

. sup p@r({f <o} {f>p}) =0 foral B—a>r,

then N (F, e, 1) < oo for everye > 7.

PrROOF. There is clearly no loss of generality in assuming thatyevere F
takes values if0, 1]. Fix k € N, and lety := ~/k. Chooser € II(X, X) such that

sup i (2(f) <6, E(f) = |J ES <ishAf > 5+

F&%o 1<j< (671
For eachf € F, define the functiong™ and f~ as follows:

fr=000"1 1=y + Z 6 [0 Lesssupp f]1p,
Pem:PZE(f)

fm= Z 6|6 Lessinfp f| 1p.

Pem:PZE(f)

Hereesssupp f (essinfp f) denotes the essential supremum (infimum)fasn

the setP with respect tou. By construction,f~ < f < fT outside gu-null set
andu(f*t — f7) <+ 24. Moreover, agf*, f~ are constant on eadh € 7 and
take values in the finite sétjd : 0 < j < [6717}, there is only a finite number of
such functions. A$F, is countable, we can eliminate the null set to obtain a finite
number of(y + 24)-brackets inL!(u) coveringF,. But J; is pointwise dense in
F, SONy(F, v + 20, u) < oo, and we may choose= v/k arbitrarily small. [

To proceed, we need the notion of a “weakly dense” set, wiiithdé measure-
theoretic counterpart of the corresponding topologicdilomodefined in §].

DEFINITION 2.3. Given a measurable sétc X and a probability measuye
on (X, X), the family of functions¥ is said to beu-weakly dense ovedt at levels
(o, B) if u(A) > 0 and for any finite collection of measurable s&s, ..., B, €
X such thatu(A N B;) > 0forall1 < i < p, there existsf € F such that
wANB;N{f <a})>0andu(ANB;N{f>p}) >0foralll<i<p.

The key idea of this section, which lies at the heart of thaltesn this paper, is
that we can construct such a set if the bracketing numbédr®fae finite.

PROPOSITION2.4. Suppose there exists a probability measuren (X, X)
such that'Vy, (F,e, u) = oo for somes > +. Then there exist < fwith 5 —a > ~
and a measurable set € X such that¥ is p-weakly dense ovet at levels(«, 3).
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PROOF. By Lemma2.2, there existyv < S with § — a > ~ such that

reitl  sup (O ({f < o} {f > B))) > 0.

Choose for everyr € TI( X, X) a functionf, € F, such that

H(O8 (L < ). (= > 81) 2 5 sup w(OE((F < ) 11 > B).

Define A := 0z ({fr < a},{fx > B}). Then(14, ) en(x x) iS @ net of random
variables in the unit ball of ?(y1). By weak compactness, we may extract a subnet
(14, )rer that converges weakly ih? (1) to a random variablé?. We claim
thatF is u-weakly dense oved := {H > 0} at levels(a, £3).

To prove the claim, let us first note thatias, (A,) > 0, clearlyu(A) > 0.
Now fix By, ..., B, € X such thaiu(A N B;) > 0 for all i. This trivially implies
that(H14np,) > 0 for all i, so we can choosg) € T such that

/J,(AW(T)ﬂAﬂBi)>O V1<i<p, 7219

Let 7y be the partition generated by, By, ..., B,, and choose™* € T such that
T <19 andr* := 7w (7*) < 7. As AN B, is a union of atoms of* by construc-
tion, (A~ N AN B;) > 0 mustimply thatd N B; contains an aton® € 7* such
thatu(P N {f < a}) > 0andu(P N{f > B}) > 0. Therefore

p(ANB;N{fx <a}) >0 and p(ANB;,N{f~>p}) >0 Vi
Thus3 is p-weakly dense oved at levels(a, 5) as claimed. O
We can now complete the proof of Theorén.

PROOF OFTHEOREM 1.6.

a = b: The proof of Theorem 4.6.2 ir9] (see also§]) shows that ifF¥ contains
a finite subset of cardinality”™ that is Boolean independent at levéts, 5) with
B—a > ~, thenF y-shatters a finite subset &f of cardinalityn. Therefore, if con-
dition b fails, there must clearly exist-shattered finite subsets &f of arbitrarily
large cardinality, in contradiction with conditian

b = c: Suppose that conditionfails. By Lemma2.2 and Propositior2.4, there
exist a probability measurg, levelsa < § with 5 — a > ~, and a measurable
setA € X such that¥, is u-weakly dense over at levels(a, 5). We can now
iteratively apply Definition2.3 to construct a Boolean independent sequence. In-
deed, applying first the definition with = 1 and B; = X, we choosef; € Fy
such thatu(A N {f; < a}) > 0andu(A N {fi > B}) > 0. Then applying the
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definition withp = 2 and By = {f1 < a}, By = {f1 > 5}, we choosef, € Fy
such tha(AN {fi < a}N{fa <a}) >0, u(AN{fi <a}n{fa > B} >0,

pAn{fi > }n{fa < a}) >0,andp(AN{fi > B} Nn{f2 > B}) > 0.
Repeating this procedure yields the desired sequefice . O

3. Proof of Theorem 1.3. Throughout this section, we fix a standard measur-
able spac¢ X, X) and a separable uniformly bounded family of measurable-func
tionsF. We will prove Theoreni.3by proving the implicationd = 4 = 2 =1
and2 = 3 = 4. Below, we consider each of these implications in turn.

3.1. 1 = 4. Suppose there exists a sequeli¢g;cy C JF that is Boolean
o-independent at levelsy, 3) for somea < 3. Clearly we must have

ko <a<f<kg, k— = inf inf f(z), k4 :=supsup f(z).
fedzeX feF zeX

Define the measurable set

Xo= () {fo <a}U{fn>5}).
neN
As (fi)ien is Booleanc-independent, this set is nonempty (in fact uncountable).
Define C,, := {f, < a} N Xy, and note thatX,\C,, = {f, > 5} N X by
construction. Therefore, the Boolearindependence property can be expressed as

(N Cin () Xo\C; # 2 foreveryF CN.

Jjer JEF
Define onX, theo-field Xy := 0{C,, : n € N}. By a result of Marczewskil4], p.
25, there exists a probability measyrgon (X, Xo) such tha{C), ),y is an i.i.d.
sequence of sets wifly (C),) := p, where we choosé: — ) /(ky —a) <p < 1.
As (X, X) is a standard measurable space, the extension theoreb3]afmplies
that there exists a probability measureon (X, X) that is supported otX, and
such that the restriction @f to (X, Xy) coincides withu.

We now claim thatF is not u-Glivenko-Cantelli, which yields the desired con-

tradiction. To this end, note that we can trivially estimfateany f € F

,Blf>g+l€_ li<p < < alicq+ K4 1i>q.
We therefore have

Zf (Xk) —

n
k=1

sup |—
fesr

> sup - D50 (s}

> (ke — f— 1 (Xk)
> 5]12N Z £;<8(Xk) +¢,
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where we have used thatf,, < o) = p = (k. — B+ ¢)/(ky — a) for some
e > 0. Butif (X}),>; are i.i.d. with distributior. then, by construction, the family
of random variable$1y, <5(Xx) : j, k € N}isiid. withP[17 <5(Xy) = 0] > 0.
Using the Borel-Cantelli lemma, it is easily establisheat th

1 n
inf — 14 <3(X:) =0 a.s. forall N.
;.gNnkZ_l 1,<p(Xk) ne

ThusT is not au-Glivenko-Cantelli class. This completes the proof.

3.2. 4 = 2. Suppose there exists a probability meaguends > 0 such that
Ny(J,e,p) = oo. By Lemma2.2 and Propositior?.4, there exist levelgy < 3
and a measurable sdte X such that¥ is p-weakly dense oved at levels(«, 3).
We will presently construct a Booleartindependent sequence, which yields the
desired contradiction. The idea is to repeat the proof ofofdm 1.6, but now
exploiting the fact that X, X) is a standard measurable space to ensure that the
infinite intersections in the definition of Booleanindependence are nonempty.

As (X, X) is standard, we may assume without loss of generalityXhiatPolish
and thatX is the Borelo-field. Thusy is inner regular. We now apply Definition
2.3as follows. First, setting = 1 andB; = X, choosef; € F such that

wAN{fi<a}) >0,  ulAn{fi>a}) >o.

As p is inner regular, we may choose compact gétsC {f; < a} andG; C
{f1 > B} such thatu(A N Fy) > 0andu(A N Fy) > 0. Applying the definition
with p = 2, By = F, andBy = (G1, we can choosé; € F such that

wANFrn{fs<a}) >0, wANFyN{fa>p}) >0,
,u(AﬂGlﬂ{f2<a})>0, ,u(AﬂGlﬂ{f2>B})>O.
Using again inner regularity, we can now choose compactBets {f, < a}
andGs C {f2 > B} such thatu(AN Fy N Fy) > 0, p(AN F1 NGe) > 0,
w(AN Gy N Fy) > 0,andu(A NGy N Gy) > 0. Iterating the above steps, we

construct a sequence of functiofi§);en € F and compact setd; );en, (Gi)ien
such thatF; C {f; < a}, G; C {f; > B} for everyi € N, and for anyn € N

u(ﬂFjﬂ N G]—) >0 foreveryQ C {1,...,n}.

JeQ Je{l..n\@Q

Now suppose that the sequer{ge);c is not Boolearv-independent. Then

N{fi<atn({fi>Bt=2

JER J€R
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for someR C N. Thus we certainly have

ﬂFjﬂﬂGj:@.

JER J¢R

Choose arbitrary € R (if R is the empty set, replack;, by ; throughout the
following argument). Then clearly X\ F; : j € R} U{X\Gj : j ¢ R} is an open
cover of Fy. Therefore, there exists finite subséls C R, Q2 C N\R such that
{X\Fj:je @i} U{X\Gj :j € Q2} coversF,. But then

Fyn m F;n ﬂ GjZQ,

JEQL JEQ2

a contradiction. Thuéf;);cn is Booleans-independent at levelgy, j3).

3.3. 2 = 1. Thisisthe usual Blum-DeHardt argument, included here donc
pleteness. Fix a probability measyreande > 0, and suppose tha¥|(F, e, ) <
oo. Chooses-brackets f1, g1], ..., [fn, gn] in L' (1) coveringd. Then

sup |pn (f) — p(f)| = sup{pn(f) — p(f)} vV sup{p(f) — ua(f)}
feg feg

fexy
< max {pn(gi) — p(fi)} v, max {u(gi) — pn(fi)}

where we define the empirical measurge := 1 "7, 6x, for an i.i.d. sequence
(X&) ren With distribution .. The right hand side in the above expression is measur-
able and converges a.s. to a constant not exceedayghe law of large numbers.
As e > 0 andu were arbitrary is universal Glivenko-Cantelli.

34.2 = 3 = 4. AsN(J,e,u) < Nj(F,2¢, ), the implication2 = 3 is
trivial. It therefore remains to prove the implicatién=- 4.

To this end, suppose that there exists a sequefigey C JF that is Boolean
o-independent at levelgy, 3) for somea < . Construct the probability measure
w as in the proof of the implication = 4. We claim thatN (5, ¢, u) = oo for
e > 0 sufficiently small, which yields the desired contradiction

To prove the claim, it suffices to note that for any j

p(lfi = f51) = plfi = fillg<alf>p)
(

B—a)u{f; <a}yn{fi>B}) =B —-a)p(l—p) >0

by the construction of.. ThereforeF contains an infinite set afs — a)p(1 — p)-
separated points if! (1), SON(F, (8 — a)p(1 — p)/2, 1) = oc.

>
>
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4. Proof of Corollary 1.4. Throughout this section, we fix a standard mea-
surable spac¢X,X) and a separable uniformly bounded family of measurable
functionsF. We will prove Corollaryl.4 by proving the implication® < 5 and
2 = {6,7,8} = 1. Below, we consider each of these implications in turn.

4.1. 2 & 5. The implication2 = 5 follows by the Blum-DeHardt argument
as in sectior8.3. For the implicatiors = 2, we employ a result due to Tops&]
that can be stated as follows. For any probability meagufanction f € &, and
finite partitiont € II(X, X), define theu-averager-oscillation of f as

whf = 3 {sup f(a) = int @) { ()

Pem zEP

By [20], Theorem 1, condition 5 holds if and only if

inf sup whf =0 forevery probability measure.
mell(X,X) feF
We claim that the latter property implies condition 2.
To prove the claim, we may clearly assume that evérg J takes values in
[0, 1]. Fix a probability measurg andk € N. Chooser € II(X,X) such that
supjeg wi f < k™' For eachf € ¥, define the functiong™ and f~ as follows:

f+ = Z k! [k SupxePf(w)-I 1p,
Per

7= kM kinfuepf(2)| 1p.

Pern

By construction,f~ < f < f* pointwise andu(f™ — f~) < 3k~! for every

f € F. Moreover, asf™, f~ are constant on each ¢ = and take values in the
finite set{jk~! : 0 < j < k}, there is only a finite number of such functions. Thus
Ny (9, 3k~ 1) < co. As i andk are arbitrary, the claim is established.

4.2.2 = {6,7,8}. The implication2 = 6 follows immediately from the
Blum-DeHardt argument as in secti@m3. The complication for the implications
2 = {7,8} is that the limiting measure is a random measure (urllike 6 where
the limiting measure is assumed to be nonrandom). Intlytivee can simply con-
dition on §_, or J, respectively, so that the problem reduces to the imptioati
2 = 6 under the conditional distribution. The main work in the gfroonsists of
resolving the measurability issues that arise in this agugito

LetJF, C F be a countable family that is densedinn the topology of pointwise
convergence. We first show th@ is alsoL! (;)-dense ing for any p: this is not
obvious, as the dominated convergence theorem does nofdnaidts.
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LEMMA 4.1. If Ny(F,e,u) < oo forall e > 0, theny is L' (1)-dense irtF.

PROOF. Fix ¢ > 0, and choose-brackets|f1, g1, ..., [fn,gn] in L'(u) cov-
eringF. As topological closure and finite unions commute, for evéry F there
exists1 < i < N such thatf is in the pointwise closure dff;, g;] N F,. But then
clearly f € [f;,9:], and choosing any € [f;,g:] N Fo we haveu(|f — g|) <
w(gi — fi) < e.Ase > 0 is arbitrary, the proof is complete. O

We can now reduce the suprema in conditiGrad8 to countable suprema.

COROLLARY 4.2.  Suppose thalV (¢, 1) < oo for everys > 0 and proba-
bility measureu. Then for any pair of probability measurgsy we have

sup |u(f) —v(f)| = sup |u(f) —v(f)]-

fey JASED)

In particular, this holds whem and v are random measures.

PROOF. Fix (nonrandom) probability measurgsv, and defing = {u+v}/2.
Thend, is L' (p)-dense irf by Lemma4. 1 In particular, for everyf € J ande >
0, we can choosg € F such thap(|f—g|)+v(|f—g|) < . Nowlet(f,)neny C F
be a sequence such thap s [11(f) —v(f)| = lim,— 00 |(fn) —v(fn)|. For each
fn, choosey,, € Fo such thawu(|fr — gnl) + v(|fn — gal) <n~'. Then

sup [u(f) —v(f)l = lim [u(gn) = v(gn)l < sup [u(f) —v(f)],

fex n—roo fedo
which clearly yields the result (a&, C ). In the case of random probability
measures, we simply apply the nonrandom result pointwise. O

To prove2 = 8 we use the ergodic decomposition. Consider a strictlyostati
ary sequencéZ, ),cz of X-valued random variables on an underlying probabil-
ity space(€2, G, P). As (X, X) (hence alsd X%, X®%)) is standard, Theorem 7.6
in [12] states that there exists a versiBy of the regular conditional probability
P[(Z,)nez € -] such that the laiP¥’ is stationary and ergodic for evegye €.
Applying the Blum-DeHardt argument as in sect®3for fixedw € €2 gives

n

=370 - PR ()
k=1

n—o0

Py | sup 0| =1 forallw e Q.

f€%0

Integrating this expression with respectR¢dw) gives

n

sup | =7 F(Zi) — Pa(f(Z0)

fedo | ko

n—oo

—— 0 a.s.
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using the disintegration of measures. Applying Coroli&®and using the fact that
regular conditional probabilities are a.s. unique (so #seiit holds for an arbitrary
choice of the regular conditional probability) yields thesdted result.

To prove the implicatior2 = 7, we aim to repeat the proof & = 8 with a
suitable tail decomposition, given presently, replacimg eérgodic decomposition.

PROPOSITION4.3. Let(Z_j)r>0 be random variables on a probability space
(©,G,P) taking values in the standard spa¢&,X), and letF, be a countable
family of bounded measurable functions (@0, X). LetS_,, .= o{Z_; : k > n}
and§_ :=),, G—n. Then there exists for evety< n < oo a versionPg_, of
the regular conditional probabilityP[(Z_;)r>0 € - |9-»] such that:

1. ForP-a.e.w €}
Py [Py [f(Z0)I9-n] = Po_,(f(Z)) ¥f€To,neN|=1.
2. §_isPg__-as.trivial forP-a.e.w € (.

PRoOOF. Define on(Q2 x 9,5 ® §) the random variable$Z! . 72, ),>0 as
7l (w, ') = Z_,(w), 22, (w,w') = Z_,(w'), and define the probability mea-
sureQ such thaQ(A x B) = P(Am B)forall A, B € G. Thatis,Q is supported
on the diagona{ (w,w’) : w = w’} and its marginals coincide witR.

Choose for everyr < oo a versionu,, of the regular conditional probability
P[(Z_1)r>0 € -|S_,] (it exists by [L0], Theorem 10.2.2 agX %+, X®%+) is stan-
dard). It is easily seen thaw,w’) — 1% is a version of the regular conditional
probability Q[(Z2, )k>0 € |G- ® {@,Q}] and that(w,w’) — ¥ is a ver-
sion of the regular conditional probabili@[(Z?2, )k>0 € |5-cc ® G| for every
n < oo. As §_,, is countably generated, the result 82], pp. 95-96 states that

Poolf(20)|G-n] = pn(f(Zo))  P-aew e

forall f € ¥y andn € N. As Fy, N are countable we have proved the first part of
the result. The second part of the result is provedjnTheorem 15. O

We now prove2 = 7. Let (G_,),en be a reverse filtration such thgt , is
countably generated for each € N, and consider a random variahle taking
values in the standard spat&, X). Choose for every: € N a countable gen-
erating clasg H, ;)jen C G-, and define thg0, 1}"-valued random variable
Y_n = (1, ,)jen. Then, by constructior§_,, = o{Y_ : k > n}. As{0,1}"is
Polish, it is Borel-isomorphic witliX, X), so we can construct for everyc N an
(X, X)-valued random variabl&_,, such that5_,, = o{Z_j : k > n}. Finally,
defineZy, = Z. This puts us in the setting of Propositidr8.
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Define the tailo-field §_, = (,, 9—n (of course§_, is not countably gen-
erated, but this is not needed). Using Proposidd® the martingale convergence
theorem, and applying the Blum-DeHardt argument as in@e8ti3 gives

n—oo

Py — 0] =1 forP-a.ew e Q.

sup
f€%0

Ps_. (f(2)) -P5__(f(2))

Integrating this expression with respectR@dw), using the disintegration of mea-
sures, and applying Corollad;2yields the desired result.

4.3. {6,7,8} = 1. These implications are immediate, as each of the condi-
tions {6, 7,8} contains conditionl as a special case. Indeed, for the implication
6 = 1, it suffices to choosg,, to be the empirical measure of an i.i.d. sequence
with distribution .. Similarly, the implicatior8 = 1 follows from the fact that an
i.i.d. sequence is stationary and ergodic. Finally, thelitagion 7 = 1 follows
from Theorem 6.1.6 ing] and the Kolmogorov zero-one law.

5. Proof of Proposition 1.7.

5.1. Construction. The construction of the clagsin Propositionl.7is based
on a combinatorial construction due to Alon, Haussler, arelzi\/5], Theorem
A(2). We begin by recalling the essential results in thatgpap

DEFINITION 5.1. Letq € N be a prime power and define = ¢> + ¢ + 1.
Thefinite projective plané’G(2, q) is a family of m subsets of1,...,m} such
that every seC € PG(2,¢) has cardinalityg + 1, every pointz € {1,...,m}
belongs to exactly + 1 elements oPG(2, ¢), and for every pair of points, ' €
{1,...,m}, x # 2 there is a unique sé&t € PG(2, q) with z,2" € C..

The finite projective plan&G(2, ¢) is known to exist whenevey is a prime
power (seef] and the references therein). For our purposes, the ket mdsout
finite projective planes is the following (seg[p. 336 for the proof).

PROPOSITION5S.2. Letq € N be a prime power and define = ¢> + ¢ + 1.
Then for any partitionr of {1,...,m} such that

|0-C]
<

-_— )

max
CePG(2,) M

we haver|? > m!/%(1 —¢). Here| - | denotes the cardinality of a set, and we have
defined ther-boundaryo,C :=J{P en: PNC # gandP Z C}.
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We now proceed to construct the classn Proposition1.7. Let ¢; T oo be
an increasing sequence of prime powers, and define= qu +¢j + 1. We now
partitionN into consecutive blocks of length ;, as follows:

o) j—1 i
j=1 i=1 i=1
DefineC as the disjoint union of copies #fG(2, ¢;) on the blocksV;:
e=Je;, € ={BCN;:BNN;=C, CePG(2.q)}
j=1

We claim that the countable cla€f subsets oN hasy-dimension two.
LEMMA 5.3. € has Vapnik-Chervonenkis dimension two.

PROOF. Choose any three distinct points, no, n3 € N. If two of these points
are in distinct intervalsv;, then no set i€ contains both points. On the other hand,
suppose that all three points are in the same inte¥alThen by the definition of
the finite projective plane, either there is no se€ithat contains all three points,
or there is no set that contains two of the points but not tivd {as each pair of
points must lie in a unique set ). Thus we have shown that no family of three
points {ni,n2,n3} is y-shattered fo < v < 1. On the other hand, it is clear
from the definition of the finite projective plane that anyrpafi points {n,ns}
belonging to the same interval; is y-shattered fof < v < 1. O

We now turn to the proof of Propositidh7.

5.2. Proof of Propositiori.7. We will use the following crude lemma to obtain
lower bounds on the bracketing numbers.

LEMMA 5.4. Letyu be a probability measure oN. Then

inf sup u(0:C) > ¢ implies  Nj(C,e,u) > N,
In|<3N cee

where the infimum ranges over all partitionsbfwith |r| < 3V.

PROOF. Suppose thatV(C,e, u) < N. Then we may choosk < N pairs
{CF,C; }1<i<yk of subsets oN such thatu(C;F\C;) < eforall1 <i < k, and
for everyC' € C, there existd < ¢ < k such thatC;” C X C CZ.+. Let 7 be the
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partition generated byC;", C;” : 1 < i < k}. Then|r| < 3V, asr is the common
refinement of at mosV partitions{C;", C;*\C;",N\C;"} of size three.

Now choose any’' € €, and choosd < i < k such thatC,” C C C C’j.
As C; andN\C;" are unions of atoms of by construction, and a5;” C C and
(N\C;") N C = @, we evidently havé),C C C;"\C; . Thusu(d:C) < e. As this
holds for anyC' € €, we complete the proof by contradiction. O

Denote byy; the uniform distribution onV;. Let (p;);cn be a sequence of
nonnegative numbegs > 0 so thatzj pj = 1, and define the probability measure

o
w=y pik.
j=1

We first obtain a lower bound oV} (C, ¢, ). Subsequently, we will be able to
choose the sequen¢g; ) ;en such that this bound grows arbitrarily quickly.

To obtain a lower bound, let us suppose that(C, ¢, 1) < N. Then applying
Lemmab.4, there exists a partition of N with || < 3V such that

0 C
supp; min max [0 C' <supp; sup p;j(0-C) < sup pu(9-C) < e.
jEN © |n'|<3N CePG(2,q5) My jeN " Ccec; cee

By Proposition5.2,

0 C e .. 5
min max 19xC] < — implies mY* 1 - = A1 <3V,
|n/|<3N CEPG(2,q;) M Dj J Dj

Therefore,Nj(C, e, 1) < N implies that

1 1 €
N>Zlog3mj+§log3 <1_p_j/\1>

for everyj € N. Conversely, we have shown that

1 1 €
Np(Cie, p zsup{—log m; + — log <1——/\1>J.
i ) Sup | 3 logg m; + 3 log o

This bound holds for any choice ¢f;);cn.
Fix n(e) 1 co ase | 0. We now choosép; ) en such thatV; (€, e, u) > n(e).
First, asm; 1 oo, we can choose a subsequeri¢e) 1 oo such that

M (llogy (2/30))) = 36 forall0 < e < 1/3.
Now define(p;),en as follows:

pjg=2"" forkeN, p;j=0 forj¢{j(k):keN}.
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Then we clearly have, settin§e) = j(|log,(2/3¢)]),

M€ = | Fioms oo + g1ogs (1=~ A1) | 2 a0 + 11 2 n(e)
4 2 P(e)

forall 0 < e < 1/3. This completes the proof.
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