
ar
X

iv
:1

00
9.

44
19

v1
  [

m
at

h.
A

G
] 

 2
2 

Se
p 

20
10

ON ISOLATED SMOOTH CURVES OF LOW GENERA IN

CALABI-YAU COMPLETE INTERSECTION THREEFOLDS

ANDREAS LEOPOLD KNUTSEN

Abstract. Building on results of Clemens and Kley, we find criteria for a
continuous family of curves in a nodal K-trivial threefold Y0 to deform to a
scheme of finitely many smooth isolated curves in a general deformation Yt

of Y0. As an application, we show the existence of smooth isolated curves of
bounded genera and unbounded degrees in Calabi-Yau complete intersections
threefolds.

1. Introduction

In this paper we study embeddings of complex projective curves into (smooth)
Calabi-Yau complete intersection (CICY ) threefolds. Such embeddings, and Calabi-
Yau threefolds in general, have in the past decades been objects of extended interest
in both algebraic geometry and physics. The goal of counting such curves (espe-
cially rational) has inspired the development of quantum cohomology and led to
the discovery of surprising relations between algebraic geometry and the theory of
mirror symmetry.

In the paper [7], Kley developed a framework for showing existence of curves of
certain genera and degrees in CICY threefolds. The paper built on the original
idea in the case of genus zero curves of Clemens [1] (then used also in [6], [12] and
[4]): one starts with a K3 complete intersection surface X containing a smooth
rational curve C, embeds the surface in a nodal CICY of suitable intersection type
Y and proves that under a general deformation Yt of Y0 = Y , the rational curve
deforms to an isolated curve in the deformation. In the higher genus case, the curve
C is replaced by a complete linear system |L| of curves on the surface of dimension
equal to the genus, and the idea is to prove that only finitely many of these deform
to the deformation Yt and possibly also that these are smooth and isolated. The
main existence result in [7] is [7, Thm. 1], claiming that for any d ≥ 3, the general
CICY threefold contains smooth, isolated elliptic curves of degree d, except for
degree 3 curves in the CICY of type (2, 2, 2, 2).

A crucial point in this construction is to show that the curves on the K3 surface
X do not acquire any additional deformations when considered as curves in Y ,
precisely that

h0(NC/X) = h0(NC/Y ) for all C ∈ |L|.

Unfortunately, the proof of this step, namely [7, Thm. 3.5], contains a serious gap,
which also influences the proof of its corollary [7, Cor. 3.6], which in fact cannot
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hold (cf. Remark 6.6 for a more detailed explanation). As a consequence, the proof
of [7, Thm. 1] is incorrect.

This paper has two main purposes:

• We give criteria for a continuous family of curves on a regular surface in a
nodal threefold Y with trivial canonical bundle to deform to a scheme of
finitely many smooth isolated curves in a general deformation Yt of Y0 = Y ,
using results from [2] and ideas from the unpublished preprint [8] of Kley,
see Theorem 1.1.

• We apply these results to prove existence of smooth, isolated curves of low
genera in the various CICY threefold types, see Theorem 1.2 (of which [7,
Thm. 1] is a special case).

The first main result is the following. It is an improvement under slightly stronger
hypotheses of a result in the preprint [8] of Kley, which has never been published,
presumably because of the gap in [7].

We first state the assumptions.

Setting and assumptions. Let P be a smooth projective variety of dimension
r ≥ 4 and E a vector bundle of rank r − 3 on P that splits as a direct sum of line
bundles

E = ⊕r−3
i=1Mi.

Let

s0 = s0,1 ⊕ · · · ⊕ s0,r−3 ∈ H0(P, E) = ⊕r−3
i=1H

0(P,Mi)

be a regular section, where s0,i ∈ H0(P,Mi) for i = 1, . . . , r − 3. Set

Y = Z(s0) and Z = Z(s0,1 ⊕ · · · ⊕ s0,r−4)

(where Z = P if r = 4).
Let X ⊂ Y be a smooth, regular surface (i.e. H1(X,OX) = 0) and L a line

bundle on X .
We make the following additional assumptions:

(A1) Y has trivial canonical bundle;
(A2) Z is smooth along X and the only singularities of Y which lie in X are ℓ

nodes ξ1, . . . , ξℓ. Furthermore

ℓ ≥ dim |L|+ 2;

(A3) |L| 6= ∅ and the general element of |L| is a smooth, irreducible curve;
(A4) for every ξi ∈ S := {ξ1, . . . , ξℓ}, if |L⊗Jξi | 6= ∅, then its general member is

nonsingular at ξi;
(A5) H0(C,NC/X) ≃ H0(C,NC/Y ) for all C ∈ |L|;
(A6) H1(C,NC/P ) = 0 for all C ∈ |L|;
(A7) the image of the natural restriction map

H0(P,Mr−3) // H0(S,Mr−3 ⊗OS) ≃ Cℓ

has codimension one.

Let s ∈ H0(P, E) be a general section. Then our result is the following:

Theorem 1.1. Under the above setting and assumptions (A1)-(A7), the members

of |L| deform to a length
(

ℓ−2
dim |L|

)

scheme of curves that are smooth and isolated in
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the general deformation Yt = Z(s0 + ts) of Y0 = Y . In particular, Yt contains a
smooth, isolated curve that is a deformation of a curve in |L|.

This result improves [8, Thm. 1.1], since the curves in that theorem are not
claimed to be smooth or isolated.

Our main application is Theorem 1.2 right below, of which [7, Thm. 1] is the
special case with g = 1. Thus we give a correct proof of [7, Thm. 1] and, at the
same time, we extend the result to genera > 1.

Theorem 1.2. Let d ≥ 1 and g ≥ 0 be integers. Then in any of the following cases
the general Calabi-Yau complete intersection threefold Y of the given type contains
an isolated, smooth curve of degree d and genus g:

(a) Y = (5) ⊆ P4: g = 0 and d > 0; g = 1 and d ≥ 3; 2 ≤ g ≤ 6 and d ≥ g+3;

7 ≤ g ≤ 9 and d ≥ g + 2; g = 10 and d ≥ 11; 11 ≤ g ≤ 22 and d ≥ g+13
2 .

(b) Y = (4, 2) ⊆ P5: g = 0 and d > 0; g = 1 and d ≥ 3; g = 2 and d ≥ 5;
3 ≤ g ≤ 8 and d ≥ g + 4; 9 ≤ g ≤ 11 and d ≥ g + 3; 12 ≤ g ≤ 15 and
d ≥ g+16

2 .

(c) Y = (3, 3) ⊆ P5: g = 0 and d > 0; g = 1 and d ≥ 3; g = 2 and d ≥ 5;
3 ≤ g ≤ 7 and d ≥ g + 4.

(d) Y = (3, 2, 2) ⊆ P6: g = 0 and d > 0; g = 1 and d ≥ 3; g = 2 and d ≥ 5;
g = 3 and d ≥ 7; 4 ≤ g ≤ 10 and d ≥ g + 5.

(e) Y = (2, 2, 2, 2) ⊆ P7: g = 0 and d > 0; g = 1 and d ≥ 4; g = 2 and d ≥ 6;
g = 3 and d ≥ 7.

We remark that the genus zero case of the theorem is already known by [6, 12,
4]. In [8] an existence result similar to Theorem 1.2 was claimed, but only for
geometrically rigid, connected curves (not necessarily smooth and isolated). But
the proof of that result also relied on [7, Thm. 3.5].

The paper is divided into two parts in a natural way:
The first part, consisting of Sections 2-5, is devoted to the proof of Theorem 1.1.

In Sections 2-4 we study deformations of curves in a complete linear system |L| lying
on a smooth surface X embedded in a nodal threefold Y with emphasis on the cases
of regular surfaces in threefolds with trivial canonical bundle. Special attention is
devoted to studying if the curves in |L| on X acquire additional deformations when
embedded in Y , that is, to studying condition (A5). The crucial result is Proposition
4.3, which states that condition (A5) is equivalent to the condition

(A5)’ The set of nodes S imposes independent conditions on |L|, and the

natural map γC : H0(C,NX/Y ⊗OC) // H1(C,NC/X) (cf. (4.4)) is

an isomorphism for all C ∈ |L|.

First of all, the conditions in (A5)’ may be easier to check than condition (A5)
directly. More importantly, however, the first of the two conditions in (A5)’ assures
that the locus of curves in |L| passing through at least one node is a simple normal
crossing (SNC) divisor (consisting of ℓ hyperplanes). This enables us to identify a
certain sheaf Q of obstructions to deformation as the locally free sheaf of differen-
tials with logarithmic poles along an SNC divisor, cf. (5.1), (5.2) and (5.3). This
is a crucial point to assure that smooth and isolated curves survive in a general
deformation Yt of Y0 = Y .

The proof of Theorem 1.1 is finished in Section 5, following the proof of [8, Thm.
1.1].
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In the second part, consisting of Sections 6 and 7, we apply Theorem 1.1 to
the case of K3 surfaces in complete intersection Calabi-Yau threefolds to prove
Theorem 1.2. For each of the complete intersection types in Theorem 1.2, there is a
standard construction allowing to embed a K3 surface of one (or more) of the three
complete intersection types (4) in P3, (2, 3) in P4 and (2, 2, 2) in P5 into a nodal
CICY threefold. This will be recalled in Section 6. We are then in the setting of
Theorem 1.1 with X the K3 surface, Y the CICY , P a projective space and E the
vector bundle corresponding to the complete intersection type of Y . All various
complete intersection types and possible constructions are summarized in Table 1
in Section 6.

By construction and Bertini’s theorem, condition (A1) and the first part of con-
dition (A2) are satisfied. In each of the cases in Theorem 1.2, we will then need
to verify the remaining conditions (A2)-(A7), and this is the reason for the vari-
ous numerical conditions on d and g in the theorem. To help the reader navigate
through the proof, we now briefly explain how it works.

The existence of smooth curves of certain degrees and genera on the three types
of complete intersection K3 surfaces is given by the existence results in [11] and
[9], cf. Theorem 7.1. We set L to be the line bundle defined by the curves and
an important point is that the existence results guarantee that L and OX(1) are
independent in PicX .

Condition (A3) is automatically satisfied, as well as condition (A4), by standard
arguments, cf. Lemma 6.1. Condition (A7) is also satisfied by construction, cf.
Lemma 6.2. To check (A5) we will check the two conditions in (A5)’. We prove
that the second one is satisfied in Proposition 6.5, and it is here that we need to
use the fact that L and OX(1) are independent in PicX .

Therefore, at the end, the conditions that will be responsible for the numerical
constraints in Theorem 1.2 are conditions (A2) and (A6), as well as the first con-
dition in (A5)’, namely that the set of nodes S imposes independent conditions on
the linear system |L|. This is perhaps the most tricky condition to check, and we
give sufficient conditions for this to hold in Lemma 6.3.

The numerical conditions we end up with are given in Proposition 7.2 (in addition
to the conditions in the existence result Theorem 7.1). Finally, a case-by-case study
of these conditions will give Theorem 1.2.

Conventions and definitions. The ground field is the field of complex numbers.
We say a curve C in a variety V is geometrically rigid in V if the space of embedded
deformations of C in V is zero-dimensional. If furthermore this space is reduced,
we say that C is isolated or infinitesimally rigid in V . From the infinitesimal study
of the Hilbert scheme of V , it follows that C is infinitesimally rigid if and only if
H0(C,NC/V ) = 0.

A K3 surface is a smooth projective (reduced and irreducible) surface X with
trivial canonical bundle and such that H1(OX) = 0. In particular h2(OX) = 1 and
χ(OX) = 2.

A Calabi-Yau threefold Y is a projective variety of dimension 3 with trivial
canonical bundle and h1(OY ) = h2(OY ) = 0. In this paper a Calabi-Yau threefold
will be at worst nodal.
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2. Curves through nodes on threefolds, local theory

Let

Y = {(x, y, z, w) ∈ C4 | xw − yz = 0}

be (the analytic germ of) a nodal threefold singularity in affine 4-space containing
the plane

X = {(x, y, z, w) ∈ C4 | x = y = 0}.

Let JX/Y ⊂ OY denote the ideal sheaf of X in Y . A resolution of the OX -module
JX/Y is cyclic of the form

(2.1)

· · · O⊕2
Y





x z
y w





// O⊕2
Y





w −z
−y x





//

O⊕2
Y





x z
y w





// O⊕2
Y





w −z
−y x





// O⊕2
Y





x
y





// JX/Y // 0

so that we have

(2.2) Ext iOY
(JX/Y ,OX) =

{

0, if i is even,
OX

(z,w) ≃ C, if i is odd.

Tensoring the sequence (2.1) with OX is terminally exact and so we obtain the
resolution

(2.3) 0 // OX

(

w −z
)

// O⊕2
X





x
y





// JX/Y

J 2
X/Y

// 0

of
JX/Y

J 2
X/Y

as an OX -module. Thus

NX/Y := HomOX

(JX/Y

J 2
X/Y

,OX

)

=
{

(a, b) ∈ O⊕2
X | wa = zb

}

=
{

(cz, cw) | c ∈ OX

}
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is locally free. Moreover

(2.4) Ext1OX

(JX/Y

J 2
X/Y

,OX

)

=
OX

(z, w)
≃ C.

Let now

C = {(x, y, z, w) ∈ C4 | x = y = f(z, w) = 0}

be a curve in X passing through the node (0, 0, 0, 0) of Y .
Tensoring (2.3) by OC we obtain the resolution

(2.5) 0 // OC

(

w −z
)

// O⊕2
C





x
y





// JX/Y

J 2
X/Y

⊗OC // 0

of
JX/Y

J 2
X/Y

⊗OC as an OC -module, as the map
(

w −z
)

is injective. Thus the map

from (2.3) to (2.5) gives the commutative diagram

(2.6) 0

��

0

��

0

��
0 // OX

·f //

��

OX
//

��

OC
//

��

0

0 // O⊕2

X

·f //

��

O⊕2

X
//

��

O⊕2

C
//

��

0

0 // JX/Y

J 2
X/Y

·f //

��

JX/Y

J 2
X/Y

//

��

JX/Y

J 2
X/Y

⊗OC //

��

0

0 0 0

in which the first two columns are projective OX -resolutions of
JX/Y

J 2
X/Y

and the third

is a projective OC-resolution of
JX/Y

J 2
X/Y

⊗OC .

For all i ≥ 0, we define

(2.7) F i
C := Ext iOC

(JX/Y

J 2
X/Y

⊗OC ,OC

)

.
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Applying HomOX (−,OX) to the first two columns of (2.6), we obtain

0 // HomOX
(OX ,OX)

·f // HomOX
(OX ,OX) // HomOC

(OC ,OC) // 0

0 // HomOX
(O⊕2

X ,OX)
·f //

OO

HomOX
(O⊕2

X ,OX) //

OO

HomOC
(O⊕2

C ,OC) //

OO

0

0 // HomOX
(
JX/Y

J 2
X/Y

,OX)
·f //

OO

HomOX
(
JX/Y

J 2
X/Y

,OX) //

OO

F0

C

OO

0

OO

0

OO

0

OO

From the snake lemma we obtain the exact sequence

0 // HomOX
(
JX/Y

J 2
X/Y

,OX)
·f // HomOX

(
JX/Y

J 2
X/Y

,OX) // F0

C

// Ext1
OX

(
JX/Y

J 2
X/Y

,OX)
·f // Ext1

OX
(
JX/Y

J 2
X/Y

,OX) // F1

C
// 0.

Since f is the local equation of C, we can, by tensoring with OC , deduce the short
exact sequence

(2.8) 0 // NX/Y ⊗OC // F0
C

// Ext1OX

(

JX/Y

J 2
X/Y

,OX

)

⊗OC // 0

and the isomorphism

(2.9) Ext1OX

(

JX/Y

J 2
X/Y

,OX

)

⊗OC
≃ // F1

C .

3. Curves through nodes on threefolds, global theory

In this section X will be a smooth projective surface, Y a projective threefold and
P a smooth projective variety of dimension ≥ 4 such that X ⊂ Y ⊂ P . We assume
that the only singularities of Y lying on X are finitely many nodal singularities and
that the embedding Y ⊂ P is regular (e.g., Y is a complete intersection in P ). We
denote the set of nodes of Y lying on X by S. Note that we have

(3.1) Ext1OX

(JX/Y

J 2
X/Y

,OX

)

≃ OS ,

by (2.4).
Let L be a line bundle on X such that |L| 6= ∅ and let C ∈ |L|. We define the

sheaves F i
C as in (2.7).

Applying HomOC (−,OC) to

(3.2) 0 // JX/Y

JX/Y JC/Y

// JC/Y

J 2
C/Y

// JC/X

J 2
C/X

// 0

we obtain the exact sequence

(3.3) 0 // NC/X // NC/Y // F0
C

// 0
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as well as

(3.4) Ext1OC

(JC/Y

J 2
C/Y

,OC

)

≃ Ext1OC

(JX/Y

J 2
X/Y

⊗OC ,OC

)

= F1
C .

Applying HomOC (−,OC) to

(3.5) 0 // JY/P

JX/PJC/P

// JX/P

JX/PJC/P

// JX/Y

JX/Y JC/Y

// 0

we obtain the exact sequence

(3.6) 0 // F0
C

// NX/P ⊗OC // NY/P ⊗OC // F1
C

// 0

and applying HomOC (−,OC) to

(3.7) 0 // JY/P

JY/PJC/P

// JC/P

J 2
C/P

// JC/Y

J 2
C/Y

// 0

we obtain the exact sequence
(3.8)

0 // NC/Y // NC/P // NY/P ⊗OC // Ext1OC

(

JC/Y

J 2
C/Y

,OC

)

// 0,

because Ext1OC

(

JC/P

J 2
C/P

,OC

)

= 0, as C ⊂ P is a regular embedding.

Similarly, we also have the standard short exact sequence

(3.9) 0 // NC/X // NC/P // NX/P ⊗OC // 0.

Combining the sequences (3.3), (3.6), (3.8) and (3.9), together with the isomor-
phisms (3.1) and (3.4), we obtain

(3.10)
0

��

0

��
NC/X

��

NC/X

��
0 // NC/Y

��

// NC/P

��

// NY/P ⊗OC // Ext1
OC

(

JC/Y

J 2
C/Y

,OC

)

//

∼=

��

// 0

0 // F0

C

��

// NX/P ⊗OC

��

ΦC // NY/P ⊗OC // F1

C ≃ OS∩C
// 0

0 0

4. Curves on regular surfaces in K-trivial threefolds with nodes

In this section we keep the hypotheses and notation from the previous section
and assume further that

ωY ≃ OY and h1(OX) = 0.
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By adjunction

(4.1) NX/Y ≃ ωX

except at the finite set S. But both sides are locally free so the isomorphism holds
everywhere. Therefore, again by adjunction

(4.2) NX/Y ⊗OC ≃ ωC ⊗N∨
C/X ,

so that (2.8) reads

(4.3) 0 // ωC ⊗N∨
C/X

// F0
C

// OS∩C
// 0,

where we have used (3.1).
The main aim of this section is to find criteria for the curves C ∈ |L| not to obtain

any additional deformations in Y , that is, for the equality h0(NC/X) = h0(NC/Y )
to hold for all C ∈ |L|.

We will need to consider, for C ∈ |L|, the composition

(4.4) γC : H0(C,NX/Y ⊗OC)
�

� ιC // H0(C,F0
C)

// H1(C,NC/X),

where the left hand inclusion ιC arises from (2.8) (or, equivalently, (4.3)) and the
right hand map is the connecting homomorphism of (3.3). Note that H0(C,NX/Y ⊗
OC) and H1(C,NC/X) are in fact dual by (4.2). Therefore, γC is an isomorphism
if and only if it is of maximal rank.

Lemma 4.1. Assume that ωY ≃ OY and h1(OX) = 0.
The inclusion ιC is an isomorphism for all C ∈ |L| if and only if S imposes

independent conditions on |L|.

Remark 4.2. The condition that S imposes independent conditions on |L| means,
precisely, that if ℓ is the number of nodes, then |L ⊗ JS | = ∅ if ℓ > dim |L|,
and dim |L ⊗ JS | = dim |L| − ℓ if ℓ ≤ dim |L|. This can also be rephrased as
dim |L⊗Jξ1 ⊗Jξ2 ⊗ · · · ⊗ Jξk | = dim |L| − k for any subset {ξ1, . . . , ξk} of k nodes
of S, whenever k ≤ dim |L|, or, even simpler, that at most dim |L| of the nodes can
lie on an element of |L|.

Note that if S imposes independent conditions on |L|, then, in particular, the
points in S are different from the possible base points of |L|, so that the locus of
curves in |L| passing through at least one node is an effective divisor in |L| consisting
of hyperplanes. (If dim |L| = 0, this means that this locus is empty, that is, the
only curve in |L| does not pass through any of the points of S.) Therefore the
condition that the nodes impose independent conditions on |L| can be rephrased
as saying that the locus of curves in |L| passing through at least one node is an
effective, simple normal crossing (SNC) divisor consisting of hyperplanes.

Proof of Lemma 4.1. By Serre duality we have that H0(F0
C) ≃ Ext1(F0

C , ωC)
∨.

Applying HomOC (−, ωC) to the bottom exact sequence of (3.10), we find that
Ext1OC

(F0
C , ωC) = 0, so that

Ext1(F0
C , ωC) ≃ H1(HomOC (F

0
C , ωC))

by the local to global spectral sequence for Ext. Moreover, applying HomOC (−, ωC)
to (4.3), we obtain the short exact sequence

(4.5) 0 // HomOC (F
0
C , ωC) // NC/X // OS∩C

// 0.



10 ANDREAS LEOPOLD KNUTSEN

Since h1(OX) = 0, the restriction map H0(L) // H0(NC/X) is surjective by

(4.6) 0 // OX
// L // NC/X // 0.

Hence

coker
{

H0(NC/X) → H0(OS∩C)
}

= coker
{

H0(L) → H0(OS∩C)
}

.

Taking cohomology of (4.5) we therefore obtain

H1(HomOC (F
0
C , ωC)) ≃ coker

{

H0(L) → H0(OS∩C)
}

⊕H1(NC/X)

It follows that

H0(F0
C) ≃ Ext1(F0

C , ωC)
∨ ≃ H1(HomOC (F

0
C , ωC))

∨

≃ coker
{

H0(L) → H0(OS∩C)
}∨

⊕H1(NC/X)∨

≃ coker
{

H0(L) → H0(OS∩C)
}∨

⊕H0(NX/Y ⊗OC),

by Serre duality and (4.2) for the last isomorphism. Therefore, ιC is an isomorphism
for all C ∈ |L| if and only if

H0(L) // H0(OS∩C)

is surjective for all C ∈ |L|, which precisely means that S imposes independent
conditions on |L|. �

The next result will be central in the rest of the paper.

Proposition 4.3. Assume that ωY ≃ OY and h1(OX) = 0.
We have H0(C,NC/X) ≃ H0(C,NC/Y ) for all C ∈ |L| if and only if S imposes

independent conditions on |L| and the map γC in (4.4) is an isomorphism for all
C ∈ |L|.

Proof. From the sequence (3.3) we have that H0(NC/X) ≃ H0(NC/Y ) if and only

if the connecting homomorphism H0(F0
C)

// H1(NC/X) is injective. Since the

spaces H0(C,NX/Y ⊗OC) and H1(C,NC/X) are dual by (4.2), this happens if and
only if both the maps ιC and γC are isomorphisms. The result then follows from
Lemma 4.1. �

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1. The result is a consequence of [2, Thms.
3.3 and 3.5] (and their proofs) and [7, Prop. 1.4 and Thm. 1.5], following the steps
in the proof of [8, Thm. 1.1] almost ad verbatim except for an intermediate step
where we apply Proposition 4.3 (cf. Remark 5.1 below) and exploit the fact that
conditions (A3), (A4) and (A7) are stronger than the assumptions in [8, Thm. 1.1].
Since [8] has never been published, we give the whole proof of Theorem 1.1.

The setting and assumptions are as in the introduction. We observe the following:

Remark 5.1. By Proposition 4.3, condition (A5) is equivalent to the condition

(A5)’ The set S = {ξ1, . . . , ξℓ} imposes independent conditions on |L| and the
map γC in (4.4) is an isomorphism for all C ∈ |L|.
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Proof of Theorem 1.1. Since h1(OX) = 0, we have that |L| ≃ Pℓ is a connected
component of HilbX . By (A5) we have that |L| is also a connected component of
HilbY , and by (A6) it has a smooth neighborhood H ⊂ HilbP .

Let

C0

p0

��

q0 // Y

|L|

and

C

p

��

q // P

H

be the universal curves. Let I be the ideal sheaf of C0 in |L|× Y and J be the ideal
sheaf of C0 in |L| × P .

Applying the functor

F := p0∗ ◦ HomC0
(−,OC0

)

to the exact sequence

0 // q0∗E∨ // J/J2 // I/I2 // 0

of conormal sheaves and using the infinitesimal properties of Hilbert schemes gives
the exact sequence

0 // T|L| // TH ⊗O|L| // p0∗q0
∗E // R1F (I/I2) // 0

of O|L|-modules, as R1F (J/J2) = 0 by (A6).
Setting

Q := R1F (I
/

I2)

we shorten the above to

(5.1) 0 // N|L|/H // p0∗q0
∗E

ρ // Q // 0.

By Remarks 4.2 and 5.1, condition (A5) implies that the locus of curves in |L| ≃
Pdim |L| passing through the node ξi is a hyperplane Di ⊂ |L|, and furthermore,
that the locus of curves in |L| passing through at least one node, satisfies

(5.2) D := ∪ℓ
i=1Di is simple normal crossing (SNC).

In fact, what we have done so far, is to go through the first part of the proof of
[2, Thm. 3.3]. Since the notation in [2] is rather involved, we include the following
translation between our notation and the notation in [2]:
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Our notation Notation in [2]

P P

Y = Y0 X0

|L| S′ = S′(C) = I′

H J ′

C J

C0 S = I

p, q p, q

p0, q0 pS , qS
S Ξ

ℓ r(S)

ξi xi
S

Di, D Di
S′ , DS′

X YS

Q QS′

p∗q
∗E V

In particular, the conditions in [2, Thm. 3.3] are satisfied. Moreover, by (A4),
the conditions in [2, Thm. 3.5] are also satisfied, so that

(5.3) Q ≃ Ω1
|L|[logD],

the locally free sheaf of differentials with logarithmic poles along an SNC divisor
consisting of ℓ hyperplanes (see e.g. [5, §2] for the definition).

By [7, Thm. 1.5] and (A6) we have that p∗q
∗E is locally free on H and |L| is

the zero scheme of p∗q
∗s0, so that (5.1) identifies Q as the excess normal bundle

to p∗q
∗s0, cf. [7, §1.2]. Still by [7, Thm. 1.5], the Hilbert scheme of the threefold

Yt := Z(s0 + ts), satisfies

Hilb Yt ∩H = Z(p∗q
∗(s0 + ts)).

This already finishes the proof in the case dim |L| = 0, by (A3). In the remaining

cases it suffices to prove that ρ(p0∗q0
∗s) will vanish at precisely

(

ℓ−2
dim |L|

)

distinct

points of |L|, all corresponding to smooth, irreducible curves in |L|. Indeed, by
[7, Prop. 1.4] (and its proof), if ρ(p0∗q0

∗s) has a reduced and isolated zero at a
point z ∈ |L|, then the scheme Z(p∗q

∗(s0 + ts)) has a reduced and isolated zero in
any small enough complex analytic neighborhood of z in H for t > 0 sufficiently
small. Since the curve corresponding to z is smooth, the same holds true in this
neighborhood of z. This will finish the proof of the theorem.

Assume then that dim |L| > 0. The fact that ℓ ≥ dim |L| + 2 in condition (A2)
implies that the locally free sheaf Q ≃ Ω1

Pdim |L| [log ℓ Pdim |L|−1] is globally generated
(see e.g. [3, Thm. 3.5] for a proof of this fact) and that

(5.4)

∫

|L|

ctop(Q) =

(

ℓ− 2

dim |L|

)

> 0.

Consider the standard exact sequence

0 // Ω1
|L|

// Q
ε=(εi)// ⊕ℓ

i=1ODi
// 0

into which Q ≃ Ω1
|L|[logD] sits (see e.g. [5, 2.3(a)] or [3, Prop. 2.3]), which is the

same sequence as the one in [2, Thm. 3.3]. By (A2) we can choose local coordinates
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in an analytic neighborhood of 0 = ξi in P such that

s0(x) = x1 ⊕ · · · ⊕ xr−4 ⊕
(

x2
r−3 + · · ·+ x2

r

)

.

Let s ∈ H0(P, E) = ⊕r−3
i=1H

0(P,Mi) and write

s(x) = f1(x)⊕ · · · ⊕ fr−3(x)

in the same coordinates. In the proof of [2, Thm. 3.3] it is shown that the compo-
sition

H0(P, E) // H0(|L|, p0∗q0
∗E)

H0(ρ) // H0(|L|,Q)
H0(εi) // H0(Di,ODi)

is given by

s � // fr−3(0).

Therefore, the image of the composition

H0(P, E) // H0(|L|, p0∗q0
∗E)

H0(ρ) // H0(|L|,Q)
H0(ε)// H0(D,⊕ℓ

i=1ODi)

equals the image of the natural restriction map

H0(P,Mr−3) // H0(S,Mr−3 ⊗OS),

which has codimension one by (A7). Since h0(Q) = ℓ − 1, as is well known (see
e.g. [3, Prop. 2.5]), and H0(|L|,Ω1

|L|) = 0, the map H0(ε) is injective with image

of codimension one. It follows that the composition morphism

(5.5) H0(P, E) // H0(|L|, p0∗q0
∗E)

H0(ρ) // H0(|L|,Q)

is surjective. Thus, as Q is globally generated, it follows by (5.4) that for the general

section s ∈ H0(P, E), we have that ρ(p0∗q0
∗s) vanishes at precisely

(

ℓ−2
dim |L|

)

distinct

points of |L|, all corresponding to smooth, irreducible curves in |L|, by (A3), as
desired. This finishes the proof of the theorem. �

Remark 5.2. Looking more closely at the proof, we see that the condition that E
splits as a direct sum of line bundles is not necessary: it would suffice (when r ≥ 6)
that E = F ⊕M, where F is a vector bundle of rank r − 4 and M is a line bundle
on P . Writing s0 ∈ H0(P, E) as s0 = s0,F ⊕ s0,M, with s0,F ∈ H0(P,F) and
s0,M ∈ H0(P,M), we would then have Z := Z(s0,F) in the setting of Theorem 1.1.

6. K3 surfaces embedded in nodal Calabi-Yau complete intersection

threefolds

The rest of the paper is devoted to proving Theorem 1.2.
We first recall the well-known construction used in [1], [6], [12] and [4] to embed

a K3 surface into a nodal Calabi-Yau complete intersection (CICY ) threefold.
It is well known, and easily seen by adjunction, that there are three types of K3

complete intersection surfaces in projective space, namely the intersection types
(4) in P3, (2, 3) in P4 and (2, 2, 2) in P5. Similarly, there are five types of CICY
threefolds in projective space, namely the intersection types (5) in P4, (3, 3) and
(4, 2) in P5, (3, 2, 2) in P6 and (2, 2, 2, 2) in P7.
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Table 1. Construction of CICY s

(bi) (aj ) µ r ℓ Sing Y ar−3 ar−2

(5) (4, 1) 3 4 16 X ∩ Z(α11, α12) 4 1

(5) (3, 2) 4 4 36 X ∩ Z(α11, α12) 3 2

(4, 2) (4, 1, 1) 3 5 4 X ∩ Z(α22, α23) 1 1

(2, 4) (2, 3, 1) 4 5 18 X ∩ Z(α11, α12α23 − α13α22) 3 1

(2, 4) (2, 2, 2) 5 5 32 X ∩ Z(α21α12 − α22α11, α21α13 − α23α11) 2 2

(3, 3) (3, 2, 1) 4 5 12 X ∩ Z(α21α12 − α22α11, α21α13 − α23α11) 2 1

(3, 2, 2) (3, 2, 1, 1) 4 6 6 X ∩ Z(α22α33 − α23α32, α22α34 − α24α32) 1 1

(2, 2, 3) (2, 2, 2, 1) 5 6 16 X ∩ Z(linear, quadratic) 2 1

(2, 2, 2, 2) (2, 2, 2, 1, 1) 5 7 8 X ∩ Z(linear, quadratic) 1 1

Let X be a K3 surface of degree 2µ− 2 in Pµ that is a complete intersection of
type (a1, . . . , ar−2) in some Pr, for r ≥ µ. We will always assume that

(6.1) ai ≥ 2 for i ≤ r − 4 and ar−3 ≥ ar−2,

but we may have ar−3 = 1 or ar−2 = 1.
Let

bi = ai for i = 1, . . . , r − 2, and br−3 = ar−3 + ar−2.

Then each bi ≥ 2 and we can construct a Calabi-Yau threefold Y that is a complete
intersection of type (b1, . . . , br−3) in Pr as follows: Choose generators gi of degrees ai
for the ideal of X . So X = Z(g1, . . . , gr−2). For general αij ∈ H0(Pr,OPr(bi − aj))
define

fi :=
∑

αijgj

and

Y := Z(f1, . . . , fr−3)

(here we follow [7, Section 3], except for arranging indices in a different way).
If the coefficient forms αij are chosen in a sufficiently general way, Y has only
ℓ = (2µ − 2)ar−3ar−2 ordinary double points and they all lie on X . This can be
checked using Bertini’s theorem. In fact, the ℓ nodes are the intersection points of
two general elements of |OX(ar−3)| and |OX(ar−2)| (distinct, when ar−3 = ar−2).
As above, we denote the set of nodes by S.

Moreover, for general αij , Bertini’s theorem yields that the fourfold

Z := Z(f1, . . . , fr−4)

is smooth. (Note that Z = Pr if r = 4.)
We are therefore in the setting of Theorem 1.1 given in the introduction with

P = Pr,

E := ⊕r−3
i=1OPr(bi)

and Mr−3 := OPr(br−3) = OPr(ar−3 + ar−2). By construction, condition (A1) and
the first part of condition (A2) are satisfied.

We refer to Table 1 for all values of aj, bi, ℓ, µ and r. (This is the same table as
[7, Table p. 201], except for one case, namely (bi) = (3, 3), (aj) = (2, 2, 2), present
in [7, Table p. 201] but absent in our table, because in this case none of the two
cubic hypersurfaces will be smooth along X .)

Assume now that X carries a line bundle L such that the general element of |L|
is a smooth, irreducible curve of degree d and genus g. It is well known, and easily
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seen, that such a line bundle satisfies

(6.2) L2 = 2g − 2, h0(L) = g + 1, h1(L) = h2(L) = 0,

see e.g. [13].
In the next section we will finish the proof of Theorem 1.2 by applying Theorem

1.1 and a result guaranteeing the existence of the line bundle L, cf. Theorem 7.1.
In particular, we will verify that conditions (A2)-(A7) are satisfied (under certain
numerical conditions, giving the different constraints in Theorem 1.2). In the rest
of this section we will give some results that will be needed for the verifications of
the conditions (A4), (A5) and (A7), where we in the case of (A5) will consider the
equivalent condition (A5)’ from Remark 5.1.

The following result, which is folklore among experts on K3 surfaces, will be
needed to verify that condition (A4) is satisfied.

Lemma 6.1. Let L be a line bundle on a K3 surface X such that |L| contains a
smooth, irreducible curve. Assume that x is a point on X satisfying

(i) x is not contained in any smooth rational curve Γ on X satisfying Γ.L = 0;
(ii) if L2 = 0, then x is not a singular point of any fiber of the elliptic pencil

|L|.

Then, the general element in |L ⊗ Jx| (if nonempty) is nonsingular at x.

Proof. We can assume that g = dim |L| > 0. We then have that |L| is base point
free, see [13, Thm. 3.1], and dim |L| = g and L2 = 2g − 2 ≥ 0 by (6.2).

If L2 = 0 it is well known that |L| is an elliptic pencil, see [13, Prop. 2.6], so
that we are done by (ii). (Note that |L ⊗ Jx| has only one element.)

If L2 > 0 we consider the morphism ϕL : X → Pg and its Stein factorization

X
α // X ′

β // ϕL(X)

Then α is the contraction of the finitely many smooth, rational curves Γ satisfying
Γ.L = 0 [13, (4.2)] and β is finite of degree one or two [13, (4.1)]. It follows from
hypothesis (i) that the base scheme of |L ⊗ Jx| is finite of length at most two,
whence is curvilinear. Therefore the general member of |L ⊗ Jx| is smooth and
irreducible by Bertini. �

By this lemma, condition (A4) is satisfied for general αij . Indeed, the reduced
and irreducible curves Γ on X satisfying Γ.L = 0 are only finitely many by standard
results, and the singular points of fibers in an elliptic pencil are also finitely many.
Therefore, since the nodes are the points of intersection of two general (distinct)
elements of |OX(ar−3)| and |OX(ar−2)|, we can make sure that the nodes satisfy
the conditions (i) and (ii) in the lemma.

The next result shows that condition (A7) is satisfied.

Lemma 6.2. For general αij , the image of the natural restriction map

H0(Pr,OPr(ar−3 + ar−2)) // H0(S,OS(ar−3 + ar−2)) ≃ Cℓ

has codimension one.

Proof. Recall that S = H1 ∩ H2, for general members H1 ∈ |OX(ar−3)| and
H2 ∈ |OX(ar−2)|. We note that the map above factorizes through the natu-
ral restrictions to X and H1. The restriction map H0(Pr,OPr(ar−3 + ar−2)) →
H0(X,OX(ar−3 + ar−2)) is surjective because X is a complete intersection. The
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restriction map H0(X,OX(ar−3+ar−2)) → H0(H1,OH1
(ar−3+ar−2)) is surjective

from the cohomology of

0 // OX(ar−2) // OX(ar−3 + ar−2) // OH1
(ar−3 + ar−2) // 0,

as h1(OX(ar−2)) = 0. Finally, the cokernel of the map H0(H1,OH1
(ar−3+ar−2)) →

H0(S,OS(ar−3 + ar−2)) is one-dimensional from the cohomology of

0 // OH1
(ar−3) // OH1

(ar−3 + ar−2) // OS(ar−3 + ar−2) // 0,

as OH1
(ar−3) ≃ ωH1

. This concludes the proof. �

The following result gives criteria for the first of the two conditions in (A5)’ to
hold:

Lemma 6.3. Assume that the αij are general, that h0(X,L ⊗ OX(−ar−2)) = 0
and that

ar−2(2ar−3 − ar−2)(µ− 1) ≥

{

g + 2 if ar−3 6= ar−2;

g + 1 if ar−3 = ar−2.

Then S imposes independent conditions on |L|.

Proof. Fix any smooth, irreducible H0 ∈ |OX(ar−2)|. Consider the incidence
scheme

W :=
{

(η′, η) | η′ ⊂ η
}

⊂ Symg+1(H0)× |OH0
(ar−3)|

(note that degOH0
(ar−3) = ℓ = 2ar−3ar−2(µ− 1) ≥ g + 1 by our conditions). Let

π1 : W // Symg+1(H0) and π2 : W // |OH0
(ar−3)|

denote the projections. One easily computes that

dim |OH0
(ar−3)| =

{

ar−2(2ar−3 − ar−2)(µ− 1)− 1 if ar−3 6= ar−2;

ar−2(2ar−3 − ar−2)(µ− 1) if ar−3 = ar−2,

so that dim |OH0
(ar−3)| ≥ g+1 by our assumptions. It follows that π1 is surjective.

Since, for any η′ ∈ Symg+1(H0), we have π−1
1 (η′) ≃ |OH0

(ar−3)⊗Jη′/H0
|, it follows

that W is irreducible.
For general η′ ∈ Symg+1(H0), we have

(6.3) |L ⊗ Jη′/X | = ∅.

Indeed, for general x1 ∈ H0, we have dim |L ⊗ Jx1/X | = dim |L| − 1, as H0 cannot
be a base component of |L|. Proceeding inductively, having picked general distinct
x1, . . . , xi ∈ H0 for some i ∈ {1, . . . , g} with dim |L ⊗ Jx1/X ⊗ · · · ⊗ Jxi/X | =
dim |L|−i ≥ 1, as dim |L| = g, we have that the base locus of |L⊗Jx1/X⊗· · ·⊗Jxi/X |
does not contain the whole of H0, as h0(L−H0) = h0(L⊗OX(−ar−2)) = 0 by our
assumption. Therefore, for any xi+1 ∈ H0 outside of this base locus, we have that
dim |L ⊗ Jx1/X ⊗ · · · ⊗ Jxi+1/X | = dim |L| − (i + 1) and we can continue, proving
(6.3).

Let now

WL :=
{

(η′, η) ∈ W
∣

∣

∣
|L ⊗ Jη′/X | 6= ∅

}

⊆ W.
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Since π1 is surjective, we have WL $ W by (6.3). Since π2 is finite, we get that
π2(WL) $ |OH0

(ar−3)|. Since h1(OX(ar−3 − ar−2)) = 0, we conclude from the
short exact sequence

0 // OX(ar−3 − ar−2) // OX(ar−3) // OH0
(ar−3) // 0,

that for the general member H1 ∈ |OX(ar−3)|, the ℓ distinct points H1 ∩H0 have
the property that no g + 1 of them lie on any member of |L|. It follows that S
imposes independent conditions on L, cf. Remark 4.2. �

Finally, we will consider the second of the two conditions in (A5)’.
We first recall the following result:

Lemma 6.4. ([7, Lemma 1.10]) Let X ⊂ Pr be a smooth projective K3 surface with
a line bundle L such that L and OX(1) are independent in PicX and |L| contains
a smooth, irreducible curve. Then, for all C ∈ |L|, the composition

ϕ : H0(X,NX/Pr ) // H0(X,NX/Pr ⊗OC) // H1(C,NC/X)

of the restriction with the connecting homomorphism arising from (3.9) with P = Pr

is surjective. Furthermore, kerϕ is independent of C ∈ |L|.

We now prove that, for general αij , the second of the two conditions in (A5)’
from Remark 5.1 holds if L and OX(1) are independent in PicX . The proof is
taken basically ad verbatim from the last part of the proof of [7, Thm. 3.5] and
we give it not only for the sake of completeness, but also because our statement is
different and the proof of [7, Thm. 3.5] has a gap (cf. Remark 6.6 below).

Proposition 6.5. Suppose that the αij are general and that the line bundles L and
OX(1) are independent in PicX. Then the map γC in (4.4) is an isomorphism for
all C ∈ |L|.

Proof (following the proof of [7, Thm. 3.5]). We consider the commutative diagram
(3.10) with P = Pr. By definition of γC and the fact that h1(NC/X) = 1 for any
C ∈ |L| by (4.6) and (6.2), we just need to show that the connecting homomorphism
of the left hand vertical exact sequence in (3.10) is nonzero. A diagram chase in
(3.10) reduces this to proving that for general αij and all C ∈ |L|, we have

(6.4) δC(kerH
0(ΦC)) 6= 0,

where

δC : H0(C,NX/Pr ⊗OC) // H1(C,NC/X)

is the connecting homomorphism of the right hand vertical exact sequence in (3.10)
and ΦC is given in (3.10).

As in [7], we define A := ⊕r−2
j=1OPr (aj) and denote by AX its restriction to X .

Now we have natural isomorphisms

(6.5) NX/Pr ≃ AX = ⊕r−2
j=1OX(aj) and NY/Pr ⊗OX ≃ E ⊗OX ≃ ⊕r−2

i=1OX(bi),

under which the map

⊕r−2
j=1H

0(OC(aj)) ≃ H0(NX/Pr ⊗OC)
H0(ΦC)// H0(NY/Pr ⊗OC) ≃ ⊕r−2

i=1H
0(OC(bi))

is given by the matrix (αij), where αij is the restriction of αij to C (cf. [7, Lemma

3.4], where B := ⊕r−3
i=1OPr(bi) = E).
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To prove (6.4), use Gaussian elimination to find a generator N = N(αij) of the

null-space of the linear map Cr−2
(αij) // Cr−3 . Keeping track of degrees, this can be

done in such a way that the ith coordinate of N is of degree ai. For example, if (bi) =
(4, 2) and (aj) = (3, 2, 1), the vector N = (α12α23−α13α22,−α11α23, α11α22). Since
N is well-defined only up to scalar, we view it as a line in H0(Pr,A) or a point of
P(H0(Pr,A)). Now each term of each coordinate of N is a term of a determinant
of (αij), so that as (αij) varies, N hits a multiple of each element of the form
(0, . . . , 0, λ1λ2 · · ·λai , 0, . . . , 0), where the λks are of degree 1. Since the image of
the Segre embedding of P(H0(Pr,O(1)))×ai in P(H0(Pr,O(ai))) is nondegenerate,
the linear span of the image of N includes the spaces

0⊕ · · · ⊕ 0⊕H0(Pr,O(ai))⊕ 0⊕ · · · ⊕ 0

and hence all of ⊕iH
0(Pr,O(ai)).

Now (6.4) follows from Lemma 6.4 since H0(Pr,A) → H0(X,AX) is surjective
for any complete intersection X . �

Remark 6.6. In [7, Thm. 3.5] it is claimed that H0(NC/X) ≃ H0(NC/Y ) for all
C ∈ |L| under the same hypotheses as in Proposition 6.5. However, there is a
mistake in the proof: it is claimed that there is a (not necessarily surjective) map
µ : NC/Y → NX/Y ⊗OC fitting into the left bottom corner of (3.10). While this is

true from (3.3) if C ∩S = ∅, because then F0
C = NX/Y ⊗OC by (4.2) and (4.3), the

same does not hold if C passes through some nodes of Y . In this case, NX/Y ⊗OC

is a proper subsheaf of F0
C and one cannot conclude that there is a map as µ.

Moreover, the gap in the proof of [7, Thm. 3.5] also influences the proof of [7,
Corollary 3.6], which in fact does not hold. Indeed, if H0(NC/X) ≃ H0(NC/Y ) for

all C ∈ |L|, then by (3.3), (4.3) and the fact that h1(NC/X) = h1(OC(C)) = 1 for
every C ∈ |L|, we must have

h1(NC/Y ) = h1(F0
C) = g − ♯(S ∩ C).

It therefore follows that [7, Corollary 3.6] does not hold for the curves C ∈ |L|
passing through at least one of the nodes, as it is claimed there that H1(C,NC/Y ) ≃
H1(C,OC) for any C ∈ |L|, and it is well known that h1(OC) = g for any C ∈ |L|,
cf. e.g. [7, Lemma 1.9(1)]. Unfortunately, [7, Corollary 3.6] is used in a crucial way
in the proof of the main existence result [7, Thm. 1] (more precisely, it is used in
the proof of [7, Prop. 3.9]).

Remark 6.7. It was noted by the referee of the original version of [10] that the same
gap as in the proof of [7, Thm. 3.5] also appears in [2, Example 4.3]. It may be
instructive to have a closer look at this as well and to see how Proposition 4.3 can
be used to fill this gap and thus show that the conclusions in [2, Example 4.3] are
correct.

Clemens and Kley consider, with different notation, the two upper cases in Table
1, that is, either

(6.6) g1, α12 ∈ H0(P4,OP4(4)) and g2, α11 ∈ H0(P4,OP4(1))

or

(6.7) g1, α12 ∈ H0(P4,OP4(3)) and g2, α11 ∈ H0(P4,OP4(2))
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(respectively cases (4.3.1) and (4.3.2) in their example), so that both the K3 surface

X := Z(g1, g2)

(which they call Y ) and the del Pezzo surface

X ′ := Z(g2, α11)

(which they call S) are smooth, and such that the quintic threefold

Y := Z(α11g1 + α12g2)

(which they call X0) has only ordinary nodes (16 and 36 respectively), given by

S = Z(g1, g2, α11, α12) ⊂ X ∩X ′.

The authors claim that for any curve C′ ⊂ X ′, one has

(6.8) H0(NC′/X′) ≃ H0(NC′/Y ).

To prove (6.8) they again state the existence of an exact sequence

0 −→ H0(C′,NC′/X′) // H0(C′,NC′/Y ) −→ H0(C′,NX′/Y ⊗OC′).

As mentioned above, one cannot a priori conclude the existence of such a sequence.
In fact, as we will see now, (6.8) does not hold in certain cases.

By Proposition 4.3 a necessary and sufficient condition for (6.8) to hold for
all curves C′ in the linear system |C′| is that the nodes S impose independent
conditions on |C′|, since X ′ is a del Pezzo surface, so that h1(NC/X′) = 0 for all
C ∈ |C′| and γC is automatically surjective.

Now in case (6.6), let C′ be the quartic X ′∩Z(g1) on X ′. Then C′ pass through
all 16 nodes but |OX′(C′)| = |OP2(4)| is 14-dimensional. Hence the nodes S do not
impose independent conditions on |C′|, so that (6.8) does not hold for all curves
in |C′| in this case. In fact, it does not hold when one considers linear systems
|OP2(d)| with d ≥ 4. This example also shows that the assertion “If the gi and the
αij are sufficiently general, the divisor of curves passing through at least one node
is a simple-normal crossing divisor consisting of hyperplanes” in [2, Example 4.3]
does not hold if d ≥ 4, cf. Remark 4.2.

We now show, however, that S does impose independent conditions on |OP2(d)|
when d ≤ 3, using the same argument as in the proof of Lemma 6.3.

Remember that the 16 nodes of Y are the intersection points of two general
elements of |OP2(4)|. Fix any smooth, irreducible H0 ∈ |OP2(4)| and consider the
incidence scheme

W :=
{

(η′, η) | η′ ⊂ η
}

⊂ Sym
1
2
d(d+3)+1(H0)× |OH0

(4)|

with projections π1 and π2 onto the first and second factor, respectively (recall
that dim |OP2(d)| = 1

2d(d + 3)). Since dim |OH0
(4)| = 14 ≥ 1

2d(d + 3) + 1 when

d ≤ 3, we have that π1 is surjective. Since, for any η′ ∈ Sym
1
2
d(d+3)+1(H0), we

have π−1
1 (η′) ≃ |OH0

(4)⊗ Jη′/H0
|, it follows that W is irreducible.

Now using the fact that |C′ ⊗ OP2(−4)| = |OP2(d − 4)| = ∅ as d ≤ 3, one can

easily prove that |OP2(d)⊗Jη′/X | = ∅ for general η′ ∈ Sym
1
2
d(d+3)+1(H0), as in the

proof of Lemma 6.3. Now π1 is surjective, so that letting

WL :=
{

(η′, η) ∈ W | η′ ⊂ C′ for some C′ ∈ |OP2(4)|
}

⊆ W,
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this implies that WL $ W . Since π2 is finite, we get that π2(WL) $ |OH0
(4)|.

Since H0(OP2(4)) surjects onto H0(OH0
(4)), we see that for the general member

H1 ∈ |OP2(4)|, the 16 distinct points H1∩H0 have the property that no 1
2d(d+3)+1

of them lie on any member of |OH0
(d)|, for d ≤ 3. Therefore, for general choices of

g1 and g2, (6.8) is fulfilled for all curves C′ ∈ |OP2(d)| when d ≤ 3
The cases where d ≤ 3 are in fact the cases where H1(NC′/P4) = 0 for all

C′ ∈ |OP2(d)|, another condition needed to apply the results in [2], so that at the
end, these are precisely the cases in [2, Example 4.3] where the authors compute
the number of curves moving in a general deformation of the threefold. This shows
that the conclusions in [2, Example 4.3] in the case (6.6) are in fact correct.

In the same way one can show that the applications in the case (6.7) are correct.

7. Proof of Theorem 1.2

In this section we apply Theorem 1.1 and the results from the previous section
to construct smooth, isolated curves in general CICY s of each intersection type,
thus proving Theorem 1.2.

Recall the following result from [11] and [9], which guarantees the existence
of smooth curves of certain degrees and genera on the three types of complete
intersection K3 surfaces:

Theorem 7.1. Let d > 0 and g ≥ 0 be integers. Then:

(i) There exists a smooth quartic surface X in P3 containing a smooth, irre-
ducible curve C of degree d and genus g such that OX(1) and OX(C) are
independent in PicX if and only if g < d2/8 and (d, g) 6= (5, 3).

(ii) There exists a K3 surface X of type (2, 3) in P4 containing a smooth,
irreducible curve C of degree d and genus g such that OX(1) and OX(C)
are independent in PicX if and only if g = d2/12 + 1/4 or g < d2/12 and
(d, g) 6= (7, 4).

(iii) There exists a K3 surface X of type (2, 2, 2) in P5 containing a smooth,
irreducible curve C of degree d and genus g such that OX(1) and OX(C)
are independent in PicX if and only if g = d2/16 and d ≡ 4 (mod 8), or
g < d2/16 and (d, g) 6= (9, 5).

For X and C as in the theorem, we let L := OX(C).
In the setting described in the previous section, we now want to find out under

which circumstances the conditions (A1)-(A7) in Section 5 are satisfied, so that we
can apply Theorem 1.1.

Proposition 7.2. Under the contraints given by Theorem 7.1, assume that the αij

are general. If

(7.1) d ≤ 2ar−2(µ− 1) or dar−2 > a2r−2(µ− 1) + g

and

(7.2) ar−2(2ar−3 − ar−2)(µ− 1) ≥

{

g + 2 if ar−3 6= ar−2;

g + 1 if ar−3 = ar−2,

the conditions (A1)-(A7) are satisfied.

Proof. Conditions (A1) and (A3) are obviously satisfied (as is the first part of (A2)).
Condition (A4) is satisfied by Lemma 6.1 and the lines following the proof of that
lemma. Condition (A7) is satisfied by Lemma 6.2.



ISOLATED SMOOTH CURVES IN CALABI-YAU THREEFOLDS 21

The remaining three conditions (A2), (A5) and (A6) will be responsible for the
numerical conditions (7.1) and (7.2).

Condition (A2) is satisfied whenever

(7.3) ℓ ≥ g + 2,

since dim |L| = g by (6.2), where ℓ = 2ar−3ar−2(µ − 1) is the number of nodes of
Y . We see that condition (7.2) implies condition (7.3).

We next consider condition (A6). Lemma 6.4 together with (3.9) and the fact
that NX/Pr ⊗OC = ⊕OC(aj) by (6.5) yields

H1(C,NC/Pr ) ≃ H1(C,NX/Pr ⊗OC) ≃ ⊕H1(C,OC(aj)).

Noting that ar−2 = min{aj} by Table 1, we get in particular that H1(C,NC/Pr ) = 0

if and only if h1(C,OC(ar−2)) = 0. By [9, Prop. 1.3] this is achievable for all C ∈ |L|
if and only if

d ≤ 2ar−2(µ− 1) or dar−2 > a2r−2(µ− 1) + g,

which is condition (7.1).
Therefore, (A6) is satisfied if and only if (7.1) holds.
Finally we consider condition (A5), or equivalently, by Remark 5.1, condition

(A5)’.
By Proposition 6.5 and the fact that L and OX(1) are independent in PicX by

Theorem 7.1, the second of the two conditions in (A5)’ is satisfied.
Next we note from the cohomology of

0 // L∨ // OX
// OC

// 0

twisted by OX(ar−2), Kodaira vanishing and Serre duality, that

h0(X,L ⊗OX(−ar−2)) = h1(OC(ar−2)),

so that also h0(X,L⊗OX(−ar−2)) = 0 if condition (7.1) holds, as we have just seen.
Thus, by Lemma 6.3, the first of the two conditions in (A5)’ is satisfied whenever
(7.1) holds together with the condition

ar−2(2ar−3 − ar−2)(µ− 1) ≥

{

g + 2 if ar−3 6= ar−2;

g + 1 if ar−3 = ar−2,

which is condition (7.2).
To summarize, conditions (A1)-(A7) are satisfied for general αij whenever (7.1)

and (7.2) hold, subject to the constraints given by Theorem 7.1. �

Now to obtain Theorem 1.2 we just apply Theorem 1.1 taking into account
the numerical conditions given in Theorem 7.1 and Proposition 7.2 for the various
complete intersection types. Let us briefly explain how it works in case (a), that is
the case of Y a quintic threefold in P4. We then have r = 4 and (bi) = (b1) = 5.

Looking at Table 1, there are two choices for the K3 surface X , and the values
of aj , µ, ℓ are given in the two upper rows of the table. In particular, we have the
two possibilities (a1, a2) = (4, 1) or (3, 2).

In the first case, (a1, a2) = (4, 1), we apply Theorem 7.1(i), where the numerical
conditions are g < d2/8 and (d, g) 6= (5, 3). Conditions (7.1) and (7.2) read

d ≤ 4 or d ≥ g + 3

and
g ≤ 12.
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Noting that we always have g < d2/8 and (d, g) 6= (5, 3) when d ≥ g + 3, all
conditions put together yield

(7.4) 8g < d2 ≤ 16 or g ≤ min{12, d− 3}.

In the second case, (a1, a2) = (3, 2), we apply Theorem 7.1(ii), where the nu-
merical conditions are g = (d2 +3)/12 or g < d2/12 and (d, g) 6= (7, 4). Conditions
(7.1) and (7.2) read

d ≤ 12 or g ≤ 2d− 13

and
g ≤ 22.

Noting that we always have g < d2/12 and (d, g) 6= (7, 4) when g ≤ 2d − 13, and
that the only integer values for d and g satisfying d ≤ 12 and g = (d2 + 3)/12 are
(d, g) = (3, 1) and (9, 7), all conditions put together yield

12g < d2 ≤ 144 with (d, g) 6= (7, 4);(7.5)

or (d, g) ∈ {(3, 1), (9, 7)}; or g ≤ min{22, 2d− 13}.

Finding, for every g, the lowest possible bound for d given by (7.4) and (7.5), yields
the numerical conditions in Theorem 1.2(a).
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