
ar
X

iv
:1

00
9.

44
55

v1
 [

m
at

h.
C

O
]

 2
2

Se
p

20
10

Forbidden substrings, Kolmogorov complexity

and almost periodic sequences

A. Yu. Rumyantsev, M. A. Ushakov

Moscow State University, Russia, Mathematics Department, Logic and algorithms
theory division

Abstract. Assume that for some α < 1 and for all nutural n a set Fn of
at most 2αn “forbidden” binary strings of length n is fixed. Then there
exists an infinite binary sequence ω that does not have (long) forbidden
substrings.
We prove this combinatorial statement by translating it into a statement
about Kolmogorov complexity and compare this proof with a combina-
torial one based on Laslo Lovasz local lemma.
Then we construct an almost periodic sequence with the same property
(thus combines the results from [1] and [2]).
Both the combinatorial proof and Kolmogorov complexity argument can
be generalized to the multidimensional case.

1 Forbidden strings

Fix some positive constant α < 1. Assume that for each natural n a set Fn

of binary strings of length n is fixed. Assume that Fn consists of at most 2αn

strings.
We look for an infinite binary sequence ω that does not contain forbidden

substrings.

Proposition 1. There exists an infinite binary sequence ω and a constant N
such that for any n > N the sequence ω does not have a substring x of length n
that belongs to Fn.

One may consider strings in Fn as “forbidden” strings of length n; proposi-
tion then says that there exists an infinite sequence without (sufficiently long)
forbidden substrings.

For example, we can forbid strings having low Kolmogorov complexity. Let
Fn be the set of all strings of length n whose complexity is less than αn. Then
#Fn does not exceed 2αn (there are at most 2αn programs of size less than αn).

Therefore Proposition 1 implies the following statement that was used in [1]:

Proposition 2. For any α < 1 there exists a number N and an infinite

binary sequence ω such that any its substring x of length greater than N has

high complexity:

K(x) ≥ α|x|.

http://arxiv.org/abs/1009.4455v1

2

Here K(x) stands for Kolmogorov complexity of x (the length of the shortest
program producing x, the definition is given in [3]); it does not matter which
version of Kolmogorov compexity (prefix, plain, etc.) we consider since the log-
arithmic difference between them can be compensated by a small change in α.
The notation |x| means the length of string x.

Our observation is that the reverse implication is true, i.e., Proposition 2
implies Proposition 1. It is easy to see if we consider a stronger version of Propo-
sition 2 when K is replaced by a relativized version KA where A is an arbitrary
oracle (an external procedure that can be called). Indeed, consider the set of all
forbidden strings as an oracle. Then the relativized complexity of any string in
Fn does not exceed αn+O(1) since its ordinal number in the length-sorted list
of all forbidden strings is at most

∑

k≤n 2
αk = O(2αn). The constant O(1) can

be absorbed by a small change in α, and we get the statement of Proposition 1.

More interestingly, we can avoid relativization and derive Proposition 1 from
(non-relativized) Propostion 2. It can be done as follows.

First note that we may assume (without loss of generality) that α is rational.
Assume that for some set F of forbidden strings the statement of Proposition 1
is false. Then for each c ∈ IN there exists a set F c with the following properties:

(a) F c consists of strings of length greater than c;

(b) F c contains at most 2αk strings of length k for any k;

(c) any infinite binary string has at least one substring that belongs to F c.

(Indeed, let F c be the set of all forbidden strings that have length more
than c.)

The statement (c) can be reformulated as follows: the family of open sets
Sx for all x ∈ F c covers the set Ω of all binary sequences, where Sx is a set
of all sequences that have substring x. The standard compactness argument
implies that F c can be replaced by its finite subset, so we assume without loss
of generality that F c is finite.

The properties (a), (b) and (c) are enumerable (for finite F c): each Sx is an
enumerable union of intervals, so if the sets Sx for x ∈ F c cover Ω, this can
be discovered at a finite step. (In fact, they are decidable, but this does not
matter.) So the first set Fc encountered in the enumeration (for a given c) is a
computable function of c.

Now we can construct a decidable set of forbidden strings that does not satisfy
the statement of Proposition 1. Indeed, construct a sequence c1 < c2 < c3 < . . .
where ci+1 is greater than the length of all strings in F ci and take the union of
all F ci . We obtain the decidable set F̂ such that F̂ contains at most 2αk strings
of length k for any k, and any infinite binary string has (for any i) at least one
substring of length greater that ci that belongs to F̂ . For this decidable set we
need no special oracle, q.e.d.

The proof of Proposition 2 given in [1] uses prefix complexity. See below
Section 3 where we prove the stronger version of this Proposition needed for our
purposes.

3

2 Combinatorial proof

The statement of Proposition 1 has nothing to do with Kolmogorov complexity.
So it would be natural to look for a combinatorial proof.

The simplest idea is to use the random bits as the elements of the sequence.
Then the probability of running into a forbidden string in a given k positions

ωnωn+1 . . . ωn+k−1

is bounded by 2−(1−α)k, i.e., exponentially decreases when k → ∞. However,
the number of positions where a forbidden string of a given length can appear is
infinite, and the sum of probablities is infinite too. And, indeed, a truly random
sequence contains any string as its substring, so we need to use something else.

Note that two non-overlapping fragments of a random sequence are inde-
pendent. So the dependence can be localized and we can apply the following
well-known statement:

Proposition 3 (Laslo Lovasz local lemma). Let G be a graph with vertex

set V = {v1, . . . , vn} and edge set E. Let Ai be some event associated with vertex

vi. Assume that for each i the event Ai is independent with the random variable

“outcomes of all Aj such that vj is not connected to vi by an edge”. Let pi ∈ (0, 1)
be a number associated with Ai in such a way that

Pr[Ai] ≤ pi
∏

vj∼vi

(1− pj)

where the product is taken over all neighbour vertices vj (connected to vi by an

edge). Then

Pr[neither of Ai happens] ≥

n
∏

i=1

(1− pi)

and, therefore, this event is non-empty.

The proof of this Lemma could be found, e.g., in [4], p. 115.
To apply this Lemma to our case consider a finite random string of some

fixed length N where all bits are independent and unbiased (both outcomes
have probability 1/2). Consider a graph whose vertices are intervals of indices
(i.e., places where a substring is located) of length at least L (some constant to
be chosen later). Two intervals are connected by an edge if they are not disjoint
(share some bit). For each interval v consider the event Av: “substring of the
random string located at v is forbidden”. This event is independent with all
events that deal with bits outside v, so the independence condition is fulfilled.

Let pv = 2−δ|v| for all v and some δ (to be chosen later). To apply the lemma,
we need to prove that

Pr[Av] ≤ pv
∏

v and w are
not disjoint

(1− pw).

4

Let l ≥ L be the length of the string v and let

R =
∏

v and w are
not disjoint

(1− pw).

Then

R ≥

N
∏

k=L

(1− 2−δk)l+k

(strings w have length between L and N and there are at most l + k strings of
length k that share bits with v), and

R ≥





∏

k≥L

(1− 2−δk)





l

∏

k≥L

(1− 2−δk)k

(we split the product in two parts and replace finite products by infinite ones).
The product

∏

(1 − εi) converges if and only if the series
∑

εi converges. The
corresponding series

∑

k≥L

2−δk and
∑

k≥L

k · 2−δk

do converge. Therefore both products converge and for a large L both products
are close to 1:

R ≥ Cl
1C2 ≥ Dl

where C1, C2 andD are some constants that could be made close to 1 by choosing
a large enough L (not depending on l). Then

pvR ≥ 2−δlDl ≥ 2−δl2−γl = 2−(δ+γ)l,

where γ = − logD could be arbitrarily small for some L. We choose δ and L in
such a way that δ < (1 − α)/2 and γ < (1− α)/2. Then

pvR ≥ 2−(1−α)l ≥ Pr[Av]

(forbidden strings form a 2−(1−α)l-fraction of all strings having length l) and
conditions of Lovasz lemma are fulfilled.

So we see that for some large L and for all sufficiently large N there exists a
string of length N that does not contain forbidden strings of length L or more.
Standard compactness argument shows that there exists an infinite binary string
with the same property.

This finishes the combinatorial proof of Proposition 1.
Note that this combinatorial proof hardly can be considered as a mere trans-

lation of Kolmogorov complexity argument. Another reason to consider it as a
different proof is that it has a straightforward generalization for several dimen-
sions. (The Kolmogorov complexity argument has this too, as we see in Section 5,
but requires significant changes.)

5

A d-dimensional sequence is a function ω:ZZd → {0, 1}. Instead of substrings
we consider d-dimensional “subcubes” in the sequence, i.e., restrictions of ω to

some cube in ZZd. For any n there are 2n
d

different cubes with side n. Assume

that for every n > 1 a set Fn of not more than 2αn
d

“forbidden cubes” is fixed.

Proposition 4. There exists a number L and d-dimensional sequence that

does not contain forbidden subcube with side greater than L.

The proof repeats the combinatorial proof of Proposition 1 with the following
changes. The bound for R now is

R ≥

N
∏

k=L

(1− 2−δkd

)(l+k)d ,

since there are at most (l + k)d cubes with side k intersecting a given cube
with side l. Then we represent (l + k)d as a sum of d + 1 monomials and get
a representation of this bound as a product of infinite products, each for one
monomial. Every product has the following form (for some i in 0 . . . d and for
some ci that depends on d and i, but not k and l):

∏

k≥L

(1 − 2−δkd

)cil
ikj

=





∏

k≥L

(1− 2−δkd

)k
j





cil
i

.

The corresponding series obviously converge (due to the same reasons as before),
and again we can make expression [. . .] as close to 1 as needed by choosing L
(and again the choice of L does not depend on l). Then the estimate for R takes
the form:

R ≥
d
∏

i=0

Dcil
i

i ≥
d
∏

i=1

DCld

i ≥

[

d
∏

i=1

DC
i

]ld

≥ Dld ,

where ci, Di, C and D are some constants, and C and D could be made as close
to 1 as needed.

Then the proof goes exactly as before.

3 Construction of almost periodic sequences

A sequence is called almost periodic if each of its substrings has infinitely many
occurences at limited distances, i.e., for any substring x there exists a number k
such that any substring y of ω of length k contains x.

The following result is proven in [2] (in the paper almost periodic sequences
were called strongly almost periodic sequences):

Proposition 5. Let α < 1 be a constant. There exists an almost periodic

sequence ω such that any sufficiently long prefix x of ω has large complexity:

K(x) ≥ α|x|.

6

Comparing this statement with Proposition 2, we see that there is an ad-
ditional requirement for the sequence to be almost periodic; on the other hand
high complexity is guaranteed only for prefixes (and not for all substrings).

Now we combine these two results:

Proposition 6. Let α < 1 be a constant. There exists an almost periodic

sequence ω such that any sufficiently long substring x of ω has large complexity:

K(x) ≥ α|x|.

The paper [2] provides a universal construction for almost periodic sequences.
Now we suggest another, less general construction that is more suitable for our
purposes.

Namely, we define some equivalence relation on the set of indices (IN). Then
we construct a sequence

ω = ω0ω1ω2 . . .

with the following property: i ≡ j ⇒ ωi = ωj. In other words, all the places that
belong to one equivalence class carry the same bit. This property guarantees
that ω is almost periodic if the equivalence relation is chosen in a proper way.

Let n0, n1, n2, . . . be an increasing sequence of natural numbers such that ni+1

is a multiple of ni for each i. The prefix of length n0, i.e., the interval [0, n0),
is repeated with period n1. This means that for any i such that 0 ≤ i < n0 the
numbers

i, i+ n1, i+ 2n1, i+ 3n1, . . .

belong to the same equivalence class. In the similar way the interval [0, n1) is
repeated with period n2: for any i such that 0 ≤ i < n2 the numbers

i, i+ n2, i+ 2n2, i+ 3n2, . . .

are equivalent. (Note that n2 is a multiple of n1, therefore the equivalence classes
constructed at the first step are not changed.) And so on: for any i ∈ [0, ns) and
for any k the numbers i and i+ kns+1 are equivalent.

n0 n0 n0 n0 n0 n0 n0

n1 n1

n2

Fig. 1. Primary (shaded) and secondary bits in a sequence

The following statement is almost evident:

Proposition 7. If a sequence ω respects this equivalence relation, i.e., the

equivalent positions have equal bits, then the sequence in almost periodic.

7

Indeed, in the definition of an almost periodic sequence we may require that
each prefix of the sequence has infinitely many occurences at limited distances
(since each substring is a part of some prefix). And this is guaranteed: any prefix
of length l < ns appears with period ns+1.

The same construction can be explained in a different way. Consider the
positional system where the last digit of integer x is x mod n0, the previous
digit is (x div n0) mod n1 etc. Then all numbers of the form . . . 0z (for any given
z ∈ [0, n0)) are equivalent; we say that they have rank 1. Then we make (for
any y, z such that y 6= 0) all numbers of the form . . . 0yz equivalent and assign
rank 2 to them, etc.

If the sequence of periods n0 < n1 < n2 < . . . is growing fast enough, then
the equivalence relation does not restrict significantly the freedom of bit choice:
going from left to right, we see that most of the bits are “primary” bits (are
leftmost bits in their equivalence class, not copies of previous bits; these copies
are called “secondary” bits, see Fig. 1).

Indeed, bits of rank 1 start with n0 primary bits, these bits are repeated as
secondary bits with period n1, so secondary bits of rank 1 form a n0/n1-fraction
of all bits in the sequence; secondary bits of rank 2 form a n1/n2-fraction etc.
So the sum

∑

i
ni

ni+1
is the upper bound of the density of “non-fresh” bits. More

precise estimate: prefix of any length N has at least DN fresh bits where

D =
∏

i

(1 − ni/ni+1).

This gives a simple proof of Proposition 5. For a given α choose a computable
sequence n0 < n1 < n2 < . . . that grows fast enough and has D > α. Then take
a Martin-Löf random sequence ξ and place its bits (from left to right) at all
free positions (duplicating bits as required by the equivalence relation). We get
an almost periodic sequence ω; at least DN bits of ξ can be algorithmically
reconstructed from ω’s prefix of length N . It remains to note that algorithmic
transformation cannot increase complexity and that complexity of m-bit prefix
of a random sequence is at least m− o(m) (it would be at least m for monotone
or prefix complexity, but could be O(logm) smaller for plain complexity).

4 Proof of the main result

Could we apply the same argument (with sequence ω from Proposition 2 instead
of a random sequence) to prove Proposition 6? Not directly. To explain the
difficulty and the way to overcome it, consider the simplified picture where only
the equivalence of rank 1 is used. Then the sequence constructed has the form

ω = AB0 AB1 AB2 AB3 A . . .

where A is the group of primary bits of rank 1 (repeated with period n1); A and
Bi are taken from a sequence

ξ = AB0 B1 B2 B3 . . .

8

(provided by Proposition 2). If some substring x of ω is located entirely in A
or some Bi, its high complexity is guaranteed by Proposition 2. However, if x
appears on the boundary between A and Bi for some i > 0, then x is composed
from two substrings of ξ and its complexity is not guaranteed to be high.

To overcome this difficulty, we need the following stronger version of Propo-
sition 2.

Proposition 8. For any α < 1 there exists a number N and an infinite

binary sequence ω such that any its substring

x = ωnωn+1ωn+2 . . . ωn+k−1

of length k > N has high conditional complexity with respect to previous bits:

K(ωnωn+1ωn+2 . . . ωn+k−1 | ω0ω1ω2 . . . ωn−1) ≥ αk.

The proof follows the scheme from [1]. Let β < 1 be greater than α. Let m
be some integer number (we will fix it later). Let the first m bits of ω be the
sequence x of length m with maximal prefix complexity (denoted by KP). Then
add the next m bits to get the maximal prefix complexity of the entire sequence.
This increase would be at least m−O(logm).

[Indeed, for any strings x and y we have

KP(x, y) = KP(x) + KP(y | x,KP(x)) +O(1);

(Kolmogorov – Levin theorem); if y has been chosen to maximize the second
term in the sum, then KP(y | . . .) ≥ |y| and KP(x, y) ≥ KP(x) + |y| − O(1).
Therefore, for this y

KP(xy) ≥ KP(x, y)−KP(|y|)−O(1) ≥ KP(x) + |y| −O(log |y|),

since (x, y) can be reconstructed from xy and |y| and KP(|y|) = O(log |y|). See [1]
for details.]

Then we add string z of length m that maximizes KP(xyz) and so on.
In this way we construct a sequence ω = xyz . . . such that the prefix com-

plexity of its initial segments increases by m− c logm for every added block of
m bits. We can choose m such that m− c logm−O(1) > βm.

Then the statement of the Proposition follows from Kolmogorov – Levin
theorem if the substring is “aligned” (starts and ends on the boundaries of
length m blocks). Since m is fixed, the statement is true for non-aligned blocks of
large enough length (boundary effects are compensated by the difference between
α and β).

Proposition 8 is proven.
Let us explain why this modification helps in the model situation considered

above. If a substring x of the sequence AB0AB1AB2 . . . is on the boundary
between A and some Bi, then it can be split into two parts xA and xB. The
string xA is a substring of A and therefore has high complexity. The string xB

is a substring of some Bi and therefore also has high complexity and even high

9

conditional complexity with respect to some prefix containing A. If we prove
that xA is simple relatively this prifix we can use Kolmogorov – Levin theorem
to prove that x has high complexity.

Similar arguments work in general case when we have to consider bits of all
ranks. To finish the proof we need the following Lemma:

Lemma. Let ω be the sequence satisfying the statement of Proposition 8.

Then

K(V (a0, b0), V (a1, b1), . . . , V (as−1, bs−1)) ≥
αL −O(s logL)−K(a0 | a1)−K(a1 | a2)− . . .−K(as−2 | as−1)

for any a0 < b0 ≤ a1 < b1 ≤ . . . ≤ as−1 < bs−1, where V (a, b) stands for

ωaωa+1 . . . ωb−1 and L = (b0 − a0) + (b1 − a1) + . . .+ (bs−1 − as−1).
In fact, for Proposition 6 we need only the case s = 3 of this Lemma.
The proof of Lemma is based on Kolmogorov – Levin theorem about complex-

ity of pairs. The statement of Proposition 8 guarantees the following inequality:

K(V (as−1, bs−1) | V (0, as−1)) ≥ α(bs−1 − as−1)−O(logL). (∗)

We will prove the following inequality of any i = 0, 1, . . . , s− 2:

K(V (ai, bi), V (ai+1, bi+1), . . . , V (as−1, bs−1) | V (0, ai))−
K(V (ai+1, bi+1), . . . , V (as−1, bs−1) | V (0, ai+1)) ≥

α(bi − ai)−O(logL)−K(ai | ai+1).
(∗∗)

If we add up (**) for all i = 0, 1, . . . , s − 2 with (*) we obtain the required
inequality (and even stronger one with relative complexity in the left-hand
side). Let us prove the inequality (**) now. By W we denote the sequence
(V (ai+1, bi+1), . . . , V (as−1, bs−1)). The following inequality follows from the Kol-
mogorov – Levin theorem and the statement of Proposition 8:

K(V (ai, bi),W | V (0, ai))−K(W | V (0, ai), V (ai, bi)) =
K(V (ai, bi) | V (0, ai))−O(logL) ≥ α(bi − ai)−O(logL).

To finish the proof of Lemma, let us prove the inequality

K(W | V (0, ai+1)) ≤ K(W | V (0, ai), V (ai, bi)) + K(ai | ai+1) +O(logL).

One can obtainW from V (0, ai+1) in the following way: find ai+1 using the length
of the string V (0, ai+1), convert ai+1 into ai by the shortest program, compute bi
by adding difference bi − ai to ai, cut intervals [0, ai) and [ai, bi) from string
V (0, ai+1) and execute the shortest program that converts (V (0, ai), V (ai, bi))
into W . This needs K(W | V (0, ai), V (ai, bi)) + K(ai | ai+1) + O(logL) bits to
obtain W from V (0, ai+1). The inequality is proven, q.e.d.

The proof of Proposition 6 uses the same construction as proof of Proposi-
tion 5 but it takes a sequence satisfying the statement of Proposition 8 instead
of a random sequence.

Let v be a sequence satisfying the statement of Proposition 8 with some
α′ > α and ω be the resulting sequence (if we apply the construction of an

10

almost periodic sequence to the sequence v). It has been proved before that ω is
an almost periodic sequence. We need only to prove the following estimate of a
complexity of any substring of ω:

K(ωmωm+1ωm+2 . . . ωm+k−1) ≥ αk.

for any sufficiently long k and for any m.
Suppose that sequence {nj} grows fast enough, i.e.

∑∞
j=1

nj−1

nj
< α′−α

2 . Sup-

pose i is the smallest index such that ni ≥ k. Due to our construction of se-
quence ω any element of ω corresponds to some element of v. Different elements
of ωmωm+1 . . . ωm+k−1 of rank not less than i (i.e. elements repeated with pe-
riod ni or greater by our construction) correspond to different elements of v
because the distance between elements of the given substring of ω is less than ni

(and less than the period). It is easy to prove that in this substring the density
of elements of small rank (less than i) is not greater than α′ − α.

Indeed, the number of elements of rank j on any interval of length nj is
equal to nj−1 and we can cover the given interval of length k with at most
k
nj

+1 intervals of length nj . Therefore the number of elements of rank j on the

given interval is not greater than nj−1

(

k
nj

+ 1
)

. So the density of elements of

rank less than i in the given substring is not greater than
∑i−1

j=1

(

nj−1

nj
+

nj−1

k

)

≤

2
∑i−1

j=1
nj−1

nj
< α′ − α due to our assumption about growing of {nj}.

Hence the substring ωm . . . ωm+k−1 corresponds to some intervals in v. Throw
away all elements of small ranks from these intervals of v and denote the remain-
ing intervals by [a0, b0), . . . , [as−1, bs−1), where a0 < b0 ≤ . . . ≤ as−1 < bs−1. The
number of these intervals is at most 3. Indeed, we can enumerate all elements of
ωm . . . ωm+k−1 from left to right, not counting elements of small ranks, and for
each element find the corresponding element of v. The index of corresponding
element will increase by 1 every time except when we cross a point of type nij
or nij + ni−1 (where j is integer). But there are at most 2 points of this type in
the interval of length k so there are at most 3 corresponding intervals.

Substrings V (a0, b0), . . . , V (as−1, bs−1) (defined as in Lemma) can be com-
puted by an algorithm using the given substring of ω. The algorithm needs only
to know the value of m mod ni−1 for finding elements with small rank (less
than i) and the relative positions of elements of ωm . . . ωm+k−1 corresponding
to vaj

and vbj−1 where j = 0, 1, . . . , s − 1. Because s ≤ 3 only a logarithmical
amount of additional bits is needed. So we can prove the following inequality to
finish the proof of Proposition 6:

K(V (a0, b0), . . . , V (as−1, bs−1)) ≥ αk −O(log k).

We can use Lemma for this because α′L > αk, where L = (b0−a0)+ (b1−a1)+
. . .+(bs−1 − as−1) (we have already proved that in this substring the density of
elements of small rank is not greater than α′ − α, hence k − L ≤ (α′ − α)k).

If we prove that K(aj | aj+1) = O(log k) we will finish the proof of the
proposition. Suppose we know aj+1. We can find aj in the following way. Find

11

the element of the given substring of ω corresponding to vaj+1
. Add to the index

of the found element the difference between the indexes of the elements of the
given substring corresponding to vaj

and vaj+1
(this difference is not greater

than the lenght of the given substring, i.e., we use only a logarithmical amount
of memory). We get an element of ω corresponding to vaj

. It can be used to
calculate aj. But the first step of this algorithm uses knowing the position of
the given substring which needs an unlimited amount of memory. We can avoid
using this position if we notice that the rank i of elements of ω corresponding
to vaj

is not greater than the rank I of elements of ω corresponding to vaj+1

(because aj < aj+1). So nI is a multiple of ni. Hence at the first step we can take
any element of ω corrensponding to vaj+1

(for example, the first one). We get
the same result since the elements corresponding to vaj

repeat with period ni

and the elements corresponding to vaj+1
repeat with period nI .

Therefore we construct the algorithm proving that K(aj | aj+1) = O(log k),
and so the proof of Proposition 6 is complete.

Remarks.
1. Proposition 6 implies the existence of a bi-infinite almost periodic sequence

with complex substrings (using the standard compactness argument; this argu-
ment can be even simplified for the special case of almost periodic sequences).

2. The proof of Proposition 6 works for relativized version of complexity.
Therefore we get (as explained above) the following (pure combinatorial) strong
version of Proposition 1:

Corollary. Assume that for each n a set Fn of forbidden substrings of

length n is fixed, and the size of Fn is at most 2αn. Then there exists an in-

finite almost periodic binary sequence ω and a constant N such that for any

n > N the sequence ω does not have a substring x that belongs to Fn.

5 Multidimensional case

Similar but more delicate arguments could be applied to multidimensional case
too.

A d-dimensional sequence ω : ZZd → {0, 1} is almost periodic if for any cube x
that appears in ω there exists a number k such that any subcube with side k
contains x inside.

Proposition 9. Fix an integer d ≥ 1. Let α be a positive number less

than 1. There exists an almost periodic d-dimensional sequence ω such that any

sufficiently large subcube x of ω has large complexity:

K(x) ≥ α · volume(x)

Here volume is the number of points, i.e., sided.
In the multidimensional case the complexity argument needs Proposition 8

even if we do not insist that ω is almost periodic.
Informally, the idea of the proof can be explained as follows. Consider, for

example, the case d = 2. Take a sequence v from Proposition 8 and write down
its terms along a spiral.

12

Then we need to bound the complexity of a cube (i.e., square). This square
contains several substrings of the sequence v. (Unlike the previous case where
only 3 substrings were needed, now the number of substrings is proportional to
the side of the square.) Then we apply the Lemma to these substrings to get the
bound for the complexity of the entire square.

This works if we do not require ω to be almost periodic (so the argument
above could replace the combinatorial proof using Lovasz lemma). It needs
additional modifications to get the almost periodic sequence. Similar to one-
dimensional construction, the cube [−n0, n0)

d is duplicated periodically in all
directions with shifts being multiples of n1 (where n0 | n1); the cube [−n1, n1)

d

is duplicated with shifts being multiples of n2 (where n1 | n2), etc.
As in one-dimensional case, it is easy to see that this construction guarantees

that ω is almost periodic. Let v be a sequence satisfying the statement of Propo-
sition 8 with some α′ > α. We sort all new positions of ω by rank (the element
has rank j if it is duplicated with period nj by the structure described) then by
coordinated in lexicographical order. Then we fill the positions with the elements
of v in this order. Let B = [m1,m1 + k)× [m2,m2 + k)× . . .× [md,md + k) is a
cube. We need only to prove that cube B in the sequence ω has high comlexity:

K(ωB) ≥ αkd.

Suppose that sequence {nj} grows fast enough, i.e.
∑∞

j=1
nj−1

nj
< α′−α

4 . Sup-

pose i is the smallest index such that ni ≥ k. Due to our construction of se-
quence ω any element of ω corresponds to some element of v. Different elements
of ω of rank not less than i in cube B correspond to different elements of v
because the distance between elements of the given cube is less than ni (and less
than the period). It is easy to prove that in this cube the density of elements of
small rank (less than i) is not greater than α′ − α.

Indeed, the number of elements of rank j on any vertical (i.e., parallel to the
last axis) interval of length nj is zero or 2nj−1 and we can cover the given cube
of side k with at most kd−1(k

nj
+1) vertical intervals of length nj . Therefore the

number of elements of rank j on cube B is not greater than 2nj−1k
d−1

(

k
nj

+ 1
)

.

So the density of elements of rank less than i in the given cube is not greater

than 2
∑i−1

j=1

(

nj−1

nj
+

nj−1

k

)

≤ 4
∑i−1

j=1
nj−1

nj
< α′ − α due to our assumption

about growing of {nj}.

13

n0

n0

n0

n0

n0

n0

n0

n0

n0

n1

Fig. 2. Duplicated cubes in two dimentional case.

Hence cube B corresponds to some intervals in v. Throw away all elements
of small ranks from these intervals of v and denote the remaining intervals by
[a0, b0), . . . , [as−1, bs−1), where a0 < b0 ≤ . . . ≤ as−1 < bs−1. The number
of these intervals is at most 4kd−1. Indeed, we can enumerate all elements of
each vertical interval of length k in our cube from bottom to top (from small
last coordinate to big one), not counting elements of small ranks, and for each
element find the corresponding element of v. The index of corresponding element
will increase by 1 every time except when we cross a point of type nij, nij+ni−1

or nij − ni−1 (where j is integer). But there are at most 3 points of this type in
any vertical interval of length k so there are at most 4 corresponding intervals for
each vertical interval. But the number of vertical intervals of length k in cube B
is equal to kd−1, so the total number of corresponding intervals s ≤ 4kd−1.

Substrings V (a0, b0), . . . , V (as−1, bs−1) (defined as in Lemma) can be com-
puted by an algorithm using the given substring of ω. The algorithm needs only
to know the value of mj mod ni−1, where j = 1, 2, . . . , d, for finding elements
with small rank (less than i) and the relative positions in the cube B correspond-
ing to vaj

and vbj−1 where j = 0, 1, . . . , s− 1. Because s ≤ 4kd−1 the algorithm
needs only O(kd−1 log k) bits. So we can prove the following inequality to finish
the proof of Proposition 9:

K(V (a0, b0), . . . , V (as−1, bs−1)) ≥ αkd −O(kd−1 log k)

(the value O(kd−1 log k) is compensated by a small change of α). We can use
Lemma for this because α′L > αk, where L = (b0−a0)+(b1−a1)+ . . .+(bs−1−
as−1) (we have already proved that in this cube the density of elements of small
rank is not greater than α′ − α, hence k − L ≤ (α′ − α)k).

If we prove that K(aj | aj+1) = O(log k) we will finish the proof of the
proposition. Suppose we know aj+1. We can find aj in the following way. Find
some element of ω corresponding to vaj+1

(for example, the smallest one). Add
to the index of the found element the difference between the positions in the
given cube corresponding to vaj

and vaj+1
(this difference is not greater than

14

the side of the cube, i.e., we use only a logarithmical amount of memory). We
get an element of ω corresponding to vaj

. It can be used to calculate aj . This
can be proven the same way as in Proposition 6. If at the first step we found the
element in cube B corresponding to vaj+1

we obviously would get vaj
as a result.

Notice that the rank i of elements of ω corresponding to vaj
is not greater than

the rank I of elements of ω corresponding to vaj+1
(because aj < aj+1). So nI is

a multiple of ni and the result does not depend on the element corresponding
to vaj+1

since the elements corresponding to vaj
repeat with period ni and the

elements corresponding to vaj+1
repeat with period nI .

Therefore we construct the algorithm proving that K(aj | aj+1) = O(log k),
and so the proof of Proposition 9 is complete.

6 Remarks

Kolmogorov complexity is often used in combinatorial constructions as the re-
placement of counting arguments. (Instead of proving that the total number
of objects is larger that the number of “bad” objects we prove that an object
of maximal complexity is “good”.) Sometimes people even say that the use of
Kolmogorov complexity is just a simple reformulation that often hides the com-
binatorial essence of the argument.

In our opinion this is not always true. Even without the almost periodicity
requirement the two natural proofs of Proposition 1 (using complexity argument
and Lovasz lemma) are quite different. The proof of Proposition 2 uses prefix
complexity and cannot be directly translated into a counting argument. On the
other hand, the use of Lovasz lemma in a combinatorial proof cannot be easily
reformulated in terms of Kolmogorov complexity. (Moreover, for almost periodic
case we don’t know how to apply Lovasz lemma argument and complexity proof
remains the only one known to us.)

7 Acknowledgements

The authors would like to thank Alexander Shen and Yury Pritykin for help.

References

1. Bruno Durand, Leonid Levin, Alexander Shen, Complex tilings, STOC Proceedings,
2001, p. 732–739; enhanced version: http://arXiv.org/abs/cs.CC/0107008

2. Andrei Muchnik, Alexei Semenov and Maxim Ushakov, Almost periodic sequences,
Theoretical Computer Science, 304 (issue 1-3, July 2003), p. 1–33.

3. Li M., Vitanyi P, An Introduction to Kolmogorov Complexity and Its Applications,
2nd ed. N.Y.: Springer, 1997.

4. Rajeev Motwani, Prabhakar Raghavan, Randomized algorithms, Cambridge Univer-
sity Press, New York, NY, 1995.

	Forbidden substrings, Kolmogorov complexity and almost periodic sequences
	A. Yu. Rumyantsev, M. A. Ushakov (Moscow State University)

