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Abstract. Boxicity of a graph H , denoted by box(H), is the mini-
mum integer k such that H is an intersection graph of axis-parallel k-
dimensional boxes in R

k. In this paper, we show that for a line graph G

of a multigraph, box(G) ≤ 2∆(⌈log
2
log

2
∆⌉ + 3) + 1, where ∆ denotes

the maximum degree of G. Since ∆ ≤ 2(χ−1), for any line graph G with
chromatic number χ, box(G) = O(χ log

2
log

2
(χ)). For the d-dimensional

hypercube Hd, we prove that box(Hd) ≥
1

2
(⌈log

2
log

2
d⌉+ 1). The ques-

tion of finding a non-trivial lower bound for box(Hd) was left open by
Chandran and Sivadasan in [L. Sunil Chandran and Naveen Sivadasan.
The cubicity of Hypercube Graphs. Discrete Mathematics, 308(23):5795-
5800, 2008].
The above results are consequences of bounds that we obtain for the
boxicity of fully subdivided graphs (a graph which can be obtained by
subdividing every edge of a graph exactly once).

Key words: Intersection graph, Interval graph, Boxicity, Line graph,
Edge graph, Hypercube, Subdivision

1 Introduction

Given a family F of sets, a graph G = (V,E) is called an intersection graph of
sets from F , if there exists a map f : V (G) → F such that (u, v) ∈ E(G) ⇔
f(u) ∩ f(v) 6= ∅. If the sets in F are intervals on a real line, then we call G an
interval graph. In other words, interval graphs are intersection graphs of intervals
on the real line. In R

k, an axis parallel k-dimensional box or a k-box is a cartesian
product R1×R2× · · ·×Rk, where each Ri is a closed interval [ai, bi] on the real
line. A graph G is said to have a k-box representation if there exists a mapping
from the vertices of G to k-boxes in the k-dimensional eucledian space such that
two vertices in G are adjacent if and only if their corresponding k-boxes have
a non-empty intersection. Boxicity of G, denoted by box(G), is the minimum
positive integer k such that G has a k-box representation. As each interval can
also be viewed as an axis parallel 1-dimensional box, interval graphs are precisely
the class of graphs with boxicity 1. We take the boxicity of a complete graph to
be 1.

http://arxiv.org/abs/1009.4471v1


1.1 Background

The concept of boxicity was introduced by F.S. Roberts in 1969 [17]. Cozzens
[11] showed that computing the boxicity of a graph is NP-hard. Yannakakis in
[21] improved this result. Finally, Kratochvil [16] showed that deciding whether
the boxicity of a graph is at most 2 itself is NP-complete.

Box representation of graphs finds application in niche overlap (competition)
in ecology and to problems of fleet maintenance in operations research (see [12]).
Given a low dimensional box representation, some well known NP-hard problems
become polynomial time solvable. For instance, the max-clique problem is poly-
nomial time solvable for graphs with boxicity k because the number of maximal
cliques in such graphs is only O((2n)k).

Roberts proved that for every graphG on n vertices, box(G) ≤ ⌊n
2 ⌋. He gave a

tight example to this by showing that a complete n
2 -partite graph with 2 vertices

in each part has its boxicity equal to n
2 . In [4], it was shown that if t denotes

the size of a minimum vertex cover of G, then box(G) ≤ ⌊ t
2⌋ + 1. Chandran,

Francis and Sivadasan showed in [8] that, for any graph G on n vertices having
maximum degree ∆, box(G) ≤ (∆ + 2) lnn. An upper bound solely in terms
of the maximum degree ∆, which says box(G) ≤ 2∆2, is proved in [7]. Esperet
[15] improved this bound to ∆2 + 2. Recently Adiga, Bhowmick and Chandran
[1] showed that box(G) = O(∆ log2 ∆). Chandran and Sivadasan in [9] found a
relation between treewidth and boxicity which says box(G) ≤ tw(G) + 2, where
tw(G) denotes the treewidth of graph G.

Attempts on finding better bounds for boxictiy of special graph classes can
also be seen in the literature. Scheinerman [18] showed that outerplanar graphs
have boxicity at most 2. Thomassen [20] proved that the boxicity of planar
graphs is not greater than 3. Cozzens and Roberts [12] have done a study on
the boxicity of split graphs. Results on the boxicity of Chordal graphs, AT-
free graphs, permutation graphs etc. can be seen in [9]. Better bounds for the
boxicity of Circular Arc graphs and AT-free graphs can be seen in [2, 3]. In [5]
it was shown that, there exist chordal bipartite graphs with arbitrarily high
boxicity.

1.2 An Equivalent Definition for Boxicity

Let G,G1, G2, . . . , Gb be a collection of graphs with V (G) = V (Gi), for any i ≤ b.

We say G =
⋂b

i=1 Gi when E(G) =
⋂b

i=1 E(Gi). The following lemma gives the
relationship between interval graphs and intersection graphs of k-boxes.

Lemma 1 (Roberts[17]). For any graph G, box(G) ≤ k if and only if there

exist k interval graphs I1, I2, . . . , Ik such that G =
⋂k

i=1 Ii.

From the above lemma, we can say that boxicity of a graph G is the minimum
positive integer k for which there exist k interval graphs I1, I2 . . . , Ik such that
G =

⋂k

i=1 Ii.
We have seen that intervals graphs are intersection graphs of intervals on the

real line. Hence for any interval graph I, there exists a map f : V (I) → {X ⊆
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R | X is a closed interval} such that, for any u, v ∈ V (I), (u, v) ∈ E(I) if and
only if f(u) ∩ f(v) 6= ∅. Such a map f is called an interval representation of I.
An interval graph can have more than one interval representation. It is known
that given an interval graph I, we can find an interval representation for I in
which no two intervals share any endpoints.

1.3 Preliminaries

Except in Theorem 3, Section 4, we consider only finite, undirected, and simple
graphs. In Theorem 3, we consider finite, undirected multigraphs. For any finite
positive integer n, let [n] denote the set {1, 2, . . . n}. For a graph G, we use
V (G) and E(G) to denote the set of its vertices and edges respectively. For any
v ∈ V (G), NG(v) := {u | (v, u) ∈ E(G)} and dG(v) := |NG(v)|. The maximum
degree of G is denoted by ∆(G). χ(G) represents the chromatic number of G.
We say that an edge ei is a neighbour of another edge ej in G, if they share an
endpoint. Given two graphs G and H , we say G = H when G is isomorphic to
H .

We say that a graph G is obtained by fully subdividing H , if G is obtained
as a result of subdividing every edge of H exactly once. Given a multigraph H ,
we define a graph L(H) in the following way: V (L(H)) = E(H) and E(L(H)) =
{(e1, e2) | e1, e2 ∈ E(H), e1 and e2 share an endpoint in H}. A graph G is a
line graph if and only if there exists a multigraph H such that G is isomorphic
to L(H). Let I be an interval graph and f an interval representation of I. Then,
∀x ∈ V (I), we use l(f(x)) and r(f(x)) to denote the left and right endpoint
respectively of the interval f(x).

1.4 Our Results

In this paper, we show that for a line graph G with maximum degree ∆,

box(G) ≤ 2∆(⌈log2 log2 ∆⌉+ 3) + 1.

From the above result, we also infer that if chromatic number of G is χ, then
box(G) = O(χ log2 log2(χ)). Recall that, in [1] it was shown that for any graph
G, box(G) ≤ c · ∆ log2 ∆, where c is a large constant. Hence, for the class of
line graphs, our result is an improvement over the best bound known for general
graphs. Moreover, in contrast with the result in [1], the proof here is constructive
and easily gives an efficient algorithm to get a box representation for the given
line graph. We leave the tightness of our result open.

The main supporting result that we have used to prove the above result is the
following (this itself may be independently interesting): For a graph G obtained
by fully subdividing another graph H , box(G) ≤ ⌈log2 log2(∆)⌉ + 3, where ∆
is the maximum degree of G. At the end of the paper, we point out another
consequence of this supporting result. For the d-dimensional hypercube Hd,

box(Hd) ≥
⌈log2 log2 d⌉+ 1

2
.
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It was shown by Chandran and Sivadasan in [10] that box(Hd) ≤ cd
log d

, where c
is a constant. They had raised the question of finding a non-trivial lower bound
for box(Hd).

2 Boxicity of a Fully Subdivided Complete Graph

Let S = {σ1, σ2, . . . , σp} be a set of permutations of [n], where n is any finite
positive integer. S is called k-suitable for [n] if for any k-element subset X ⊆ [n]
and for any x ∈ X , there exists a permutation σ ∈ S with the following property:

σ−1(x) ≥ σ−1(y), ∀y ∈ X.

The minimum cardinality of a k-suitable set for [n] is denoted by N ′(n, k).
Spencer [19] proved that

N ′(n, 3) < log2 log2 n+
1

2
log2 log2 log2 n+ log2(

√
2π) + o(1).

In this paper, we are interested in a slightly relaxed version of the notion of
3-suitability. Given a permutation σ of [n] and s, t ∈ [n], let

β(s, t, σ) = {x | σ−1(s) < σ−1(x) < σ−1(t)

or σ−1(t) < σ−1(x) < σ−1(s)}. (1)

A set S = {σ1, σ2, . . . , σp} is called simply 3-suitable for [n], if for each pair
s, t ∈ [n],

⋂p

i=1 β(s, t, σi) = ∅. In other words, for every triple x, s, t ∈ [n] there
exists a permutation σ ∈ S such that either σ−1(x) < min

(

σ−1(s), σ−1(t)
)

or

σ−1(x) > max
(

σ−1(s), σ−1(t)
)

. It is easy to see that any 3-suitable set is also
a simply 3-suitable set while the converse is clearly not true. Let N(n) be the
minimum possible cardinality of a simply 3-suitable set for [n]. From Spencer’s
bound on N ′(n, 3), we have N(n) ≤ N ′(n, 3) < log2 log2 n+ 1

2 log2 log2 log2 n+

log2(
√
2π) + o(1). But since simply 3-suitability is a more relaxed notion than

3-suitability, we can get the following exact formula for N(n):

Lemma 2. N(n) = ⌈log2 log2 n⌉+ 1.

Proof. Erdős and Szekeres [14] proved that if σ1 and σ2 are two permutations
of [n2 + 1], then there exists some X ⊂ [n2 + 1] with |X | = n+ 1 such that the
permutation of X obtained by restricting σ1 to X is the same as the permutation
obtained by restricting σ2 to X . By an easy inductive argument (as Spencer
points out in [19]) we can show that if σ1, σ2, . . . σs+1 are permutations of [22

s

+1],
then there exists some triple {x, y, z} such that the order of these 3 elements
with respect to each permutation σ1, σ2, . . . σs+1 is the same. This implies that
N(n) ≥ ⌈log2 log2 n⌉+ 1.

We need to show that when n ≤ 22
i

, N(n) ≤ i + 1. Note that when the
permutations in a simply 3-suitable set S for [n] are restricted to [n1] (where
n1 < n), S becomes a simply 3-suitable set for [n1]. Hence it is enough to
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prove that, when n = 22
i

, N(n) ≤ i + 1. We prove this by induction on i. The
base case, when i = 0 and n = 2, is trivially true. For any i < i1, assume
N(n) ≤ i + 1. Let i = i1, n = 22

i1

and n1 = 22
i1−1

. Then n = n1 · n1. So
set [n] can be partitioned into n1 sets A1, A2, . . . An1

, where for any p ∈ [n1],
Ap = {(p− 1)n1 + 1, (p− 1)n1 + 2, . . . , (p− 1)n1 + n1}. Clearly for any a ∈ [n],
there exist k, p ∈ [n1] such that a = (p − 1)n1 + k. By induction hypothesis,
there exists a simply 3-suitable set S′ = {η1, η2, . . . ηi1} of [n1]. Then we define
i1 + 1 permutations S = {σ1, . . . , σi1+1} for [n] as follows:

σ−1
j (a) = (η−1

j (p)− 1)n1 + η−1
j (k), where 1 ≤ j ≤ i1.

σ−1
i1+1(a) = (n1 − η−1

i1
(p))n1 + η−1

i1
(k).

We claim that S is a simply 3-suitable set for [n] i.e., for any s, t ∈ [n],
⋂i1+1

i=1 β(s, t, σi) = ∅. Let s ∈ Ap and t ∈ Aq. Consider the 2 cases below:
case 1: If p = q, then there exist k1, k2 ∈ [n1] with k1 6= k2 such that, s =
(p− 1)n1+k1 and t = (p− 1)n1+k2. Consider a permutation σj , where j ∈ [i1].

β(s, t, σj) = {x | σ−1
j (s) < σ−1

j (x) < σ−1
j (t)

or σ−1
j (t) < σ−1

j (x) < σ−1
j (s)}

= {x | (η−1
j (p)− 1)n1 + η−1

j (k1) < σ−1
j (x) < (η−1

j (p)− 1)n1 + η−1
j (k2)

or (η−1
j (p)− 1)n1 + η−1

j (k2) < σ−1
j (x) < (η−1

j (p)− 1)n1 + η−1
j (k1)}.

If β(s, t, σj) 6= ∅, then consider any x ∈ β(s, t, σj). Clearly x ∈ Ap. Let x =
(p−1)n1+k3. From the above, it is clear that either η−1

j (k1) < η−1
j (k3) < η−1

j (k2)

or η−1
j (k2) < η−1

j (k3) < η−1
j (k1). This means that x ∈ β(s, t, σj) =⇒ k3 ∈

β(k1, k2, ηj). Therefore,
⋂i1

j=1 β(s, t, σj) 6= ∅ =⇒ ⋂i1
j=1 β(k1, k2, ηj) 6= ∅. By in-

duction hypothesis, we know that
⋂i1

j=1 β(k1, k2, ηj) = ∅. Hence⋂i1
j=1 β(s, t, σj) =

∅.
case 2: If p 6= q, then ∃k1, k2 ∈ [n1] such that s = (p − 1)n1 + k1 and

t = (q − 1)n1 + k2. Let x = (r − 1)n1 + k3. Now x ∈ ⋂i1
j=1 β(s, t, σj) im-

plies, for any j ∈ [n1], (η
−1
j (p) − 1)n1 + η−1

j (k1) < (η−1
j (r) − 1)n1 + η−1

j (k3) <

(η−1
j (q)−1)n1+η−1

j (k2) or (η
−1
j (q)−1)n1+η−1

j (k2) < (η−1
j (r)−1)n1+η−1

j (k3) <

(η−1
j (p)− 1)n1 + η−1

j (k1). It follows that η
−1
j (p) ≤ η−1

j (r) ≤ η−1
j (q) or η−1

j (q) ≤
η−1
j (r) ≤ η−1

j (p). If r /∈ {p, q}, then η−1
j (p) < η−1

j (r) < η−1
j (q) or η−1

j (q) <

η−1
j (r) < η−1

j (p) i.e., r ∈ ⋂i1
j=1 β(p, q, ηj) which contradicts the induction hy-

pothesis that
⋂i1

j=1 β(p, q, ηj) = ∅.
Therefore we infer that r = p or r = q. Let r = p (proof is similar when r = q).

If x ∈ ⋂i1+1
j=1 β(s, t, σj) then we have x ∈ β(s, t, σi1 ) and therefore σ−1

i1
(s) <

σ−1
i1

(x) < σ−1
i1

(t) or σ−1
i1

(t) < σ−1
i1

(x) < σ−1
i1

(s). Without loss of generality,

let σ−1
i1

(s) < σ−1
i1

(x) < σ−1
i1

(t). Then (η−1
i1

(p) − 1)n1 + η−1
i1

(k1) < (η−1
i1

(r) −
1)n1 + η−1

i1
(k3) < (η−1

i1
(q) − 1)n1 + η−1

i1
(k2). Since p = r, we have η−1

i1
(p) =

η−1
i1

(r) and therefore η−1
i1

(k1) < η−1
i1

(k3). This also allows us to infer that (n1 −
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η−1
i1

(p))n1 + η−1
i1

(k1) < (n1 − η−1
i1

(r))n1 + η−1
i1

(k3). That is σ
−1
i1+1(s) < σ−1

i1+1(x).

On the other hand, (n1 − η−1
i1

(q))n1 + η−1
i1

(k2) < (n1 − η−1
i1

(p))n1 + η−1
i1

(k1)

(since η−1
i1

(p) < η−1
i1

(q)). Therefore, σ−1
i1+1(t) < σ−1

i1+1(s). So we have, σ−1
i1+1(t) <

σ−1
i1+1(s) < σ−1

i1+1(x). Hence x /∈ β(s, t, σi1+1) contradicting our assumption that

x ∈ ⋂i1+1
j=1 β(s, t, σj). ⊓⊔

Theorem 1. Let G be the graph obtained by fully subdividing the complete graph

Kn. Then
⌈log

2
log

2
n⌉+1

2 ≤ box(G) ≤ ⌈log2 log2 n⌉+ 2.

Proof. Let v1, v2, . . . vn be the vertices of Kn and e1, e2, . . . em its edges, where
m =

(

n
2

)

. Let up·q denote the vertex introduced when subdividing the edge
(vp, vq) ∈ E(Kn), where p < q. Thus the graph G obtained by fully subdividing
Kn has the vertex set V (G) = {v1, v2, . . . vn} ∪ {up·q | 1 ≤ p < q ≤ n} and
E(G) = {(vp, up·q) | 1 ≤ p < q ≤ n} ∪ {(vq, up·q | 1 ≤ p < q ≤ n)}.

We first show that box(G) ≤ ⌈log2 log2 n⌉+ 2. Let k = ⌈log2 log2 n⌉+ 1. By
Lemma 2, there exists a simply 3-suitable set S = {σ1, . . . , σk} for [n]. Using S,
we construct a (k + 1)-dimensional box representation for G. Corresponding to
each permutation σi of [n] in S, we construct an interval graph Ii as follows. Let
fi denote the interval representation of Ii.

for every vp ∈ V (G), fi(vp) = [σ−1
i (p), σ−1

i (p)].

for every up·q ∈ V (G), fi(up·q) = [σ−1
i (p), σ−1

i (q)], if σ−1
i (p)] < σ−1

i (q).

for every up·q ∈ V (G), fi(up·q) = [σ−1
i (q), σ−1

i (p)], if σ−1
i (q) < σ−1

i (p)].

The interval representation fk+1 of the (k+1)th interval graph Ik+1 is as follows:

for every vp ∈ V (G), fk+1(vp) = [1,m].

for every up·q ∈ V (G), fk+1(up·q) = [j, j], where up·q was obtained by

subdividing edge ej = (vp, vq) of Kn.

By Lemma 1, in order to prove that box(G) ≤ k + 1 it is sufficient to show that
⋂k+1

i=1 Ii = G, i.e.,
(i) each Ij is a supergraph of G.
(ii) for any (x, y) /∈ E(G), there exists some interval graph Ii such that (x, y) /∈
E(Ii).

Recall that any edge of G is of the form (vp, upq) or (vq, upq), where vp, vq ∈
V (Kn). It is easy to verify that, for any i ∈ [k + 1], fi(upq) ∩ fi(vp) 6= ∅ and
fi(upq) ∩ fi(vq) 6= ∅. Therefore (i) is true.

Let (x, y) /∈ E(G). In order to prove (ii), we consider the following cases:
case 1: x = vp, y = vq, for some 1 ≤ p < q ≤ n.
It is easy to see that f1(vp) ∩ f1(vq) = ∅ and therefore (vp, vq) /∈ E(I1).
case 2: x = up·q, y = ur·s and up·q 6= ur·s.
Clearly, fk+1(up·q) ∩ fk+1(ur·s) = ∅ and therefore (up·q, ur·s) /∈ E(Ik+1).
case 3: x = vp, y = ur·s, for any p, r, s ∈ [n], p /∈ {r, s} and r < s.
Since S is a simply 3-suitable set for [n] there exists a permutation σj such

6



that p /∈ β(r, s, σj) i.e., either σ−1
j (p) < min(σ−1

j (r), σ−1
j (s)) or σ−1

j (p) >

max(σ−1
j (r), σ−1

j (s)). Now it is easy to see that, fj(vp)∩ fj(ur·s) = ∅ and there-
fore (vp, ur·s) /∈ E(Ij). We thus prove (ii) and thereby prove that box(G) ≤
⌈log2 log2 n⌉+ 2.

We now show that box(G) ≥ ⌈log
2
log

2
n⌉+1

2 . Let box(G) = b. By Lemma 1

there exist b interval graphs, say I1, I2, . . . , Ib, such that G =
⋂b

i=1 Ii. For any
i ∈ [b], let fi be an interval representation of Ii such that no two intervals share
any endpoints. From each fi, generate two permutations Li and Ri of [n] in the
following way. For p, q ∈ [n], p 6= q, L−1

i (p) < L−1
i (q) ⇔ l(fi(vp)) < l(fi(vq)).

Similarly, R−1
i (p) < R−1

i (q) ⇔ r(fi(vp)) < r(fi(vq))

Consider the set S = {L1, R1, L2, R2, . . . Lb, Rb} of permutations of [n]. We
claim that S is a simply 3-suitable set for [n]. Let s, t ∈ [n]. Then for any i ∈ [b],

x ∈ β(s, t, Li) =⇒
(

L−1
i (s) < L−1

i (x) < L−1
i (t)

)

or (2)
(

L−1
i (t) < L−1

i (x) < L−1
i (s)

)

=⇒ (l(fi(vs)) < l(fi(vx)) < l(fi(vt))) or

(l(fi(vt)) < l(fi(vx)) < l(fi(vs))) .

x ∈ β(s, t, Ri) =⇒
(

R−1
i (s) < R−1

i (x) < R−1
i (t)

)

or (3)
(

R−1
i (t) < R−1

i (x) < R−1
i (s)

)

=⇒ (r(fi(vs)) < r(fi(vx)) < r(fi(vt))) or

(r(fi(vt)) < r(fi(vx)) < r(fi(vs))) .

Suppose, for contradiction, x ∈ ⋂b

j=1 (β(s, t, Lj) ∩ β(s, t, Rj)). Consider any
i ∈ [b]. Let y = max(l(fi(vs)), l(fi(vt))) and z = min(r(fi(vs)), r(fi(vt))). Con-
sider the two cases below:
case 1: y < z. Then by implications (2) and (3) it is clear that l(fi(vx)) < y =
max(l(fi(vs)), l(fi(vt))) and r(fi(vx)) > z = min(r(fi(vs)), r(fi(vt))). There-
fore, [y, z] ⊆ fi(vx). Now we will show that fi(us·t) ∩ [y, z] 6= ∅ which will
immediately imply that fi(us·t) ∩ fi(vx) 6= ∅. If fi(us·t) ∩ [y, z] = ∅, then ei-
ther r(fi(us·t)) < y or l(fi(us·t)) > z. In both these cases, it is easy to see
that either (us·t, vs) /∈ E(Ii) or (us·t, vt) /∈ E(Ii). This contradicts the fact that
Ii is a supergraph of G. Hence fi(us·t)∩[y, z] 6= ∅ and therefore (us·t, vx) ∈ E(Ii).
case 2: y > z. Since (us·t, vs) ∈ E(Ii) and (us·t, vt) ∈ E(Ii), we have r(fi(us·t)) >
y and l(fi(us·t)) < z. Therefore, [z, y] ⊆ fi(us·t). Now we will show that fi(vx)∩
[z, y] 6= ∅ which will immediately imply that fi(us·t) ∩ fi(vx) 6= ∅. If fi(vx) ∩
[z, y] = ∅, then either r(fi(vx)) < z or l(fi(vx))) > y. In both these cases, we
contradict implications (2) and (3) which state that r(fi(vx)) is sandwiched be-
tween r(fi(vs)) and r(fi(vt)), and l(fi(vx)) is sandwiched between l(fi(vs)) and
l(fi(vt)). Hence fi(vx) ∩ [z, y] 6= ∅ and therefore (us·t, vx) ∈ E(Ii).

Thus we conclude that if there exists an x /∈ {s, t} such that x ∈ ⋂2b
j=1 β(s, t,

σj), then (us·t, vx) ∈ E(
⋂b

i=1 Ii) which implies that (us·t, vx) ∈ E(G). But this

contradicts the fact that (us·t, vx) /∈ E(G) and hence
⋂2b

j=1 β(s, t, σj) = ∅ i.e.,

7



S is a simply 3-suitable set. Then by Lemma 2, |S| = 2b ≥ ⌈log2 log2 n⌉ + 1 or

box(G) ≥ ⌈log
2
log

2
n⌉+1

2 . ⊓⊔

Remark 1. Louis Esperet informed us that he had independently observed The-
orem 1. But he has not published it. We thank him for personal communication.
In [15], he also conjectures that for any graph G, (i) box(G) ≤ a(G) + κ, (ii)
box(G) ≤ λ · a(G), where κ, λ are constants and a(G) refers to the arboric-
ity of G. As arboricity of any graph is upper bounded by its degeneracy and
since fully subdivided complete graphs are 2-degenerate, Theorem 1 disproves
Esperet’s both conjectures.

3 Boxicity of a Fully Subdivided Graph of Chromatic

Number χ

Theorem 2. Let H be a graph with chromatic number χ and let G be the graph
obtained by fully subdividing H. Then, box(G) ≤ ⌈log2 log2 χ⌉+ 3.

Proof. Given a colouring of H using χ colours, let C1, C2 . . . Cχ represent the χ
colour classes. Let |Ci| = ci and cmax = maxi(ci). Give an arbitrary order to the
vertices in each colour class. Let vij denote the j-th vertex in the i-th colour class,
where i ∈ [χ] and j ∈ [ci]. Let E(H) = {e1, e2, . . . , em} be the edge set of H . Let
upq·rs denote the vertex introduced while subdividing the edge (vpq , vrs), where
p < r. Let k = ⌈log2 log2 χ⌉ + 1. By Lemma 2, there exists a simply 3-suitable
set S = {σ1, . . . σk} for [χ]. We use S to construct a (k + 2)-dimensional box
representation for G. Corresponding to each permutation σi ∈ S, we construct
an interval graph Ii as follows. Let fi denote the interval representation of Ii.
When i ≤ k,

for every vpq ∈ E(G), fi(vpq) = [gi(p, q), gi(p, q)],

where gi(p, q) = σ−1
i (p) +

q − 1

cmax

.

for every upq·rs ∈ E(G), fi(upq·rs) = [gi(p, q), gi(r, s)], if gi(p, q) < gi(r, s).

for every upq·rs ∈ E(G), fi(upq·rs) = [gi(r, s), gi(p, q)], if gi(r, s) < gi(p, q),

where gi(p, q) = σ−1
i (p) +

q − 1

cmax

and gi(r, s) = σ−1
i (r) +

s− 1

cmax

.
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The interval representations of the remaining 2 interval graphs namely Ik+1 and
Ik+2 are as follows:-

for every vpq ∈ E(G), fk+1(vpq) = [1,m].

for every upq·rs ∈ E(G), fk+1(upq·rs) = [j, j],

where upq·rs was obtained by

subdividing edge ej = (vpq, vrs) of H.

for every vpq ∈ E(G), fk+2(vpq) = [hk(p, q), hk(p, q)],

where hk(p, q) = (χ+ 1)− σ−1
k (p) +

q − 1

cmax

.

for every upq·rs ∈ E(G), fk+2(upq·rs) = [hk(p, q), hk(r, s)], if hk(p, q) < hk(r, s).

for every upq·rs ∈ E(G), fk+2(upq·rs) = [hk(r, s), hk(p, q)], if hk(r, s) < hk(p, q),

where hk(p, q) = (χ+ 1)− σ−1
k (p) +

q − 1

cmax

and hk(r, s) = (χ+ 1)− σ−1
k (r) +

s− 1

cmax

.

Observe that every edge in G is of the form (upq·rs, vpq) or (upq·rs, vrs) where vpq
and vrs are vertices of H and upq·rs is the vertex introduced while subdividing
edge (vpq, vrs). Any interval graph Ii, where 1 ≤ i ≤ k, is clearly a supergraph
of G because in fi the interval corresponding to upq·rs has its endpoints on the
point intervals assigned to vpq and vrs. The same is true with interval graph
Ik+2. In the interval representation fk+1 of Ik+1 , any vertex vpq is assigned an
interval [1,m] which overlaps with the interval of every other vertex. Hence all
interval graphs I1, I2, . . . , Ik+2 are supergraphs of G.

In order to show that for every (x, y) /∈ E(G) there exists some interval graph
Ii in our collection such that (x, y) /∈ E(Ii), we consider the following cases:
case 1: x = vpq, y = vrs, where vpq 6= vrs.
As f1(vpq) ∩ f1(vrs) = ∅, (vpq , vrs) /∈ E(I1).
case 2: x = upq·rs, y = uwx·yz, where upq·rs 6= uwx·yz.
It is easy to verify that fk+1(upq·rs)∩fk+1(uwx·yz) = ∅ and hence (upq·rs, uwx·yz) /∈
E(Ik+1).
case 3: x = upq·rs, y = vab and a /∈ {p, r}.
Note that p, r, a ∈ [χ] and since S is a simply 3-suitable set for [χ], there ex-
ists a σi ∈ S such that a /∈ β(p, r, σi) i.e., σ−1

i (a) < min(σ−1
i (p), σ−1

i (r)) or
σ−1
i (a) > max(σ−1

i (p), σ−1
i (r)). fi(vab) = [gi(a, b), gi(a, b)] and fi(upq·rs) =

[gi(p, q), gi(r, s)]. Recalling that, for any x1 ∈ [χ] and x2 ∈ [ci], gi(x1, x2) =
σ−1
i (x1) +

x2−1
cmax

it is easy to verify that fi(vab) ∩ fi(upq·rs) = ∅.
case 4: x = upq·rs, y = vab and a ∈ {p, r}.
Assume a = p (proof is similar when a = r). Assume (vpb, upq·rs) ∈ E(Ii), ∀i ∈
{1, 2, . . . , k + 2}. It means (vpb, upq·rs) ∈ E(Ik) =⇒ σ−1

k (p) + q−1
cmax

< σ−1
k (p) +

b−1
cmax

< σ−1
k (r) + s−1

cmax

=⇒ q < b (here we assume that σ−1
i (p) < σ−1

i (r).

Proof is similar when σ−1
i (p) > σ−1

i (r)). In fk+2, note that upq·rs is assigned the
interval [(χ + 1) − σ−1

k (r) + s−1
cmax

, (χ + 1) − σ−1
k (p) + q−1

cmax

] and vab (= vpb) is
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assigned the interval [(χ+1)−σ−1
k (p)+ b−1

cmax

, (χ+1)−σ−1
k (p)+ b−1

cmax

]. Therefore,
(vpb, upq·rs) ∈ E(Ik+2) =⇒ b < q. But this contradicts our earlier inference that
q < b. Therefore, either (vab, upq·rs) /∈ E(Ik) or (vab, upq·rs) /∈ E(Ik+2).

We have thus shown that for any (x, y) /∈ E(G), ∃i ∈ [k + 2] such that

(x, y) /∈ E(Ii). As each Ii is a supergraph of G, we have G =
⋂k+2

i=1 Ii. Applying
Lemma 1, we get box(G) ≤ ⌈log2 log2 χ⌉+ 3. ⊓⊔

Corollary 1. Given a graph H, let G be the graph obtained by fully subdividing
H. Then, box(G) ≤ ⌈log2 log2(∆(H))⌉ + 3 ≤ ⌈log2 log2(∆(G))⌉ + 3

Proof. By Brooks’ theorem (see chapter 5 in [13]), χ ≤ ∆(H) unless the graph
H is isomorphic to a complete graph K∆(H)+1 or to an odd cycle. If H is iso-
morphic to K∆(H)+1, then by Theorem 1, box(G) ≤ ⌈log2 log2(∆(H)+1)⌉+2 ≤
⌈log2 log2(∆(H))⌉ + 3. If H is an odd cycle, then G will be a cycle and hence
box(G) ≤ 2 < ⌈log2 log2(∆(H))⌉ + 3. Therefore applying Theorem 2, we have
box(G) ≤ ⌈log2 log2(∆(H))⌉+ 3. As ∆(H) ≤ ∆(G), the corollary follows. ⊓⊔

4 Line Graphs

For any bipartite graph G with bipartition {A,B}, we use CA(G) to denote the
graph with V (CA(G)) = V (G) and E(CA(G)) = E(G) ∪ {(x, y) | x, y ∈ A}.
Thus CA(G) is the graph obtained from G by making A a clique. Similarly one
can define CB(G).

Lemma 3. For any bipartite graph G with bipartition {A,B}, box(CA(G)) ≤
2 · box(G).

Proof. Proof of this lemma is similar to the proof of Lemma 7 in [5]. In [5] it
is proved that box(CAB(G)) ≤ 2 · box(G), where CAB(G) refers to the graph
obtained by making both A and B cliques. For the sake of completeness, we give
a proof to our lemma below.

Let box(G) = b. Then by Lemma 1, there exist b interval graphs, say I1, I2,

. . . , Ib, such that G =
⋂b

i=1 Ii. Let fi denote an interval representation of Ii,
where i ∈ [b]. Let si = minx∈A(l(fi(x))) and ti = maxx∈A(r(fi(x))). From these
b interval graphs we construct 2b interval graphs namely I ′1, I

′
2, . . . I

′
b, I

′′
1 , I

′′
2 , . . . I

′′
b

as follows. Let f ′
i , f

′′
i denote interval representations of I ′i and I ′′i respectively,

where i ∈ [b].

Construction of f ′
i :

∀x ∈ A, f ′
i(x) = [si, r(fi(x))].

∀x ∈ B, f ′
i(x) = fi(x).

Construction of f ′′
i :

∀x ∈ A, f ′′
i (x) = [l(fi(x)), ti].

∀x ∈ B, f ′′
i (x) = fi(x).
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We claim that CA(G) =
⋂b

i=1(I
′
i∩I ′′i ). Consider any (x, y) ∈ E(CA(G)). To show

that (x, y) ∈ E(I ′i) and (x, y) ∈ E(I ′′i ), ∀i ∈ [b], we consider the following 2 cases.
If (x, y) ∈ E(G), clearly (x, y) ∈ E(Ii). From the construction of f ′

i and f ′′
i , it

is easy to see that I ′i and I ′′i are supergraphs of Ii. Otherwise if (x, y) /∈ E(G),
then x, y ∈ A and therefore [si, si] ⊆ f ′

i(x) ∩ f ′
i(y) and [ti, ti] ⊆ f ′′

i (x) ∩ f ′′
i (y).

Now, consider any (x, y) /∈ E(CA(G). We know that (x, y) /∈ E(CA(G)) =⇒
(x, y) /∈ E(G) =⇒ (x, y) /∈ E(Ii), for some i ∈ [b]. It is then easy to verify
that,

(a) if x ∈ A, y ∈ B, then (f ′
i(x) ∩ f ′

i(y) = ∅) or (f ′′
i (x) ∩ f ′′

i (y) = ∅).
(b) if x, y ∈ B, then (f ′

i(x) ∩ f ′
i(y) = ∅) and (f ′′

i (x) ∩ f ′′
i (y) = ∅).

Thus we prove the claim that CA(G) =
⋂b

i=1(I
′
i ∩ I ′′i ).Therefore by Lemma 1,

box(CA(G)) ≤ 2 · box(G). ⊓⊔

Lemma 4. Let G be a bipartite graph with bipartition {X,Y } having the fol-
lowing two properties: (i) for any y ∈ Y , dG(y) ≤ 2 and (ii) for any y1, y2 ∈ Y ,
if y1 6= y2 then NG(y1) 6= NG(y2). Then, box(G) ≤ ⌈log2 log2(∆(G))⌉ + 3.

Proof. If ∆(G) = 1, then G is a collection of isolated edges and therefore
box(G) = 1 ≤ ⌈log2 log2(∆(G))⌉ + 3. Let ∆(G) ≥ 2. From G, we construct
a bipartite graph G′ with bipartition {X ′, Y ′} in the following way: To start
with, let G′ = G. For each vertex u ∈ Y ′ with dG′(u) = 1, we add a new ver-
tex nu to X ′ such that u is the only neighbour of nu. For each v ∈ Y ′ with
dG′(v) = 0, delete v from Y ′. So X ′ = X ∪ {nu | u ∈ Y and dG(u) = 1} and
Y ′ = Y \ {v ∈ Y | v is an isolated vertex}. We claim that box(G) ≤ box(G′).
This is because the graph obtained by removing isolated vertices from G is an
induced subgraph of G′ and therefore its boxicity is at most that of G′. As adding
isolated vertices to any graph does not increase its boxicity, our claim follows.

From the construction of G′ we can say that, for every y ∈ Y ′, dG′(y) = 2.

Let G′′ be the subgraph induced on vertices of X ′ in G′2, where G′2 denotes the
square of graph G′. It is easy to see that G′ can be obtained by fully subdividing
G′′ (Here note that if G and thereby G′ had not satisfied property (ii), then the
graph obtained by fully subdividing G′′ would have just been a subgraph of G′).
Therefore by our above claim and applying Corollary 1, we get

box(G) ≤ box(G′) ≤ ⌈log2 log2(∆(G′))⌉+ 3.

From the construction of G′ and recalling that ∆(G) ≥ 2, we infer that ∆(G′) ≤
∆(G). Therefore,

box(G) ≤ ⌈log2 log2(∆(G))⌉ + 3.

⊓⊔

A critical clique of a graphG is a cliqueK where the vertices ofK all have the
same set of neighbours in G\K, and K is maximal under this property. Let K de-
note the collection of critical cliques in G. The critical clique graph of a graph G,
denoted by CC(G), has V (CC(G)) = K and E(CC(G)) = {(K1,K2) | K1,K2 ∈
K and V (K1)∪V (K2) induces a clique in G}. Notice that CC(G) is isomorphic
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to some induced subgraph of G. For example, we can take a representative ver-
tex from each critical clique and the induced subgraph on this set of vertices
is isomorphic to CC(G). The following lemma is due to Chandran, Francis and
Mathew [6] :

Lemma 5. For any graph G, box(G) = box(CC(G)).

We now prove the main result of the paper. Recall that, given a multigraph
H , we define its line graph L(H) in the following way: V (L(H)) := E(H) and
E(L(H)) := {(e1, e2) | e1, e2 ∈ E(H), e1 and e2 share an endpoint in H}. A
graph G is a line graph if and only if there exists a multigraph H such that G
is isomorphic to L(H).

Theorem 3. Given a multigraph H, let G be a graph isomorphic to L(H). Let
∆ denote ∆(G) and χ represent χ(G). Then, box(G) ≤ 2∆(⌈log2 log2 ∆⌉+3)+1.

Proof. Given a vertex colouring of G using χ colours, let D1, D2, . . . , Dχ be the
colour classes. For any 1 ≤ i ≤ (χ− 1), let Gi, with V (Gi) = V (G) and E(Gi) =
E(G) ∪ {(x, y) | x, y ∈ Di}, be the split graph where Di is an independent set
and Di a clique (here Di = {x ∈ V (G) | x /∈ Di}). Let G+

χ be the graph having

V (G+
χ ) = V (G) and E(G+

χ ) = {(x, y) | x ∈ Dχ, y ∈ V (G)}. It is easy to see that

G = G1 ∩G2 ∩ · · · ∩G(χ−1) ∩G+
χ .

Therefore by Lemma 1,

box(G) ≤ Σ
(χ−1)
i=1 box(Gi) + box(G+

χ ).

By Lemma 5, we know that box(Gi) = box(CC(Gi)). Also, observe that G+
χ is

an interval graph and hence its boxicity is 1. Therefore,

box(G) ≤ Σ
(χ−1)
i=1 box(CC(Gi)) + 1. (4)

We know that, ∀i ∈ [(χ − 1)], Gi is a split graph, where Di is an independent
set and Di a clique. As CC(Gi) is isomorphic to some subgraph of Gi, it is also
a split graph with V (CC(Gi)) = Xi ⊎ Yi, where Xi ⊆ Di is an independent set
and Yi ⊆ Di a clique. Let Hi be the bipartite graph obtained from CC(Gi) by
making Yi an independent set. By Lemma 3, we have box(CC(Gi)) ≤ 2 ·box(Hi).
Applying this to inequality (4), we get

box(G) ≤ 2Σ
(χ−1)
i=1 box(Hi) + 1. (5)

Claim 1. For any i ∈ [(χ− 1)] and y ∈ Yi, dHi
(y) ≤ 2.

Proof. Recall that G = L(H) and therefore a proper vertex colouring of G is
equivalent to a proper edge colouring of H . Since in any edge colouring of H
a given edge e cannot have more than 2 monochromatic neighbours, for any
y ∈ Di, |NG(y) ∩Di| ≤ 2. Observe that the bipartite graph Hi is a subgraph of
G. Therefore, for any y ∈ Yi ⊆ Di, we get |NHi

(y)∩Xi| = |NHi
(y)| = dHi

(y) ≤ 2.
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For any i ∈ [(χ− 1)], Hi is a bipartite graph with bipartition {Xi, Yi} satis-
fying the following two properties:
(i) by Claim 1, for any y ∈ Yi, dHi

(y) ≤ 2.
(ii) for any y1, y2 ∈ Yi, if y1 6= y2 then NHi

(y1) 6= NHi
(y2). Assume for contradic-

tion that there exist some y1, y2 ∈ Yi with y1 6= y2 and NHi
(y1) = NHi

(y2). Then
we have NCC(Gi)(y1) = NCC(Gi)(y2) which contradicts the fact that CC(Gi) is
the critical clique graph of Gi.

Therefore by Lemma 4, we get box(Hi) ≤ ⌈log2 log2(∆(Hi))⌉ + 3. Since Hi

is a subgraph of G, ∆(Hi) ≤ ∆. Hence,

box(Hi) ≤ ⌈log2 log2 ∆⌉+ 3.

We thus rewrite inequality (5) as,

box(G) ≤ 2(χ− 1)(⌈log2 log2 ∆⌉+ 3) + 1 ≤ 2∆(⌈log2 log2 ∆⌉+ 3) + 1.

As G = L(H), ∆ ≤ 2(∆(H)− 1) ≤ 2(χ− 1). Therefore,

box(G) ≤ 2(χ− 1)(⌈log2 log2(2(χ− 1))⌉+ 3) + 1.

⊓⊔

5 Lower Bound for Boxicity of a Hypercube

For any non-negative integer d, a d-dimensional hypercube Hd has its vertices
corresponding to the 2d binary strings each of length d. Two vertices are adjacent
if and only if their binary strings differ from each other in exactly one bit position.

Theorem 4. box(Hd) ≥ ⌈log
2
log

2
d⌉+1

2

Proof. For any vertex v ∈ V (Hd), let g(v) denote the number of ones in the bit
string associated with v. Let X = {v ∈ V (H) | g(v) = 1 or g(v) = 2}. Let H ′

be the subgraph of H induced on the vertex set X . We can see that H ′ is a
bipartite graph with bipartition {A,B}, where A = {v ∈ V (H ′) | g(v) = 1} and
B = {v ∈ V (H ′) | g(v) = 2}.

It is easy to observe that H ′ is a graph obtained by fully subdividing K|A|,
where K|A| refers to a complete graph on |A| = d vertices. Then by Theorem 1,
we can say that

box(H ′) ≥ ⌈log2 log2 d⌉+ 1

2
.

As H ′ is an induced subgraph of H ,

box(H) ≥ box(H ′) ≥ ⌈log2 log2 d⌉+ 1

2
.

⊓⊔
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